1
|
Shu P, Li D, Zhao S, Lv R. Effects of body posture on aortic valve hemodynamics and biomechanics using the fluid-structure interaction method. J Biomech 2024; 177:112388. [PMID: 39489006 DOI: 10.1016/j.jbiomech.2024.112388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Bioprosthetic heart valve (BHV), the most widely and commonly used valves in clinical practice, are susceptible to fatigue damage. Biological valves are always in one or fewer body postures before sampling in pigs and bovines. Nevertheless, human body positions are far more than them. Variations in body position significantly affect the intrinsic environment of blood pressure (BP), heart rate (HR), and peripheral resistance (PR). Such boundary condition changes will inevitably affect the implanted biological valve. In this paper, the immersed boundary method was used to simulate the motion of the aortic valve during the entire cardiac cycle in five postural blood flow environments: upright, sitting, prone, supine and orthostatic hypotension (OH). Several hemodynamic and biomechanical parameters, including the transvalvular pressure gradient and valve displacement, were evaluated. The results showed that the OH group exhibited the worst performance of the valves, accompanied by the greatest regurgitation and high-frequency flutter, predisposing patients to thrombosis and fatigue calcification. For BHVs to serve longer, patients implanted with BHV should avoid OH in their daily routine.
Collapse
Affiliation(s)
- Peng Shu
- School of Aeronautic Science and Engineering, Beihang University, Beijing, China
| | - Daochun Li
- School of Aeronautic Science and Engineering, Beihang University, Beijing, China
| | - Shiwei Zhao
- School of Aeronautic Science and Engineering, Beihang University, Beijing, China.
| | - Rui Lv
- School of Aeronautic Science and Engineering, Beihang University, Beijing, China
| |
Collapse
|
2
|
Pearce DP, Witzenburg CM. Evaluation of an Inverse Method for Quantifying Spatially Variable Mechanics. J Biomech Eng 2024; 146:121006. [PMID: 39240274 DOI: 10.1115/1.4066434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Soft biological tissues often function as highly deformable membranes in vivo and exhibit impressive mechanical behavior effectively characterized by planar biaxial testing. The Generalized Anisotropic Inverse Mechanics (GAIM) method links full-field deformations and boundary forces from mechanical testing to quantify material properties of soft, anisotropic, heterogeneous tissues. In this study, we introduced an orthotropic constraint to GAIM to improve the quality and physical significance of its mechanical characterizations. We evaluated the updated GAIM method using simulated and experimental biaxial testing datasets obtained from soft tissue analogs (PDMS and TissueMend) with well-defined mechanical properties. GAIM produced stiffnesses (first Kelvin moduli, K1) that agreed well with previously published Young's moduli of PDMS samples. It also matched the stiffness moduli determined via uniaxial testing for TissueMend, a collagen-rich patch intended for tendon repair. We then conducted the first biaxial testing of TissueMend and confirmed that the sample was mechanically anisotropic via a relative anisotropy metric produced by GAIM. Next, we demonstrated the benefits of full-field laser micrometry in distinguishing between spatial variations in thickness and stiffness. Finally, we conducted an analysis to verify that results were independent of partitioning scheme. The success of the newly implemented constraints on GAIM suggests notable potential for applying this tool to soft tissues, particularly following the onset of pathologies that induce mechanical and structural heterogeneities.
Collapse
Affiliation(s)
- Daniel P Pearce
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, ECB 2139, Madison, WI 53706
| | - Colleen M Witzenburg
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, ECB 2139, Madison, WI 53706
| |
Collapse
|
3
|
Ramirez GO, Mariano CA, Carter D, Eskandari M. Visceral pleura mechanics: Characterization of human, pig, and rat lung material properties. Acta Biomater 2024; 189:388-398. [PMID: 39251049 DOI: 10.1016/j.actbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/13/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Pulmonary air leaks are amongst the most common complications in lung surgery. Lung sealants are applied to the organ surface and need to synchronously stretch with the visceral pleura, the layer of tissue which encompasses the lung parenchymal tissue. These adhesives are commonly tested on pig and rat lungs, but applied to human lungs. However, the unknown mechanics of human lung visceral pleura undermines the clinical translatability of such animal-tested sealants and the absence of how pig and rat lung visceral pleura compare to human tissues is necessary to address. Here we quantify the biaxial planar tensile mechanics of visceral pleura from healthy transplant-eligible and smoker human lungs for the first time, and further compare the material behaviors to pig and rat lung visceral pleura. Initial and final stiffness moduli, maximum stress, low-to-high strain transition, and stress relaxation are analyzed and compared between and within groups, further considering regional and directional dependencies. Visceral pleura tissue from all species behave isotropically, and pig and human visceral pleura exhibits regional heterogeneity (i.e. upper versus lower lobe differences). We find that pig visceral pleura exhibits similar initial stiffness moduli and regional trends compared to human visceral pleura, suggesting pig tissue may serve as a viable animal model candidate for lung sealant testing. The outcomes and mechanical characterization of these scarce tissues enables future development of biomimetic lung sealants for improved surgical applications. STATEMENT OF SIGNIFICANCE: Surgical lung sealants must synchronously deform with the underlying tissue and with each breath to minimize post-operative air leaks, which remain the most frequent complications of pulmonary intervention. These adhesives are often tested on pig and rat lungs, but applied to humans; however, the material properties of human lung visceral pleura were previously unexplored. Here, for the first time, the mechanics of human visceral pleura tissue are investigated, further contrasting rarely acquired donated lungs from healthy and smoking individuals, and additionally, comparing biaxial planar material characterizations to animal models often employed for pulmonary sealant development. This fundamental material characterization addresses key hindrances in the advancement of biomimetic sealants and evaluates the translatability of animal model experiments for clinical applications.
Collapse
Affiliation(s)
- Gustavo O Ramirez
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - Crystal A Mariano
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - David Carter
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Mona Eskandari
- Department of Mechanical Engineering, University of California, Riverside, CA, USA; BREATHE Center, School of Medicine University of California, Riverside, CA, USA; Department of Bioengineering, University of California, Riverside, CA, USA.
| |
Collapse
|
4
|
Suárez S, López-Campos JA, Fernández JR, Segade A. Nonlocal damage evaluation of a sigmoid-based damage model for fibrous biological soft tissues. Biomech Model Mechanobiol 2024; 23:655-674. [PMID: 38158483 DOI: 10.1007/s10237-023-01798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
The comprehension and modeling of the mechanical behavior of soft biological tissues are essential due to their clinical applications. This knowledge is essential for predicting tissue responses accurately and enhancing our ability to compute the behavior of biological structures and bio-prosthetic devices under specific loading conditions. The current research is centered on modeling the initiation and progression of soft tissues damage, which typically exhibit intricate anisotropic and nonlinear elastic characteristics. For this purpose, the following study presents a comparative analysis of the computational performance of two distinct damage modeling techniques. The first technique employs a well-established damage model, based on a piece-wise exponential damage function as proposed by Calvo et al. (Int J Numer Methods Eng 69:2036-2057, 2007. https://doi.org/10.1002/nme.1825 ). The second approach adopts a sigmoid function, as proposed by López-Campos et al. (Comput Methods Biomech Biomed Eng 23(6):213-223. https://doi.org/10.1080/10255842.2019.1710742 ). The aim of this study is to verify the validity of the López-Campos sigmoid-based damage model to be used in finite element simulation, the implementation of which is unknown. For this proposal, both models were implemented within a commercial Finite Element software package, and their responses to local and non-local damage algorithms were assessed in depth through two standard benchmark tests: a plate with a hole and a ball burst. The results of this study indicate that, for a wide range of cases, such as in-plane stresses, out-plane stresses, stress concentration and contact, all over large displacement conditions, the López-Campos damage model shows a good response to non-local algorithms achieving mesh independence and convergence in all these cases. The results obtained are in line with those obtained for the Calvo's damage model, showing, in addition, larger deformations under in-plane stress and stress concentration conditions and a lower number of iterations under out-plane stress and contact conditions. Consequently, the López-Campos' damage model emerges as a valuable and useful tool in the field of mechanical damage research in biological systems.
Collapse
Affiliation(s)
- Sofía Suárez
- CINTECX, Department of Mechanical Engineering, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Pontevedra, Spain.
- Design and Numerical Simulation Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Carretera Clara Campoamor 341, Tecnical Building 2º Floor, 36312, Vigo, Pontevedra, Spain.
| | - Jose A López-Campos
- CINTECX, Department of Mechanical Engineering, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Pontevedra, Spain
- Design and Numerical Simulation Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Carretera Clara Campoamor 341, Tecnical Building 2º Floor, 36312, Vigo, Pontevedra, Spain
| | - Jose R Fernández
- Design and Numerical Simulation Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Carretera Clara Campoamor 341, Tecnical Building 2º Floor, 36312, Vigo, Pontevedra, Spain
- Department of Applied Mathematics I, Industrial Engineering School, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Pontevedra, Spain
| | - Abraham Segade
- CINTECX, Department of Mechanical Engineering, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Pontevedra, Spain
- Design and Numerical Simulation Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Carretera Clara Campoamor 341, Tecnical Building 2º Floor, 36312, Vigo, Pontevedra, Spain
| |
Collapse
|
5
|
Di Leonardo S, Monteleone A, Caruso P, Meecham-Garcia H, Pitarresi G, Burriesci G. Effect of the apron in the mechanical characterisation of hyperelastic materials by means of biaxial testing: A new method to improve accuracy. J Mech Behav Biomed Mater 2024; 150:106291. [PMID: 38103333 DOI: 10.1016/j.jmbbm.2023.106291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Biological soft tissues and polymers used in biomedical applications (e.g. in the cardiovascular area) are hyperelastic incompressible materials that commonly operate under multi-axial large deformation fields. Their characterisation requires biaxial tensile testing. Due to the typically small sample size, the gripping of the specimens commonly relies on rakes or sutures, where the specimen is punctured at the edges of the gauge area. This approach necessitates of an apron, excess of material around the gauge region. This work analyses the apron influence on the estimated mechanical response of biaxial tests performed by using a rakes gripping system, with the aim of verifying the test accuracy and propose improved solutions. In order to isolate the effect of the apron, avoiding the influence of anisotropy and inhomogeneity typical of most soft tissues, homogeneous and isotropic hyperplastic samples made from a uniform sheet of casted silicone were tested. The stress-strain response of specimens with different apron sizes/shapes was measured experimentally by means of biaxial testing and digital image correlation. Tests were replicated numerically, to interpret the experimental findings. The apron surrounding the gauge area acts as an additional annular constraint which stiffens the system, resulting in a significant overestimate in the stress values. This error can be avoided by introducing specific cuts in the apron. The study quantifies, for the first time, the correlation between the apron size/shape and the experimental stress overestimation, proposing a research protocol which, although identified on homogeneous hyperelastic materials, can be useful in providing more accurate characterisation of both, synthetic polymers and soft tissues.
Collapse
Affiliation(s)
| | | | - Patrizia Caruso
- Ri.MED Foundation, Palermo, Italy; Engineering Department, University of Palermo, Italy
| | | | | | - Gaetano Burriesci
- Ri.MED Foundation, Palermo, Italy; UCL Mechanical Engineering, University College London, UK.
| |
Collapse
|
6
|
Barrett A, Brown JA, Smith MA, Woodward A, Vavalle JP, Kheradvar A, Griffith BE, Fogelson AL. A model of fluid-structure and biochemical interactions for applications to subclinical leaflet thrombosis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3700. [PMID: 37016277 PMCID: PMC10691439 DOI: 10.1002/cnm.3700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 05/13/2023]
Abstract
Subclinical leaflet thrombosis (SLT) is a potentially serious complication of aortic valve replacement with a bioprosthetic valve in which blood clots form on the replacement valve. SLT is associated with increased risk of transient ischemic attacks and strokes and can progress to clinical leaflet thrombosis. SLT following aortic valve replacement also may be related to subsequent structural valve deterioration, which can impair the durability of the valve replacement. Because of the difficulty in clinical imaging of SLT, models are needed to determine the mechanisms of SLT and could eventually predict which patients will develop SLT. To this end, we develop methods to simulate leaflet thrombosis that combine fluid-structure interaction and a simplified thrombosis model that allows for deposition along the moving leaflets. Additionally, this model can be adapted to model deposition or absorption along other moving boundaries. We present convergence results and quantify the model's ability to realize changes in valve opening and pressures. These new approaches are an important advancement in our tools for modeling thrombosis because they incorporate both adhesion to the surface of the moving leaflets and feedback to the fluid-structure interaction.
Collapse
Affiliation(s)
- Aaron Barrett
- Department of Mathematics, University of Utah, Salt Lake City, Utah, USA
| | - Jordan A. Brown
- Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Margaret Anne Smith
- Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Andrew Woodward
- Advanced Medical Imaging Lab, University of North Carolina Medical Center, Chapel Hill, North Carolina, USA
| | - John P. Vavalle
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Division of Cardiology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Arash Kheradvar
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, USA
| | - Boyce E. Griffith
- Departments of Mathematics, Applied Physical Sciences, and Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
- Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, North Carolina, USA
- Computational Medicine Program, University of North Carolina, Chapel Hill, North Carolina, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aaron L. Fogelson
- Departments of Mathematics and Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Patient-Specific Immersed Finite Element-Difference Model of Transcatheter Aortic Valve Replacement. Ann Biomed Eng 2023; 51:103-116. [PMID: 36264408 PMCID: PMC9832092 DOI: 10.1007/s10439-022-03047-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Transcatheter aortic valve replacement (TAVR) first received FDA approval for high-risk surgical patients in 2011 and has been approved for low-risk surgical patients since 2019. It is now the most common type of aortic valve replacement, and its use continues to accelerate. Computer modeling and simulation (CM&S) is a tool to aid in TAVR device design, regulatory approval, and indication in patient-specific care. This study introduces a computational fluid-structure interaction (FSI) model of TAVR with Medtronic's CoreValve Evolut R device using the immersed finite element-difference (IFED) method. We perform dynamic simulations of crimping and deployment of the Evolut R, as well as device behavior across the cardiac cycle in a patient-specific aortic root anatomy reconstructed from computed tomography (CT) image data. These IFED simulations, which incorporate biomechanics models fit to experimental tensile test data, automatically capture the contact within the device and between the self-expanding stent and native anatomy. Further, we apply realistic driving and loading conditions based on clinical measurements of human ventricular and aortic pressures and flow rates to demonstrate that our Evolut R model supports a physiological diastolic pressure load and provides informative clinical performance predictions.
Collapse
|
8
|
Siddiqui HB, Dogru S, Lashkarinia SS, Pekkan K. Soft-Tissue Material Properties and Mechanogenetics during Cardiovascular Development. J Cardiovasc Dev Dis 2022; 9:jcdd9020064. [PMID: 35200717 PMCID: PMC8876703 DOI: 10.3390/jcdd9020064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022] Open
Abstract
During embryonic development, changes in the cardiovascular microstructure and material properties are essential for an integrated biomechanical understanding. This knowledge also enables realistic predictive computational tools, specifically targeting the formation of congenital heart defects. Material characterization of cardiovascular embryonic tissue at consequent embryonic stages is critical to understand growth, remodeling, and hemodynamic functions. Two biomechanical loading modes, which are wall shear stress and blood pressure, are associated with distinct molecular pathways and govern vascular morphology through microstructural remodeling. Dynamic embryonic tissues have complex signaling networks integrated with mechanical factors such as stress, strain, and stiffness. While the multiscale interplay between the mechanical loading modes and microstructural changes has been studied in animal models, mechanical characterization of early embryonic cardiovascular tissue is challenging due to the miniature sample sizes and active/passive vascular components. Accordingly, this comparative review focuses on the embryonic material characterization of developing cardiovascular systems and attempts to classify it for different species and embryonic timepoints. Key cardiovascular components including the great vessels, ventricles, heart valves, and the umbilical cord arteries are covered. A state-of-the-art review of experimental techniques for embryonic material characterization is provided along with the two novel methods developed to measure the residual and von Mises stress distributions in avian embryonic vessels noninvasively, for the first time in the literature. As attempted in this review, the compilation of embryonic mechanical properties will also contribute to our understanding of the mature cardiovascular system and possibly lead to new microstructural and genetic interventions to correct abnormal development.
Collapse
Affiliation(s)
- Hummaira Banu Siddiqui
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
| | - Sedat Dogru
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Seyedeh Samaneh Lashkarinia
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Department of Bioengineering, Imperial College London, London SW7 2BX, UK
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Correspondence: ; Tel.: +90-(533)-356-3595
| |
Collapse
|
9
|
Govindarajan V, Kolanjiyil A, Johnson NP, Kim H, Chandran KB, McPherson DD. Improving transcatheter aortic valve interventional predictability via fluid-structure interaction modelling using patient-specific anatomy. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211694. [PMID: 35154799 PMCID: PMC8826300 DOI: 10.1098/rsos.211694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 05/03/2023]
Abstract
Transcatheter aortic valve replacement (TAVR) is now a standard treatment for high-surgical-risk patients with severe aortic valve stenosis. TAVR is being explored for broader indications including degenerated bioprosthetic valves, bicuspid valves and for aortic valve (AV) insufficiency. It is, however, challenging to predict whether the chosen valve size, design or its orientation would produce the most-optimal haemodynamics in the patient. Here, we present a novel patient-specific evaluation framework to realistically predict the patient's AV performance with a high-fidelity fluid-structure interaction analysis that included the patient's left ventricle and ascending aorta (AAo). We retrospectively evaluated the pre- and post-TAVR dynamics of a patient who underwent a 23 mm TAVR and evaluated against the patient's virtually de-calcified AV serving as a hypothetical benchmark. Our model predictions were consistent with clinical data. Stenosed AV produced a turbulent flow during peak-systole, while aortic flow with TAVR and de-calcified AV were both in the laminar-to-turbulent transitional regime with an estimated fivefold reduction in viscous dissipation. For TAVR, dissipation was highest during early systole when valve deformation was the greatest, suggesting that an efficient valve opening may reduce energy loss. Our study demonstrates that such patient-specific modelling frameworks can be used to improve predictability and in the planning of AV interventions.
Collapse
Affiliation(s)
- Vijay Govindarajan
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science at Houston, 1881 East Road, Houston, TX 77054, USA
| | - Arun Kolanjiyil
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Nils P Johnson
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science at Houston, 1881 East Road, Houston, TX 77054, USA
| | - Hyunggun Kim
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science at Houston, 1881 East Road, Houston, TX 77054, USA
- Department of Bio-Mechatronic Engineering, Sungkyunkwan University, Suwon, Gyeonggi, Korea
| | - Krishnan B Chandran
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science at Houston, 1881 East Road, Houston, TX 77054, USA
- Roy J. Carver Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA
| | - David D McPherson
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science at Houston, 1881 East Road, Houston, TX 77054, USA
| |
Collapse
|
10
|
An study on the influence of collagen fiber directions in TAVs performance using FEM. J Mech Behav Biomed Mater 2021; 126:104969. [PMID: 34844877 DOI: 10.1016/j.jmbbm.2021.104969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/21/2021] [Accepted: 11/06/2021] [Indexed: 11/23/2022]
Abstract
Transcatheter Aortic Valve Implantation (TAVI) or Replacement (TAVR) is a promising treatment for aortic valve stenosis, consisting of a procedure to replace a damaged native aortic valve by a bioprosthetic one. This replacement valve control the flow of blood using leaflets that are similar to the ones of a native aortic valve. Commonly manufactured using bovine or porcine pericardium, it is a tissue histologically composed of collagen fibers embedded into a nearly-isotropic matrix, where their distribution makes the pericardium behave as an anisotropic hyperelastic material. Because of such complicated behavior, bioprosthetic pericardium valves are, as expected, sensitive to the distribution and orientation of these fibers in such device. Therefore, the objective of this work is a thorough systematic study on the influence of these fibers' distribution. First, a Finite Element model of a bioprosthetic valve is generated; then, a material routine to accurately describe the behavior of pericardium is implemented in a commercial software package; in addition, a dedicated algorithm to specify the direction of fibers is developed. Finally, a systematic study on the influence that fiber orientations have on the overall behavior of the TAV is performed. As a result of this study, two extreme behaviors are highlighted depending on the preferential orientation of collagen fibers; namely, one with fibers in circumferential direction and the opposite with fibers in an axial orientation. Then, it is concluded that the behavior of fibers in circumferential direction is very sensitive to small variations of the orientation angle, whereas such orientation is not as determining when the aim is to achieve a behavior near to the one corresponding with axial orientation.
Collapse
|
11
|
Ncho B, Siefert A, Sadri V, Ortner J, Yoganathan AP. Effect of Leaflet Type and Leaflet-Stent Attachment Height on Transcatheter Aortic Valve Leaflet Thrombosis Potential. J Med Device 2021. [DOI: 10.1115/1.4052902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
Transcatheter aortic valve replacement devices vary in leaflet material and in the height for which leaflets attach to the stented valve frame. Combinations of these features can influence leaflet dynamics, neo-sinus geometries, and fluid dynamics, thereby reducing or exacerbating the potential for blood flow stasis and leaflet thrombosis. To investigate these interconnected relationships, this study evaluated the effects of transcatheter valve leaflet type (porcine vs. bovine pericardium) and the leaflet-stent attachment height (low, mid, and high) on flow stasis and potential for leaflet thrombosis. Transcatheter valve models were manufactured and tested within an aortic simulator under pulsatile left heart hemodynamic conditions. Transvalvular hemodynamics, leaflet kinematics, and flow structures were evaluated by direct measurement, high-speed imaging, and two differing techniques of particle image velocimetry. Transcatheter valves with porcine pericardial leaflets were observed to be less stiff, exhibit a lesser resistance to flow, were associated with reduced regions of neo-sinus flow stasis, and superior sinus washout times. More elevated attachments of the leaflets were associated with less neo-sinus flow stasis. These initial results and observations suggest combinations of leaflet type and stent attachment height may reduce transcatheter aortic valve flow stasis and the potential for leaflet thrombosis.
Collapse
Affiliation(s)
- Beatrice Ncho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Andrew Siefert
- The Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Vahid Sadri
- The Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jillian Ortner
- The Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ajit P. Yoganathan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; The Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Jin C, Zhao L, Wu Z, Li B, Liu R, He H, Wang L, Wang W. Comparison on the properties of bovine pericardium and porcine pericardium used as leaflet materials of transcatheter heart valve. Artif Organs 2021; 46:427-438. [PMID: 34545589 DOI: 10.1111/aor.14074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND In order to obtain the smaller delivery diameter, porcine pericardium had been used as a substitute material of bovine pericardium for the leaflet materials of transcatheter heart valve (THV). However, the differences between them had not been fully studied. Therefore, this study compared the microstructure, biochemical and mechanical properties of two materials and hydrodynamics of THV made by the two materials in detail. METHODS In this study, firstly, the microstructure of pericardium was analyzed by staining and scanning electron microscope; secondly, the biochemical properties of pericardium after different processes were compared by heat shrinkage temperature test, free amino and carboxyl concentration test, enzyme degradation test, subcutaneous implantation calcification analysis in rats; finally, the mechanical properties were evaluated by uniaxial tensile test before and after the pericardium being crimped, and then, the hydrodynamics of THV was studied according to the ISO5840 standard. RESULTS Compared with bovine pericardium, after the same process, porcine pericardium showed a looser and tinier fiber bundle, a similar free carboxyl concentration, a lower resistance to enzyme degradation, a significantly lower calcification, bearing capacity and damage after being crimped, a better hydrodynamic and adaption with lower cardiac output and deformation of implantation position. Meanwhile the dehydration process of pericardium almost had preserved all the biochemical advantages of two materials. CONCLUSION In this study, porcine and bovine pericardium showed some significant differences in biochemical, mechanical properties and hydrodynamics. According to the results, it was presumed that the thinner porcine pericardium might be more suitable for THV of right heart system. Meanwhile, more attention should be taken for the calcification of THV made by the bovine pericardium.
Collapse
Affiliation(s)
- Chang Jin
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
| | - Li Zhao
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
| | - Zebin Wu
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, China
| | - Bin Li
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
| | - Ronghui Liu
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
| | - Hongping He
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
| | - Lizhen Wang
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, China
| | - Weidong Wang
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Williams DF, Bezuidenhout D, de Villiers J, Human P, Zilla P. Long-Term Stability and Biocompatibility of Pericardial Bioprosthetic Heart Valves. Front Cardiovasc Med 2021; 8:728577. [PMID: 34589529 PMCID: PMC8473620 DOI: 10.3389/fcvm.2021.728577] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 01/15/2023] Open
Abstract
The use of bioprostheses for heart valve therapy has gradually evolved over several decades and both surgical and transcatheter devices are now highly successful. The rapid expansion of the transcatheter concept has clearly placed a significant onus on the need for improved production methods, particularly the pre-treatment of bovine pericardium. Two of the difficulties associated with the biocompatibility of bioprosthetic valves are the possibilities of immune responses and calcification, which have led to either catastrophic failure or slow dystrophic changes. These have been addressed by evolutionary trends in cross-linking and decellularization techniques and, over the last two decades, the improvements have resulted in somewhat greater durability. However, as the need to consider the use of bioprosthetic valves in younger patients has become an important clinical and sociological issue, the requirement for even greater longevity and safety is now paramount. This is especially true with respect to potential therapies for young people who are afflicted by rheumatic heart disease, mostly in low- to middle-income countries, for whom no clinically acceptable and cost-effective treatments currently exist. To extend longevity to this new level, it has been necessary to evaluate the mechanisms of pericardium biocompatibility, with special emphasis on the interplay between cross-linking, decellularization and anti-immunogenicity processes. These mechanisms are reviewed in this paper. On the basis of a better understanding of these mechanisms, a few alternative treatment protocols have been developed in the last few years. The most promising protocol here is based on a carefully designed combination of phases of tissue-protective decellularization with a finely-titrated cross-linking sequence. Such refined protocols offer considerable potential in the progress toward superior longevity of pericardial heart valves and introduce a scientific dimension beyond the largely disappointing 'anti-calcification' treatments of past decades.
Collapse
Affiliation(s)
- David F. Williams
- Strait Access Technologies Ltd. Pty., Cape Town, South Africa
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Deon Bezuidenhout
- Strait Access Technologies Ltd. Pty., Cape Town, South Africa
- Cardiovascular Research Unit, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | | | - Paul Human
- Christiaan Barnard Department of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| | - Peter Zilla
- Strait Access Technologies Ltd. Pty., Cape Town, South Africa
- Cardiovascular Research Unit, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Christiaan Barnard Department of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
Wang R, Yu X, Gkousioudi A, Zhang Y. Effect of Glycation on Interlamellar Bonding of Arterial Elastin. EXPERIMENTAL MECHANICS 2021; 61:81-94. [PMID: 33583947 PMCID: PMC7880226 DOI: 10.1007/s11340-020-00644-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Interlamellar bonding in the arterial wall is often compromised by cardiovascular diseases. However, several recent nationwide and hospital-based studies have uniformly reported reduced risk of thoracic aortic dissection in patients with diabetes. As one of the primary structural constituents in the arterial wall, elastin plays an important role in providing its interlamellar structural integrity. OBJECTIVE The purpose of this study is to examine the effects of glycation on the interlamellar bonding properties of arterial elastin. METHODS Purified elastin network was isolated from porcine descending thoracic aorta and incubated in 2 M glucose solution for 7, 14 or 21 days at 37 °C. Peeling and direct tension tests were performed to provide complimentary information on understanding the interlamellar layer separation properties of elastin network with glycation effect. Peeling tests were simulated using a cohesive zone model (CZM). Multiphoton imaging was used to visualize the interlamellar elastin fibers in samples subjected to peeling and direct tension. RESULTS Peeling and direct tension tests show that interlamellar energy release rate and strength both increases with the duration of glucose treatment. The traction at damage initiation estimated for the CZM agrees well with the interlamellar strength measurements from direct tension tests. Glycation was also found to increase the interlamellar failure strain of arterial elastin. Multiphoton imaging confirmed the contribution of radially running elastin fibers to resisting dissection. CONCLUSIONS Nonenzymatic glycation reduces the propensity of arterial elastin to dissection. This study also suggests that the CZM effectively describes the interlamellar bonding properties of arterial elastin.
Collapse
Affiliation(s)
- R Wang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | - X Yu
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | - A Gkousioudi
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | - Y Zhang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
- Divison of Materials Science & Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
15
|
Lan X, Zhao Q, Zhang J, Lei Y, Wang Y. A combination of hydrogen bonding and chemical covalent crosslinking to fabricate a novel swim-bladder-derived dry heart valve material yields advantageous mechanical and biological properties. Biomed Mater 2020; 16:015014. [DOI: 10.1088/1748-605x/abb616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Lee JH, Rygg AD, Kolahdouz EM, Rossi S, Retta SM, Duraiswamy N, Scotten LN, Craven BA, Griffith BE. Fluid-Structure Interaction Models of Bioprosthetic Heart Valve Dynamics in an Experimental Pulse Duplicator. Ann Biomed Eng 2020; 48:1475-1490. [PMID: 32034607 PMCID: PMC7154025 DOI: 10.1007/s10439-020-02466-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022]
Abstract
Computer modeling and simulation is a powerful tool for assessing the performance of medical devices such as bioprosthetic heart valves (BHVs) that promises to accelerate device design and regulation. This study describes work to develop dynamic computer models of BHVs in the aortic test section of an experimental pulse-duplicator platform that is used in academia, industry, and regulatory agencies to assess BHV performance. These computational models are based on a hyperelastic finite element extension of the immersed boundary method for fluid-structure interaction (FSI). We focus on porcine tissue and bovine pericardial BHVs, which are commonly used in surgical valve replacement. We compare our numerical simulations to experimental data from two similar pulse duplicators, including a commercial ViVitro system and a custom platform related to the ViVitro pulse duplicator. Excellent agreement is demonstrated between the computational and experimental results for bulk flow rates, pressures, valve open areas, and the timing of valve opening and closure in conditions commonly used to assess BHV performance. In addition, reasonable agreement is demonstrated for quantitative measures of leaflet kinematics under these same conditions. This work represents a step towards the experimental validation of this FSI modeling platform for evaluating BHVs.
Collapse
Affiliation(s)
- Jae H Lee
- Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
| | - Alex D Rygg
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Ebrahim M Kolahdouz
- Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Simone Rossi
- Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen M Retta
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Nandini Duraiswamy
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| | | | - Brent A Craven
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Boyce E Griffith
- Departments of Mathematics, Applied Physical Sciences, and Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA.
- Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, NC, USA.
- Computational Medicine Program, University of North Carolina, Chapel Hill, NC, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Yu H, Del Nido PJ, Geva T, Yang C, Wu Z, Rathod RH, Huang X, Billiar KL, Tang D. Multi-Band Surgery for Repaired Tetralogy of Fallot Patients With Reduced Right Ventricle Ejection Fraction: A Pilot Study. Front Physiol 2020; 11:198. [PMID: 32265727 PMCID: PMC7103653 DOI: 10.3389/fphys.2020.00198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/20/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Right ventricle (RV) failure is one of the most common symptoms among patients with repaired tetralogy of Fallot (TOF). The current surgery treatment approach including pulmonary valve replacement (PVR) showed mixed post-surgery outcomes. A novel PVR surgical strategy using active contracting bands is proposed to improve the post-PVR outcome. In lieu of testing the risky surgical procedures on real patients, computational simulations (virtual surgery) using biomechanical ventricle models based on patient-specific cardiac magnetic resonance (CMR) data were performed to test the feasibility of the PVR procedures with active contracting bands. Different band combination and insertion options were tested to identify optimal surgery designs. Method Cardiac magnetic resonance data were obtained from one TOF patient (male, age 23) whose informed consent was obtained. A total of 21 finite element models were constructed and solved following our established procedures to investigate the outcomes of the band insertion surgery. The non-linear anisotropic Mooney–Rivlin model was used as the material model. Five different band insertion plans were simulated (three single band models with different band locations, one model with two bands, and one model with three bands). Three band contraction ratios (10, 15, and 20%) and passive bands (0% contraction ratio) were tested. RV ejection fraction was used as the measure for cardiac function. Results The RV ejection fraction from the three-band model with 20% contraction increased to 41.58% from the baseline of 37.38%, a 4.20% absolute improvement. The RV ejection fractions from the other four band models with 20% contraction rate were 39.70, 39.45, and 40.70% (two-band) and 39.17%, respectively. The mean RV stress and strain values from all of the 21 models showed only modest differences (5–11%). Conclusion This pilot study demonstrated that the three-band model with 20% band contraction ratio led to 4.20% absolute improvement in the RV ejection fraction, which is considered as clinically significant. The passive elastic bands led to the reduction of the RV ejection fractions. The modeling results and surgical strategy need to be further developed and validated by a multi-patient study and animal experiments before clinical trial could become possible. Tissue regeneration techniques are needed to produce materials for the contracting bands.
Collapse
Affiliation(s)
- Han Yu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, United States.,Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Tal Geva
- Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Chun Yang
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Zheyang Wu
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Rahul H Rathod
- Department of Cardiology, Boston Children's Hospital, Boston, MA, United States
| | - Xueying Huang
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Kristen L Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
18
|
Walker S, Dittfeld C, Jakob A, Schönfelder J, König U, Tugtekin SM. Sterilization and Cross-Linking Combined with Ultraviolet Irradiation and Low-Energy Electron Irradiation Procedure: New Perspectives for Bovine Pericardial Implants in Cardiac Surgery. Thorac Cardiovasc Surg 2020; 70:33-42. [PMID: 32114687 DOI: 10.1055/s-0040-1705100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Bovine pericardium is the major natural source of patches and aortic valve substitutes in cardiac repair procedures. However, long-term tissue durability and biocompatibility issues lead to degeneration (e.g., calcification) that requires reoperation. Tissue preparation strategies, including glutaraldehyde fixation, are reasons for the deterioration of pericardial tissues. We describe a pretreatment procedure involving sterilization and cross-linking combined with ultraviolet (UV) irradiation and low-energy electron irradiation (SULEEI). This innovative, glutaraldehyde-free protocol improves the mechanical aspects and biocompatibility of porcine pericardium patches. METHODS We adopted the SULEEI protocol, which combines decellularization, sterilization, and cross-linking, along with UV irradiation and low-energy electron irradiation, to pretreat bovine pericardium. Biomechanics, such as ultimate tensile strength and elasticity, were investigated by comparing SULEEI-treated tissue with glutaraldehyde-fixed analogues, clinical patch materials, and an aortic valve substitute. Histomorphological and cellular aspects were investigated by histology, DNA content analysis, and degradability. RESULTS Mechanical parameters, including ultimate tensile strength, elasticity (Young's modulus), and suture retention strength, were similar for SULEEI-treated and clinically applied bovine pericardium. The SULEEI-treated tissues showed well-preserved histoarchitecture that resembled all pericardial tissues investigated. Fiber density did not differ significantly. DNA content after the SULEEI procedure was reduced to less than 10% of the original tissue material, and more than 50% of the SULEEI-treated pericardium was digested by collagenase. CONCLUSION The SULEEI procedure represents a new treatment protocol for the preparation of patches and aortic valve prostheses from bovine pericardial tissue. The avoidance of glutaraldehyde fixation may lessen the tissue degeneration processes in cardiac repair patches and valve prostheses.
Collapse
Affiliation(s)
- Simona Walker
- Department of Medical and Biotechnological Applications, Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology, Dresden, Germany
| | - Claudia Dittfeld
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Aline Jakob
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Jessy Schönfelder
- Department of Medical and Biotechnological Applications, Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology, Dresden, Germany
| | - Ulla König
- Department of Medical and Biotechnological Applications, Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology, Dresden, Germany
| | - Sems-Malte Tugtekin
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
19
|
Travaglino S, Murdock K, Tran A, Martin C, Liang L, Wang Y, Sun W. Computational Optimization Study of Transcatheter Aortic Valve Leaflet Design Using Porcine and Bovine Leaflets. J Biomech Eng 2020; 142:011007. [PMID: 31314886 DOI: 10.1115/1.4044244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 07/25/2024]
Abstract
In this study, a Bayesian optimization (BO) based computational framework is developed to investigate the design of transcatheter aortic valve (TAV) leaflets and to optimize leaflet geometry such that its peak stress under the blood pressure of 120 mmHg is reduced. A generic TAV model is parametrized by mathematical equations describing its 2D shape and its 3D stent-leaflet assembly line. Material properties previously obtained for bovine pericardium (BP) and porcine pericardium (PP) via a combination of flexural and biaxial tensile testing were incorporated into the finite element (FE) model of TAV. A BO approach was employed to investigate about 1000 leaflet designs for each material under the nominal circular deployment and physiological loading conditions. The optimal parameter values of the TAV model were obtained, corresponding to leaflet shapes that can reduce the peak stress by 16.7% in BP and 18.0% in PP, compared with that from the initial generic TAV model. Furthermore, it was observed that while peak stresses tend to concentrate near the stent-leaflet attachment edge, optimized geometries benefit from more uniform stress distributions in the leaflet circumferential direction. Our analysis also showed that increasing leaflet contact area redistributes peak stresses to the belly region contributing to peak stress reduction. The results from this study may inspire new TAV designs that can have better durability.
Collapse
Affiliation(s)
- Stefano Travaglino
- Tissue Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, 30313-2412
| | - Kyle Murdock
- Tissue Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, 30313-2412
| | - Anh Tran
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405
| | - Caitlin Martin
- Tissue Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, 30313-2412
| | - Liang Liang
- Department of Computer Science, University of Miami, Coral Gables, FL, 33124
| | - Yan Wang
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405
| | - Wei Sun
- Tissue Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Technology Enterprise Park, Room 206 387 Technology Circle, Atlanta, GA 30313-2412
| |
Collapse
|
20
|
Liang L, Sun B. A Proof of Concept Study of Using Machine-Learning in Artificial Aortic Valve Design: From Leaflet Design to Stress Analysis. Bioengineering (Basel) 2019; 6:bioengineering6040104. [PMID: 31717333 PMCID: PMC6955850 DOI: 10.3390/bioengineering6040104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/02/2022] Open
Abstract
Artificial heart valves, used to replace diseased human heart valves, are life-saving medical devices. Currently, at the device development stage, new artificial valves are primarily assessed through time-consuming and expensive benchtop tests or animal implantation studies. Computational stress analysis using the finite element (FE) method presents an attractive alternative to physical testing. However, FE computational analysis requires a complex process of numeric modeling and simulation, as well as in-depth engineering expertise. In this proof of concept study, our objective was to develop machine learning (ML) techniques that can estimate the stress and deformation of a transcatheter aortic valve (TAV) from a given set of TAV leaflet design parameters. Two deep neural networks were developed and compared: the autoencoder-based ML-models and the direct ML-models. The ML-models were evaluated through Monte Carlo cross validation. From the results, both proposed deep neural networks could accurately estimate the deformed geometry of the TAV leaflets and the associated stress distributions within a second, with the direct ML-models (ML-model-d) having slightly larger errors. In conclusion, although this is a proof-of-concept study, the proposed ML approaches have demonstrated great potential to serve as a fast and reliable tool for future TAV design.
Collapse
Affiliation(s)
- Liang Liang
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA
- Correspondence:
| | - Bill Sun
- Walton High School, Marietta, GA 30062, USA;
| |
Collapse
|
21
|
Mao W, Wang Q, Kodali S, Sun W. Numerical Parametric Study of Paravalvular Leak Following a Transcatheter Aortic Valve Deployment Into a Patient-Specific Aortic Root. J Biomech Eng 2019; 140:2683660. [PMID: 30029247 DOI: 10.1115/1.4040457] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 11/08/2022]
Abstract
Paravalvular leak (PVL) is a relatively frequent complication after transcatheter aortic valve replacement (TAVR) with increased mortality. Currently, there is no effective method to pre-operatively predict and prevent PVL. In this study, we developed a computational model to predict the severity of PVL after TAVR. Nonlinear finite element (FE) method was used to simulate a self-expandable CoreValve deployment into a patient-specific aortic root, specified with human material properties of aortic tissues. Subsequently, computational fluid dynamics (CFD) simulations were performed using the post-TAVR geometries from the FE simulation, and a parametric investigation of the impact of the transcatheter aortic valve (TAV) skirt shape, TAV orientation, and deployment height on PVL was conducted. The predicted PVL was in good agreement with the echocardiography data. Due to the scallop shape of CoreValve skirt, the difference of PVL due to TAV orientation can be as large as 40%. Although the stent thickness is small compared to the aortic annulus size, we found that inappropriate modeling of it can lead to an underestimation of PVL up to 10 ml/beat. Moreover, the deployment height could significantly alter the extent and the distribution of regurgitant jets, which results in a change of leaking volume up to 70%. Further investigation in a large cohort of patients is warranted to verify the accuracy of our model. This study demonstrated that a rigorously developed patient-specific computational model can provide useful insights into underlying mechanisms causing PVL and potentially assist in pre-operative planning for TAVR to minimize PVL.
Collapse
Affiliation(s)
- Wenbin Mao
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30313-2412
| | - Qian Wang
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30313-2412
| | - Susheel Kodali
- Division of Cardiology, Columbia University Medical Center, New York 10032
| | - Wei Sun
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 206 Technology Enterprise Park, Georgia Institute of Technology, 387 Technology Circle, Atlanta, GA 30313-2412 e-mail:
| |
Collapse
|
22
|
Verotti M, Di Giamberardino P, Belfiore N, Giannini O. A genetic algorithm-based method for the mechanical characterization of biosamples using a MEMS microgripper: numerical simulations. J Mech Behav Biomed Mater 2019; 96:88-95. [DOI: 10.1016/j.jmbbm.2019.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/03/2019] [Accepted: 04/11/2019] [Indexed: 01/18/2023]
|
23
|
Nappi F, Carotenuto AR, Avtaar Singh SS, Mihos C, Fraldi M. Euler's Elastica-Based Biomechanics of the Papillary Muscle Approximation in Ischemic Mitral Valve Regurgitation: A Simple 2D Analytical Model. MATERIALS (BASEL, SWITZERLAND) 2019; 12:1518. [PMID: 31075914 PMCID: PMC6539350 DOI: 10.3390/ma12091518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 11/17/2022]
Abstract
Ischemic mitral regurgitation (IMR) occurs as an adverse consequence of left ventricle remodeling post-myocardial infarction. A change in mitral valve configuration with an imbalance between closing and tethering forces underlie this pathological condition. These abnormalities lead to impaired leaflet coaptation and a variable degree of mitral regurgitation, which can in turn influence the ventricular filling status, the heart rhythm and the afterload regardless of the residual ischemic insult. The IMR correction can be pursued through under-sizing mitral annuloplasty and papillary muscle approximation to restore the mitral valve and left ventricle physiological geometry to, consequently, achieve normalization of the engaged physical forces. Because the structures involved undergo extremely large deformations, a biomechanics model based on the Euler's Elastica -the mitral leaflet- interlaced with nonlinear chordae tendineae anchored on papillary muscles has been constructed to elucidate the interactions between closing and tethering forces. The model takes into account the actual updated geometrical and mechanical features of the valvular and subvalvular apparatuses in physiological and IMR conditions, as well as in case of papillary muscle approximation, finally furnishing ad hoc geometry-based mathematical relations that could be utilised to support-and optimize-the relevant choices in cardiac surgery.
Collapse
Affiliation(s)
- Francesco Nappi
- Centre Cardiologique du Nord de Saint-Denis, Paris 36 Rue des Moulins Gmeaux, 93200 Saint-Denis, France.
| | - Angelo Rosario Carotenuto
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, 80125 Naples, Italy.
| | | | - Christos Mihos
- Columbia University Division of Cardiology at the Mount Sinai Heart Institute, Miami Beach, FL 33140, USA.
| | - Massimiliano Fraldi
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, 80125 Naples, Italy.
| |
Collapse
|
24
|
PRGF-Modified Collagen Membranes for Guided Bone Regeneration: Spectroscopic, Microscopic and Nano-Mechanical Investigations. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9051035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aim of our study was to evaluate the properties of different commercially available resorbable collagen membranes for guided bone regeneration, upon addition of plasma rich in growth factors (PRGF). The structural and morphological details, mechanical properties, and enzymatic degradation were investigated in a new approach, providing clinicians with new data in order to help them in a successful comparison and better selection of membranes with respect to their placement and working condition. Particular characteristics such as porosity, fiber density, and surface topography may influence the mechanical behavior and performances of the membranes, as revealed by SEM/AFM and nanoindentation measurements. The mechanical properties and enzymatic degradation of the membranes were analyzed in a comparative manner, before and after PRGF-modification. The changes in Young modulus values are correlated with the ultrastructural properties of each membrane type. The enzymatic (trypsin) degradation test also emphasized that PRGF-modified membranes exhibit a slower degradation compared to the native ones.
Collapse
|
25
|
Rotman OM, Bianchi M, Ghosh RP, Kovarovic B, Bluestein D. Principles of TAVR valve design, modelling, and testing. Expert Rev Med Devices 2018; 15:771-791. [PMID: 30318937 PMCID: PMC6417919 DOI: 10.1080/17434440.2018.1536427] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Transcatheter aortic valve replacement (TAVR) has emerged as an effective minimally-invasive alternative to surgical valve replacement in medium- to high-risk, elderly patients with calcific aortic valve disease and severe aortic stenosis. The rapid growth of the TAVR devices market has led to a high variety of designs, each aiming to address persistent complications associated with TAVR valves that may hamper the anticipated expansion of TAVR utility. AREAS COVERED Here we outline the challenges and the technical demands that TAVR devices need to address for achieving the desired expansion, and review design aspects of selected, latest generation, TAVR valves of both clinically-used and investigational devices. We further review in detail some of the up-to-date modeling and testing approaches for TAVR, both computationally and experimentally, and additionally discuss those as complementary approaches to the ISO 5840-3 standard. A comprehensive survey of the prior and up-to-date literature was conducted to cover the most pertaining issues and challenges that TAVR technology faces. EXPERT COMMENTARY The expansion of TAVR over SAVR and to new indications seems more promising than ever. With new challenges to come, new TAV design approaches, and materials used, are expected to emerge, and novel testing/modeling methods to be developed.
Collapse
Affiliation(s)
- Oren M. Rotman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Matteo Bianchi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ram P. Ghosh
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
26
|
A Non-Invasive Material Characterization Framework for Bioprosthetic Heart Valves. Ann Biomed Eng 2018; 47:97-112. [PMID: 30229500 DOI: 10.1007/s10439-018-02129-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
Computational modeling and simulation has become more common in design and development of bioprosthetic heart valves. To have a reliable computational model, considering accurate mechanical properties of biological soft tissue is one of the most important steps. The goal of this study was to present a non-invasive material characterization framework to determine mechanical propertied of soft tissue employed in bioprosthetic heart valves. Using integrated experimental methods (i.e., digital image correlation measurements and hemodynamic testing in a pulse duplicator system) and numerical methods (i.e., finite element modeling and optimization), three-dimensional anisotropic mechanical properties of leaflets used in two commercially available transcatheter aortic valves (i.e., Edwards SAPIEN 3 and Medtronic CoreValve) were characterized and compared to that of a commonly used and well-examined surgical bioprosthesis (i.e., Carpentier-Edwards PERIMOUNT Magna aortic heart valve). The results of the simulations showed that the highest stress value during one cardiac cycle was at the peak of systole in the three bioprostheses. In addition, in the diastole, the peak of maximum in-plane principal stress was 0.98, 0.96, and 2.95 MPa for the PERIMOUNT Magna, CoreValve, and SAPIEN 3, respectively. Considering leaflet stress distributions, there might be a difference in the long-term durability of different TAV models.
Collapse
|