1
|
Dai S, Zhou W, Duan L, Tang K, Yang Z, Cao R, Tay F, Niu L, Chen J. High-Performance Dental Resins Containing a Starburst Monomer. J Dent Res 2024; 103:536-545. [PMID: 38549255 PMCID: PMC11145299 DOI: 10.1177/00220345241232312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Dimethacrylate-based chemistries feature extensively as resin monomers in dental resin-based materials due to their distinguished overall performance. However, challenges endure, encompassing inadequate mechanical attributes, volumetric shrinkage, and estrogenicity. Herein, we first synthesized a novel resin monomer, 9-armed starburst polyurethane acrylate (NPUA), via the grafting-onto approach. Compared to the primary commercial dental monomer 2,2-bis [p-(2'-hydroxy-3'-methacryloxypropoxy) phenyl] propane (Bis-GMA) (with a viscosity of 1,174 ± 3 Pa·s and volumetric shrinkage of 4.7% ± 0.1%), the NPUA monomer achieves the lower viscosity (158 ± 1 Pa·s), volumetric shrinkage (2.5% ± 0.1%), and cytotoxicity (P < 0.05). The NPUA-based resins exhibit the higher flexural strength, flexural modulus, hardness, and hydrophobicity and lower volumetric shrinkage, water absorption, and solubility compared to the Bis-GMA (70 wt%)/TEGDMA (30 wt%) resins. The NPUA-based composites exhibit significantly higher flexural strength, flexural modulus, and hardness and lower volumetric shrinkage (171.4 ± 3.0 MPa, 12.6 ± 0.5 GPa, 2.0 ± 0.2 GPa, and 3.4% ± 0.2%, respectively) compared to the Bis-GMA group (120.3 ± 4.7 MPa, 9.4 ± 0.7 GPa, 1.5 ± 0.1 GPa, and 4.7% ± 0.2%, respectively; P < 0.05). This work presents a viable avenue for augmenting the physicochemical attributes of dental resins.
Collapse
Affiliation(s)
- S.Q. Dai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - W. Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - L.Y. Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - K. Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Z.Y. Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- Department of Stomatology, 923th Hospital of the Joint Logistics Support Force of PLA, Nanning, China
| | - R.J. Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - F.R. Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - L.N. Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - J.H. Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
2
|
Saridou M, Nikolaidis AK, Koulaouzidou EA, Achilias DS. Synthesis and Characterization of Dental Nanocomposite Resins Reinforced with Dual Organomodified Silica/Clay Nanofiller Systems. J Funct Biomater 2023; 14:405. [PMID: 37623650 PMCID: PMC10455476 DOI: 10.3390/jfb14080405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023] Open
Abstract
Quaternary ammonium (QA) compounds have been widely studied as potential disinfectants in dental restorative materials. The present work investigates whether the gradual displacement of nanosilica by QA-clay nanoparticles may have an impact on the physicochemical and mechanical properties of dental nanocomposite resins. For this purpose, Bis-GMA/TEGDMA-based composite resins were initially synthesized by incorporating 3-(trimethoxysilyl)propyl methacrylate (γ-MPS)-modified nanosilica/QA-clay nanoparticles at 60/0, 55/5, 50/10, 40/20, and 30/30 wt% filler loadings. Their structural characterization was performed by means of scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). The degree of double bond conversion (DC) over time and the polymerization shrinkage were determined with Fourier transform infrared spectroscopy (FTIR) and a linear variable displacement transducer (LVDT), respectively. Mechanical properties as well as water sorption and solubility parameters were also evaluated after storage of nanocomposites in water for 7 days at 37 °C. Spectral data revealed intercalated clay configurations along with areas characterized by silica-clay clusters for clay loadings up to 30 wt%. Furthermore, the insertion of 10 wt% QA-clay enhanced the auto-acceleration effect also sustaining the ultimate (DC), reduced the setting contraction and solubility, and, finally, yielded flexural modulus and strength very close to those of the control nanocomposite resin. The acquired results could herald the advanced design of dental restorative materials appropriate for contemporary clinical applications.
Collapse
Affiliation(s)
- Maria Saridou
- Laboratory of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University Thessaloniki, 541 24 Thessaloniki, Greece (D.S.A.)
| | - Alexandros K. Nikolaidis
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Elisabeth A. Koulaouzidou
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Dimitris S. Achilias
- Laboratory of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University Thessaloniki, 541 24 Thessaloniki, Greece (D.S.A.)
| |
Collapse
|
3
|
Naguib GH, Bakhsh TA, Turkistani AA, Mously HA, Fattouh M, Hamed MT. Noninvasive Adaptation Appraisal of Antimicrobial Nano-Filled Composite. Int Dent J 2022:S0020-6539(22)00263-5. [PMID: 36549967 DOI: 10.1016/j.identj.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/19/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The aim of this research was to assess the effect of incorporating zein-coated magnesium oxide (zMgO) nanofillers to resin-based composite on the internal adaptation of the restorations using cross-polarisation optical coherence tomography (CP-OCT). METHODS Thirty noncarious human molar teeth were used. Class V cavities (3 × 5 mm) were prepared on the buccal and lingual surfaces of each tooth. Clearfil SE Bond 2 was applied to all the cavities and then the teeth were divided into 3 groups (n = 10) as follows: group 1-restored with N-Flow composite; group 2 and group 3-restored with N-Flow composite mixed with different zMgO nanoparticle concentrations (0.3% and 0.5% by weight, respectively) and then light cured using an LED curing device. Specimens were examined for interfacial adaptation examination under CP-OCT. Characterisation of the dental composite incorporating zMgO was done by Fourier-transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). Results were analysed with Kruskall-Wallis test followed by Mann-Whitney U test, at a significance level of P < .05. RESULTS XRD spectra exhibited the sharp peaks of zMgO in the composite enhanced with zMgO nanoparticles. FESEM analysis showed a uniform distribution of the zMgO nanoparticles in the composite and FTIR illustrated no change in the spectra. The gap percentage along the cavity floor was significantly lower in groups 2 and 3 in comparison to group 1 (P < .05). Also there was a significant difference in gap percentages between groups 2 and 3 (P < .05), with group 3 showing the lowest gap percentage. CONCLUSIONS The incorporation of 0.3% and 0.5% zMgO nanoparticles in flowable composite assists in improving the internal adaptation of the composite to the tooth surface.
Collapse
Affiliation(s)
- Ghada H Naguib
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt.
| | - Turki A Bakhsh
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa A Turkistani
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham A Mously
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Fattouh
- Department of Fixed Prosthodontics, Faculty of Dentistry, Cairo University, Cairo, Egypt; Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed T Hamed
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Fixed Prosthodontics, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Szerszeń M, Cierech M, Wojnarowicz J, Górski B, Mierzwińska-Nastalska E. Color Stability of Zinc Oxide Poly(methyl methacrylate) Nanocomposite-A New Biomaterial for Denture Bases. Polymers (Basel) 2022; 14:polym14224982. [PMID: 36433109 PMCID: PMC9692561 DOI: 10.3390/polym14224982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
(1) Background: The purpose of this in vitro study was to evaluate the color change and stability of a zinc oxide nanoparticle-poly(methyl methacrylate) (ZnO NP-PMMA) nanocomposite for denture base material after immersion in different dietary and cleaning agent solutions. (2) Methods: One hundred samples were prepared and divided into four equinumerous groups depending on the weight content of ZnO NPs. The color coordinates (CIE L*a*b*) were measured using a digital colorimeter, ColorReader (Datacolor AG Europe, Rotkreuz, Switzerland), before and after immersion of the specimens in five different solutions (distilled water, coffee, red wine, black tea, denture cleaning tablet solution) for 6 months. The color changes (ΔE) were calculated using Euclidean distance and analyzed by the Shapiro-Wilk test and the ANOVA/Kruskal-Wallis multiple comparison and adequate post hoc tests. (3) Results: All tested materials showed significant color changes after their exposure to all solutions. Color changes were greatest in the case of red wine and progressed with the duration of the study. (4) Conclusions: The modification of PMMA with ZnO nanoparticles is acceptable in aesthetic terms in 2.5% and 5% weight content; however, color changes are more noticeable with higher nanoparticle content and must be discussed with the patient prior to possible use.
Collapse
Affiliation(s)
- Marcin Szerszeń
- Department of Prosthodontics, Medical University of Warsaw, 02-006 Warsaw, Poland
- Correspondence:
| | - Mariusz Cierech
- Department of Prosthodontics, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland
| | - Bartłomiej Górski
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | |
Collapse
|
5
|
Gu X, Hou J, Ai S. Effect of silane modified
nano‐SiO
2
on the mechanical properties and compatibility of
PBAT
/lignin composite films. J Appl Polym Sci 2021. [DOI: 10.1002/app.52051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xinhui Gu
- College of Chemistry and Material Science Shandong Agricultural University Tai'an China
| | - Juying Hou
- College of Chemistry and Material Science Shandong Agricultural University Tai'an China
| | - Shiyun Ai
- College of Chemistry and Material Science Shandong Agricultural University Tai'an China
| |
Collapse
|
6
|
Sun Y, Zhou Z, Jiang H, Duan Y, Li J, Liu X, Hong L, Zhao C. Preparation and evaluation of novel bio-based Bis-GMA-free dental composites with low estrogenic activity. Dent Mater 2021; 38:281-293. [PMID: 34955233 DOI: 10.1016/j.dental.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/07/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Although bisphenol Aglycidyl methacrylate (Bis-GMA) are widely used in the dental composite, its raw materials include the petroleum-based product bisphenol A (BPA) with high estrogenic activity (EA). In this study, two new BPA-free dimethacrylate monomers from bio-based material creosol were synthesized and evaluated. METHODS The renewable bisphenol monomer 5, 5'-methylenedicreosol (BCF) was prepared from bio-based material creosol. By the human breast cancer cells (MCF-7 cells) proliferation assay, a risk assessment of BCF was performed to determine if BCF possessed reduced EA in comparison to BPA. Then, the novel monomers 5, 5'-methylenedicreosol diglycidyl ether diacrylate (BCF-EA) and 5, 5'-methylenedicreosol diglycidyl ether dimethacrylate (BCF-GMA) were synthesized from BCF with epichlorohydrin and (meth)acrylate. All products were investigated by 1H NMR and FT-IR spectra. The control resin was a mixture based on Bis-GMA and tri(ethyleneglycol) dimethacrylate (TEGDMA) with a weight ratio of 5:5 (5B5T). Similarly, experimental resin matrix was a mixture based on BCF-EA/TEGDMA (5E5T) and BCF-GMA/TEGDMA (5G5T). And their corresponding composites were then prepared with corresponding resin matrices and hybrid SiO2 (5E5TC, 5G5TC and 5B5TC). The properties of these composites were investigated according to the standard or referenced methods. Each sample was evaluated for double bond conversion (DC), shrinkage stress (SS) and volumetric polymerization shrinkage (VS). Water sorption (WS), water solubility (SL), mechanical properties and cytotoxicity were also measured. RESULTS 1H NMR and FT-IR spectra confirmed the chemical structure of each monomer. EA test revealed that bio-based bisphenol monomer BCF as the precursor of BCF-EA and BCF-GMA showed lower EA than BPA. Cured resin matrix: Both 5E5T and 5G5T had nearly the same DC (p < 0.05), which was higher than 5B5T (p < 0.05); 5E5T and 5G5T had lower VS, SL and cytotoxicity than 5B5T (p < 0.05); mechanical properties of 5E5T and 5G5T were all better than those of 5B5T (p < 0.05). Cured composite: There was no significant difference in conversion (p < 0.05); 5E5TC and 5G5TC had significantly lower VS (p < 0.05); WS of 5E5TC and 5G5TC were similar (p < 0.05), but higher compared to 5B5TC (p < 0.05); 5E5TC and 5G5TC had the deeper depth of cure (p > 0.05); before water immersion, there was no significant difference in flexural strength between 5E5TC and 5G5TC (p > 0.05), and higher than 5B5TC (p < 0.05); 5E5TC and 5G5TC showed less cytotoxicity than 5B5TC (p < 0.05). SIGNIFICANCE The new BPA-free di(meth)acrylates are promising photocurable dental monomers owning to bio-based raw material, high degree of conversion coupled with low curing shrinkage and good mechanical properties. Therefore, BCF-EA and BCF-GMA has a potential to be used as the substitution for Bis-GMA to prepare Bis-GMA-free dental composite.
Collapse
Affiliation(s)
- Yinan Sun
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zeying Zhou
- Department of Prosthodontic Dentistry, Hospital of Stomatology, Jilin University, Changchun 130012, PR China
| | - Hao Jiang
- College of Materials Science and Engineering, Jilin University, Changchun 130022, PR China
| | - Yuting Duan
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jialin Li
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiaoqiu Liu
- Department of Prosthodontic Dentistry, Hospital of Stomatology, Jilin University, Changchun 130012, PR China
| | - Lihua Hong
- Endodontics Department of Stomatological Hospital, Jilin University, Changchun 130021, PR China.
| | - Chengji Zhao
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
7
|
de Menezes BRC, Sampaio ADG, da Silva DM, Montagna LS, Montanheiro TLDA, Koga Ito CY, Thim GP. Nanocomposites obtained by incorporation of silanized silver nanowires to improve mechanical properties and prevent fungal adhesion. NANO SELECT 2021. [DOI: 10.1002/nano.202100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
| | - Aline da Graça Sampaio
- Genoma Laboratory São José dos Campos Institute of Science and Technology São Paulo State University (UNESP) São José dos Campos SP Brazil
| | - Diego Morais da Silva
- Plasmas and Process Laboratory (LPP) Technological Institute of Aeronautics (ITA) São José dos Campos SP Brazil
| | - Larissa Stieven Montagna
- Technology Laboratory of Polymers and Biopolymers Federal University of São Paulo (UNIFESP) São José dos Campos SP Brazil
| | | | - Cristiane Yumi Koga Ito
- Genoma Laboratory São José dos Campos Institute of Science and Technology São Paulo State University (UNESP) São José dos Campos SP Brazil
| | - Gilmar Patrocínio Thim
- Plasmas and Process Laboratory (LPP) Technological Institute of Aeronautics (ITA) São José dos Campos SP Brazil
| |
Collapse
|
8
|
Nikolaidis AK, Koulaouzidou EA, Gogos C, Achilias DS. Synthesis of Novel Dental Nanocomposite Resins by Incorporating Polymerizable, Quaternary Ammonium Silane-Modified Silica Nanoparticles. Polymers (Basel) 2021; 13:polym13111682. [PMID: 34064091 PMCID: PMC8196756 DOI: 10.3390/polym13111682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Diverse approaches dealing with the reinforcement of dental composite resins with quaternary ammonium compounds (QAC) have been previously reported. This work aims to investigate the physicochemical and mechanical performance of dental resins containing silica nanofillers with novel QAC. Different types of quaternary ammonium silane compounds (QASiC) were initially synthesized and characterized with proton nuclear magnetic resonance (1H-NMR) and Fourier transform infrared (FTIR) spectroscopy. Silica nanoparticles were surface modified with the above QASiC and the structure of silanized products (S.QASiC) was confirmed by means of FTIR and thermogravimetric analysis. The obtained S.QASiC were then incorporated into methacrylate based dental resins. Scanning electron microscopy images revealed a satisfactory dispersion of silica nanoclusters for most of the synthesized nanocomposites. Curing kinetics disclosed a rise in both the autoacceleration effect and degree of conversion mainly induced by shorter QASiC molecules. Polymerization shrinkage was found to be influenced by the particular type of S.QASiC. The flexural modulus and strength of composites were increased by 74% and 19%, while their compressive strength enhancement reached up to 19% by adding 22 wt% S.QASiC nanoparticles. These findings might contribute to the proper design of multifunctional dental materials able to meet the contemporary challenges in clinical practice.
Collapse
Affiliation(s)
- Alexandros K. Nikolaidis
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University Thessaloniki, 541 24 Thessaloniki, Greece; (E.A.K.); (C.G.)
- Correspondence: ; Tel.: +30-2310-999616
| | - Elisabeth A. Koulaouzidou
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University Thessaloniki, 541 24 Thessaloniki, Greece; (E.A.K.); (C.G.)
| | - Christos Gogos
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University Thessaloniki, 541 24 Thessaloniki, Greece; (E.A.K.); (C.G.)
| | - Dimitris S. Achilias
- Laboratory of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
9
|
Shi J, Jiang X, Sun J, Ban B, Li J, Chen J. A surface-engineering-assisted method to synthesize recycled silicon-based anodes with a uniform carbon shell-protective layer for lithium-ion batteries. J Colloid Interface Sci 2021; 588:737-748. [PMID: 33309142 DOI: 10.1016/j.jcis.2020.11.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 11/26/2022]
Abstract
Yolk-shell silicon/carbon composite encapsulated by uniform carbon shell (Si@C) are becoming an effective method to mitigate volume-related issues of Si-based anodes and maintain an excellent performance for lithium-ion batteries (LIBs). However, a uniform carbon shell in Si@C is difficult to guarantee. Herein, a facile surface-engineering-assisted strategy is described to prepare Si@C composite with low-cost modified recycled waste silicon powders (RWSi) as core coated by a uniform carbon shell-protective layer derived from the pyrolysis of poly (methyl methacrylate) (PMMA) as carbon source (m-RWSi@PMMA-C). In this process, surface-engineering is performed with silane coupling agent kh550 to functionalize the RWSi particles via a silanization reaction, guaranteeing a uniform PMMA coating which will be transformed into carbon shell-protective layer after carbonization. The m-RWSi@PMMA-C electrode delivers an optimal discharge capacity of 1083 mAhg-1 at 200 mAg-1 after 200 cycles with an initial capacity of 3176.2 mAhg-1 and a high initial Coulombic efficiency (ICE) of 75.6%. Based on these results, the recycled silicon-based anode with a uniform carbon shell-protective layer displays great application potential and it also brings a new perspective on silicon-based anodes via surface-engineering method for LIBs.
Collapse
Affiliation(s)
- Jian Shi
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, China; University of Science and Technology of China, Hefei 230026, China
| | - Xuesong Jiang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, China; University of Science and Technology of China, Hefei 230026, China
| | - Jifei Sun
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, China; University of Science and Technology of China, Hefei 230026, China
| | - Boyuan Ban
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, China
| | - Jingwei Li
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, China
| | - Jian Chen
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, China; College of Metallurgy and Material Engineering, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
10
|
Bastos NA, Bitencourt SB, Martins EA, De Souza GM. Review of nano-technology applications in resin-based restorative materials. J ESTHET RESTOR DENT 2020; 33:567-582. [PMID: 33368974 DOI: 10.1111/jerd.12699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Nanotechnology has progressed significantly and particles as small as 3 nm are being employed in resin-based restorative materials to improve clinical performance. The goal of this review is to report the progress of nanotechnology in Restorative Dentistry by reviewing the advantages, limitations, and applications of resin-based restorative materials with nanoparticles. MATERIALS AND METHODS A literature review was conducted using PubMed/Medline, Scopus and Embase databases. In vitro, in vivo and in situ research studies published in English between 1999 and 2020, and which focused on the analysis of resin-based restorative materials containing nanoparticles were included. RESULTS A total of 140 studies were included in this review. Studies reported the effect of incorporating different types of nanoparticles on adhesive systems or resin composites. Mechanical, physical, and anti-bacterial properties were described. The clinical performance of resin-based restorative materials with nanoparticles was also reported. CONCLUSIONS The high surface area of nanoparticles exponentially increases the bioactivity of materials using bioactive nanofillers. However, the tendency of nanoparticles to agglomerate, the chemical instability of the developed materials and the decline of rheological properties when high ratios of nanoparticles are employed are some of the obstacles to overcome in the near future. CLINICAL SIGNIFICANCE In spite of the recent advancements of nanotechnology in resin-based restorative materials, some challenges need to be overcome before new nano-based restorative materials are considered permanent solutions to clinical problems.
Collapse
Affiliation(s)
- Natalia Almeida Bastos
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Sandro Basso Bitencourt
- Department of Dental Materials and Prosthodontics, Sao Paulo State University (UNESP), Araçatuba, Brazil
| | | | | |
Collapse
|
11
|
Hong G, Yang J, Jin X, Wu T, Dai S, Xie H, Chen C. Mechanical Properties of Nanohybrid Resin Composites Containing Various Mass Fractions of Modified Zirconia Particles. Int J Nanomedicine 2020; 15:9891-9907. [PMID: 33328732 PMCID: PMC7733898 DOI: 10.2147/ijn.s283742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the effect of various mass fractions of 10-methacry-loyloxydecyl dihydrogen phosphate (MDP)-conditioned or unconditioned zirconia nano- or micro-particles with different initiator systems on the mechanical properties of nanohybrid resin composites. METHODS Both light-cured (L) and dual-cured (D) resin composites were prepared. When the mass fraction of the nano- or micro-zirconia fillers reached 55 wt%, resin composites were equipped with dual-cured initiator systems. We measured the three-point bending-strength, elastic modulus, Weibull modulus and translucency parameter of the nanohybrid resin composites containing various mass fractions of MDP-conditioned or unconditioned zirconia nano- or micro-particles (0%, 5 wt%, 10 wt%, 20 wt%, 30 wt% and 55 wt%). A Cell Counting Kit (CCK)-8 was used to test the cell cytotoxicity of the experimental resin composites. The zirconia nano- or micro-particles with MDP-conditioning or not were characterized by transmission electron microscopy (TEM), Fourier infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). RESULTS Resin composites containing 5-20 wt% MDP-conditioned or unconditioned nano-zirconia fillers exhibited better three-point bending-strength than the control group without zirconia fillers. Nano- or micro-zirconia fillers decreased the translucence of the nanohybrid resin composites. According to the cytotoxicity classification, all of the nano- or micro-zirconia fillers containing experimental resin composites were considered to have no significant cell cytotoxicity. The FTIR spectra of the conditioned nano- or micro-fillers showed new absorption bands at 1719 cm-1 and 1637 cm-1, indicating the successful combination of MDP and zirconia particles. The XPS analysis measured Zr-O-P peak area on MDP-conditioned nano- and micro-zirconia fillers at 39.91% and 34.89%, respectively. CONCLUSION Nano-zirconia filler improved the mechanical properties of nanohybrid resin composites, but cannot be the main filler to replace silica filler. The experimental dual-cured composites can be resin cements with better opacity effects and a low viscosity.
Collapse
Affiliation(s)
- Gaoying Hong
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jiaxue Yang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xin Jin
- Jiangsu Key Laboratory of Oral Diseases, Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Tong Wu
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shiqi Dai
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Haifeng Xie
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chen Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
12
|
Xu T, Li X, Wang H, Zheng G, Yu G, Wang H, Zhu S. Polymerization shrinkage kinetics and degree of conversion of resin composites. J Oral Sci 2020; 62:275-280. [PMID: 32493864 DOI: 10.2334/josnusd.19-0157] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study compared shrinkage strain, polymerization shrinkage kinetics, and degree of conversion (DC) of a set of resin composites and investigated their influencing factors. Ten commercial resin composites were assessed, and 5 specimens (n = 5) were developed for material and subjected to light curing using light emitting diode light at 650 mW/cm2 for 40 s. The laser triangulation method was adopted to assess the shrinkage strain, and Fourier transform infrared spectroscopy was used to measure DC. The shrinkage strain was monitored for 5 min in real time and its data were subjected to differential calculations to get the shrinkage strain rate curve with respect to time, obtaining the maximum shrinkage strain rate (Rmax) and gel time. The values of shrinkage strain varied from 1.28% to 2.10%. The Rmax values were between 5.17 μm/s and 21.83 μm/s. Gel time values varied from 3.08 s to 4.32 s. The DC yielded values ranging from 53.62% to 87.01%. The values of polymerization shrinkage and DC were dependent on the composition of materials, including the monomer matrix and filler system. Compared to the micro-filler materials, the nano-filler resin composites had higher values of DC. Some resin composites are suitable for clinical applications because of their superior polymerization shrinkage properties and DC.
Collapse
Affiliation(s)
- Tong Xu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Xuan Li
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Han Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Gang Zheng
- Department of Dental Materials, School and Hospital of Stomatology, Peking University
| | - Gaigai Yu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Huimin Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Song Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| |
Collapse
|
13
|
Yang J, Shen J, Wu X, He F, Xie H, Chen C. Effects of nano-zirconia fillers conditioned with phosphate ester monomers on the conversion and mechanical properties of Bis-GMA- and UDMA-based resin composites. J Dent 2020; 94:103306. [DOI: 10.1016/j.jdent.2020.103306] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 01/19/2023] Open
|
14
|
Elmadani AA, Radović I, Tomić NZ, Petrović M, Stojanović DB, Heinemann RJ, Radojević V. Hybrid denture acrylic composites with nanozirconia and electrospun polystyrene fibers. PLoS One 2019; 14:e0226528. [PMID: 31851701 PMCID: PMC6919599 DOI: 10.1371/journal.pone.0226528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
The processing and characterization of hybrid PMMA resin composites with nano-zirconia (ZrO2) and electrospun polystyrene (PS) polymer fibers were presented in this study. Reinforcement was selected with the intention to tune the physical and mechanical properties of the hybrid composite. Surface modification of inorganic particles was performed in order to improve the adhesion of reinforcement to the matrix. Fourier transform infrared spectroscopy (FTIR) provided successful modification of zirconia nanoparticles with 3-Methacryloxypropyltrimethoxysilane (MEMO) and bonding improvement between incompatible inorganic nanoparticles and PMMA matrix. Considerable deagglomeration of nanoparticles in the matrix occurred after the modification has been revealed by scanning electron microscopy (SEM). Microhardness increased with the concentration of modified nanoparticles, while the fibers were the modifier that lowers hardness and promotes toughness of hybrid composites. Impact test displayed increased absorbed energy after the PS electrospun fibers had been embedded. The optimized composition of the hybrid was determined and a good balance of thermal and mechanical properties was achieved.
Collapse
Affiliation(s)
- A A Elmadani
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - I Radović
- University of Belgrade, Laboratory for Materials Sciences, Institute of Nuclear Sciences ''Vinča", Belgrade, Serbia
| | - N Z Tomić
- Innovation Center of Faculty of Technology and Metallurgy in Belgrade, Belgrade, Serbia
| | - M Petrović
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - D B Stojanović
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - R Jančić Heinemann
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - V Radojević
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| |
Collapse
|