1
|
ElDiwiny M, Terryn S, Verbruggen S, Vanderborght B. Nonlinear Multimaterial Architecture for Greater Soft Material's Toughness and Delaying Damage Propagation. Soft Robot 2023; 10:959-971. [PMID: 37172281 DOI: 10.1089/soro.2021.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Designing soft robots that have greater toughness and better resistance to damage propagation while at the same time retaining their properties of compliance is fundamentally important for soft robotics applications. This study's main contribution is proposing a framework for nonlinear multimaterial architectural design of soft structures to increase their toughness and delay damage propagation. What are the limits when combining significantly different materials in one structure that will delay crack propagation while significantly maintaining postdamage toughness? Through this study, we observed that there is a very dynamic interplay when combining significantly different materials in one structure; this interplay could weaken or strengthen the multimaterial structure's toughness. In biological evolutionary terms, the Pangolin, Seashell, and Arapaima have found their answer for deflecting the crack and maintaining strength in their bodies. How does nature put these multimaterial structures together? Our research led us to find that the multimaterial toughness limits depend largely on the following parameters: components' relative morphology, architecture, spatial distribution, surface areas, and Young's Modulus. We found that a linear geometry, when it comes to morphology and/or architecture relative to surface area in multimaterial design, significantly reduces total toughness and fails to delay crack propagation. In contrast, incorporating geometric nonlinearities in both morphology and architecture significantly maintains higher total toughness even after damage, and significantly delays crack propagation. We believe that this study can open the door to further research and ultimately to promising and wide applications in soft robotics.
Collapse
Affiliation(s)
- Marwa ElDiwiny
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Brussels, Belgium
| | - Seppe Terryn
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Brussels, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Svetlana Verbruggen
- Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel (VUB), Brussel, Belgium
| | - Bram Vanderborght
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Brussels, Belgium
| |
Collapse
|
2
|
Nepal D, Kang S, Adstedt KM, Kanhaiya K, Bockstaller MR, Brinson LC, Buehler MJ, Coveney PV, Dayal K, El-Awady JA, Henderson LC, Kaplan DL, Keten S, Kotov NA, Schatz GC, Vignolini S, Vollrath F, Wang Y, Yakobson BI, Tsukruk VV, Heinz H. Hierarchically structured bioinspired nanocomposites. NATURE MATERIALS 2023; 22:18-35. [PMID: 36446962 DOI: 10.1038/s41563-022-01384-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Next-generation structural materials are expected to be lightweight, high-strength and tough composites with embedded functionalities to sense, adapt, self-repair, morph and restore. This Review highlights recent developments and concepts in bioinspired nanocomposites, emphasizing tailoring of the architecture, interphases and confinement to achieve dynamic and synergetic responses. We highlight cornerstone examples from natural materials with unique mechanical property combinations based on relatively simple building blocks produced in aqueous environments under ambient conditions. A particular focus is on structural hierarchies across multiple length scales to achieve multifunctionality and robustness. We further discuss recent advances, trends and emerging opportunities for combining biological and synthetic components, state-of-the-art characterization and modelling approaches to assess the physical principles underlying nature-inspired design and mechanical responses at multiple length scales. These multidisciplinary approaches promote the synergetic enhancement of individual materials properties and an improved predictive and prescriptive design of the next era of structural materials at multilength scales for a wide range of applications.
Collapse
Affiliation(s)
- Dhriti Nepal
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA.
| | - Saewon Kang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Katarina M Adstedt
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Krishan Kanhaiya
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Michael R Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - L Catherine Brinson
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
| | - Peter V Coveney
- Department of Chemistry, University College London, London, UK
| | - Kaushik Dayal
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jaafar A El-Awady
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Luke C Henderson
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, Australia
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Yusu Wang
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Boris I Yakobson
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
3
|
Hossain MS, Ebrahimi H, Ghosh R. Fish scale inspired structures-a review of materials, manufacturing and models. BIOINSPIRATION & BIOMIMETICS 2022; 17:061001. [PMID: 35803252 DOI: 10.1088/1748-3190/ac7fd0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Fish scale inspired materials and structures can provide advanced mechanical properties and functionalities. These materials, inspired by fish scales, take the form of either composite materials or multi-material discrete exoskeleton type structures. Over the last decade they have been under intense scrutiny for generating tailorable and tunable stiffness, penetration and fracture resistance, buckling prevention, nonlinear damping, hydrodynamic and camouflaging functions. Such programmable behavior emerges from leveraging their unique morphology and structure-property relationships. Several advanced tools for characterization, manufacturing, modeling and computation have been employed to understand and discover their behavior. With the rapid proliferation of additive manufacturing techniques and advances in modeling and computational methods, this field is seeing renewed efforts to realize even more ambitious designs. In this paper we present a review and recapitulation of the state-of-the art of fish scale inspired materials.
Collapse
Affiliation(s)
- Md Shahjahan Hossain
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States of America
| | - Hossein Ebrahimi
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States of America
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States of America
| |
Collapse
|
4
|
Rawat P, Zhu D, Rahman MZ, Barthelat F. Structural and mechanical properties of fish scales for the bio-inspired design of flexible body armors: A review. Acta Biomater 2021; 121:41-67. [PMID: 33285327 DOI: 10.1016/j.actbio.2020.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022]
Abstract
Natural protection offered to living beings is the result of millions of years of biological revolution. The protections provided in fishes, armadillos, and turtles by unique hierarchal designs help them to survive in surrounding environments. Natural armors offer protections with outstanding mechanical properties, such as high penetration resistance and toughness to weight ratio. The mechanical properties are not the only key features that make scales unique; they are also highly flexible and breathable. In this study, we aim to review the structural and mechanical characteristics of the scales from ray-finned or teleost fishes, which can be used for new bio-inspired armor designs. It is also essential to consider the hierarchical structure of extinct and existing natural armors. The basic characteristics, as mentioned above, are the foundation for developing high-performance, well-structured flexible natural armors. Furthermore, the present review justifies the importance of interaction between toughness, hardness, and deformability in well-engineered bio-inspired body armor. At last, some suggestions are proposed for the design and fabrication of new bio-inspired flexible body armors.
Collapse
Affiliation(s)
- Prashant Rawat
- Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China; International Science Innovation Collaboration Base for Green & Advanced Civil Engineering Materials of Hunan Province, Hunan University, Changsha 410082, China
| | - Deju Zhu
- Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China; International Science Innovation Collaboration Base for Green & Advanced Civil Engineering Materials of Hunan Province, Hunan University, Changsha 410082, China.
| | - Md Zillur Rahman
- Department of Industrial Engineering, BGMEA University of Fashion and Technology, Dhaka 1230, Bangladesh
| | - Francois Barthelat
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States.
| |
Collapse
|
5
|
Huang W, Restrepo D, Jung JY, Su FY, Liu Z, Ritchie RO, McKittrick J, Zavattieri P, Kisailus D. Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901561. [PMID: 31268207 DOI: 10.1002/adma.201901561] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/08/2019] [Indexed: 05/04/2023]
Abstract
Biological materials found in Nature such as nacre and bone are well recognized as light-weight, strong, and tough structural materials. The remarkable toughness and damage tolerance of such biological materials are conferred through hierarchical assembly of their multiscale (i.e., atomic- to macroscale) architectures and components. Herein, the toughening mechanisms of different organisms at multilength scales are identified and summarized: macromolecular deformation, chemical bond breakage, and biomineral crystal imperfections at the atomic scale; biopolymer fibril reconfiguration/deformation and biomineral nanoparticle/nanoplatelet/nanorod translation, and crack reorientation at the nanoscale; crack deflection and twisting by characteristic features such as tubules and lamellae at the microscale; and structure and morphology optimization at the macroscale. In addition, the actual loading conditions of the natural organisms are different, leading to energy dissipation occurring at different time scales. These toughening mechanisms are further illustrated by comparing the experimental results with computational modeling. Modeling methods at different length and time scales are reviewed. Examples of biomimetic designs that realize the multiscale toughening mechanisms in engineering materials are introduced. Indeed, there is still plenty of room mimicking the strong and tough biological designs at the multilength and time scale in Nature.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - David Restrepo
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Jae-Young Jung
- Materials Science and Engineering Program, University of California San Diego, La Jolla, 92093, USA
| | - Frances Y Su
- Materials Science and Engineering Program, University of California San Diego, La Jolla, 92093, USA
| | - Zengqian Liu
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Fatigue and Fracture Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Joanna McKittrick
- Materials Science and Engineering Program, University of California San Diego, La Jolla, 92093, USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, 92093, USA
| | - Pablo Zavattieri
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - David Kisailus
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
- Materials Science and Engineering Program, University of California Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
6
|
du Plessis A, Broeckhoven C. Looking deep into nature: A review of micro-computed tomography in biomimicry. Acta Biomater 2019; 85:27-40. [PMID: 30543937 DOI: 10.1016/j.actbio.2018.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
Abstract
Albert Einstein once said "look deep into nature, and then you will understand everything better". Looking deep into nature has in the last few years become much more achievable through the use of high-resolution X-ray micro-computed tomography (microCT). The non-destructive nature of microCT, combined with three-dimensional visualization and analysis, allows for the most complete internal and external "view" of natural materials and structures at both macro- and micro-scale. This capability brings with it the possibility to learn from nature at an unprecedented level of detail in full three dimensions, allowing us to improve our current understanding of structures, learn from them and apply them to solve engineering problems. The use of microCT in the fields of biomimicry, biomimetic engineering and bioinspiration is growing rapidly and holds great promise. MicroCT images and three-dimensional data can be used as generic bio-inspiration, or may be interpreted as detailed blueprints for specific engineering applications, i.e., reverse-engineering nature. In this review, we show how microCT has been used in bioinspiration and biomimetic studies to date, including investigations of multifunctional structures, hierarchical structures and the growing use of additive manufacturing and mechanical testing of 3D printed models in combination with microCT. The latest microCT capabilities and developments which might support biomimetic studies are described and the unique synergy between microCT and biomimicry is demonstrated. STATEMENT OF SIGNIFICANCE: This review highlights the growing use of X-ray micro computed tomography in biomimetic research. We feel the timing of this paper is excellent as there is a significant growth and interest in biomimetic research, also coupled with additive manufacturing, but still no review of the use of microCT in this field. The use of microCT for structural biomimetic and biomaterials research has huge potential but is still under-utilized, partly due to lack of knowledge of the capabilities and how it can be used in this field. We hope this review fills this gap and fuels further advances in this field using microCT.
Collapse
|