1
|
Bond strength between temporary 3D printable resin and conventional resin composite: influence of cleaning methods and air-abrasion parameters. Clin Oral Investig 2023; 27:31-43. [PMID: 36441267 PMCID: PMC9877060 DOI: 10.1007/s00784-022-04800-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The influence of different cleaning methods, air-abrasion parameters, and aging on shear bond strength (SBS) and tensile bond strength (TBS) of 3D resin luted to composite resin. MATERIALS AND METHODS Nine hundred resin substrates were 3D printed (D20II, Rapid Shape) and cleaned with either isopropanol (ISO), butyldiglycol-based solution (BUT), or centrifugation (CEN). After 24-h storage in 37 °C water, specimens were air-abraded (mean particle size 50 µm; n = 60) with either alumina at 0.1 MPa (AL0.1) or 0.4 MPa (AL0.4) and glass pearls at 0.1 MPa (GP0.1) and 0.4 MPa (GP0.4) or conditioned with visio.link (control) and luted with PanaviaV5. Initially (24 h, 37 °C water storage) or after aging (10,000 thermal cycles), SBS and TBS were measured, and fracture types were examined. Surface free energy (SFE) and roughness (Ra) were determined after air-abrasion. Kolmogorov-Smirnov, Kruskal-Wallis H, Mann-Whitney U, chi-square, and partial eta-squared were computed. RESULTS SBS measurements presented higher values than TBS (p < 0.001-0.033). Within the pretreatment groups, CEN showed the highest SBS and TBS values compared to cleaning with ISO or BUT (p < 0.001-0.040). Pretreatment with GP0.1 displayed the lowest bond strength values (p < 0.001-0.049), and mostly adhesive fractures occurred. The highest Ra values (p < 0.001) were observed for AL0.4 pretreatment. CONCLUSIONS Pretreatment with AL0.4 and the control group mainly presented the highest bond strength values. Thermocycling had a positive effect on the bond strength. CLINICAL RELEVANCE According to this study, 3D-printed restorations should be pretreated with AL0.4 or with visio.link before adhesive luting, regardless of their cleaning.
Collapse
|
2
|
Sakhabutdinova L, Kamenskikh AA, Kuchumov AG, Nosov Y, Baradina I. Numerical Study of the Mechanical Behaviour of Wedge-Shaped Defect Filling Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207387. [PMID: 36295452 PMCID: PMC9611093 DOI: 10.3390/ma15207387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 06/01/2023]
Abstract
This paper deals with direct restorations of teeth with non-carious cervical lesions (NCCL). NCCL defects are capable of gradual growth and are accompanied by the degradation of the surrounding tissue. Direct restorative treatment, in which the cavity is filled with a cementing agent, is considered to be an accessible and common treatment option. The study included simulations of the teeth without lesions, the teeth with V and U lesions and the tooth-restorative system. Parameterised numerical tooth models were constructed. Two cases with defect depths of 0.8 mm and ~1.7 mm and three variants with fillet radii of the defect end of 0.1, 0.2 and 0.3 mm were considered. The effect of two biomaterials for restorations was studied, namely Herculite XRV (Kerr Corp, Orange, CA, USA) and Charisma (Heraeus Kulzer GmbH, Hanau, Germany). The models were deformed with a vertical load of 100 to 1000 N from the antagonist tooth. The tooth-restorative system was considered, taking into consideration the contact interaction in the interface areas with the tooth tissues. Within the limits of the research, the character of the distribution of the deformation characteristics and their dependence on the level of loading, the depth of the defect and the radius of the curvature of the "wedge" were established.
Collapse
Affiliation(s)
- Lyaysan Sakhabutdinova
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, 614990 Perm, Russia
| | - Anna A. Kamenskikh
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, 614990 Perm, Russia
| | - Alex G. Kuchumov
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, 614990 Perm, Russia
| | - Yuriy Nosov
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, 614990 Perm, Russia
| | | |
Collapse
|
3
|
Peptide-Enabled Nanocomposites Offer Biomimetic Reconstruction of Silver Diamine Fluoride-Treated Dental Tissues. Polymers (Basel) 2022; 14:polym14071368. [PMID: 35406242 PMCID: PMC9002525 DOI: 10.3390/polym14071368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Caries is the most ubiquitous infectious disease of mankind, and early childhood caries (ECC) is the most prevalent chronic disease in children worldwide, with the resulting destruction of the teeth recognized as a global health crisis. Recent the United States Food and Drug Administration (FDA) approval for the use of silver diamine fluoride (SDF) in dentistry offers a safe, accessible, and inexpensive approach to arrest caries progression in children with ECC. However, discoloration, i.e., black staining, of demineralized or cavitated surfaces treated with SDF has limited its widespread use. Targeting SDF-treated tooth surfaces, we developed a biohybrid calcium phosphate nanocomposite interface building upon the self-assembly of synthetic biomimetic peptides. Here, an engineered bifunctional peptide composed of a silver binding peptide (AgBP) is covalently joined to an amelogenin derived peptide (ADP). The AgBP provides anchoring to the SDF-treated tooth tissue, while the ADP promotes rapid formation of a calcium phosphate isomorph nanocomposite mimicking the biomineralization function of the amelogenin protein. Our results demonstrate that the bifunctional peptide was effective in remineralizing the biomineral destroyed by caries on the SDF-treated tooth tissues. The proposed engineered peptide approach offers a biomimetic path for remineralization of the SDF-treated tissues producing a calcium phosphate nanocomposite interface competent to be restored using commonly available adhesive dental composites.
Collapse
|
4
|
Xie SX, Boone K, VanOosten SK, Yuca E, Song L, Ge X, Ye Q, Spencer P, Tamerler C. Peptide Mediated Antimicrobial Dental Adhesive System. APPLIED SCIENCES (BASEL, SWITZERLAND) 2019. [PMID: 33542835 DOI: 10.3390/a9030557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The most common cause for dental composite failures is secondary caries due to invasive bacterial colonization of the adhesive/dentin (a/d) interface. Innate material weakness often lead to an insufficient seal between the adhesive and dentin. Consequently, bacterial by-products invade the porous a/d interface leading to material degradation and dental caries. Current approaches to achieve antibacterial properties in these materials continue to raise concerns regarding hypersensitivity and antibiotic resistance. Herein, we have developed a multi-faceted, bio-functionalized approach to overcome the vulnerability of such interfaces. An antimicrobial adhesive formulation was designed using a combination of antimicrobial peptide and a ε-polylysine resin system. Effector molecules boasting innate immunity are brought together with a biopolymer offering a two-fold biomimetic design approach. The selection of ε-polylysine was inspired due to its non-toxic nature and common use as food preservative. Biomolecular characterization and functional activity of our engineered dental adhesive formulation were assessed and the combinatorial formulation demonstrated significant antimicrobial activity against Streptococcus mutans. Our antimicrobial peptide-hydrophilic adhesive hybrid system design offers advanced, biofunctional properties at the critical a/d interface.
Collapse
Affiliation(s)
- Sheng-Xue Xie
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Kay VanOosten
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Esra Yuca
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Department of Molecular Biology and Genetics, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Linyong Song
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Xueping Ge
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
5
|
Xie SX, Boone K, VanOosten SK, Yuca E, Song L, Ge X, Ye Q, Spencer P, Tamerler C. Peptide Mediated Antimicrobial Dental Adhesive System. APPLIED SCIENCES (BASEL, SWITZERLAND) 2019; 9:557. [PMID: 33542835 PMCID: PMC7857482 DOI: 10.3390/app9030557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The most common cause for dental composite failures is secondary caries due to invasive bacterial colonization of the adhesive/dentin (a/d) interface. Innate material weakness often lead to an insufficient seal between the adhesive and dentin. Consequently, bacterial by-products invade the porous a/d interface leading to material degradation and dental caries. Current approaches to achieve antibacterial properties in these materials continue to raise concerns regarding hypersensitivity and antibiotic resistance. Herein, we have developed a multi-faceted, bio-functionalized approach to overcome the vulnerability of such interfaces. An antimicrobial adhesive formulation was designed using a combination of antimicrobial peptide and a ε-polylysine resin system. Effector molecules boasting innate immunity are brought together with a biopolymer offering a two-fold biomimetic design approach. The selection of ε-polylysine was inspired due to its non-toxic nature and common use as food preservative. Biomolecular characterization and functional activity of our engineered dental adhesive formulation were assessed and the combinatorial formulation demonstrated significant antimicrobial activity against Streptococcus mutans. Our antimicrobial peptide-hydrophilic adhesive hybrid system design offers advanced, biofunctional properties at the critical a/d interface.
Collapse
Affiliation(s)
- Sheng-Xue Xie
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Kay VanOosten
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Esra Yuca
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Department of Molecular Biology and Genetics, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Linyong Song
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Xueping Ge
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|