1
|
Niki Y, Huber G, Behzadi K, Morlock MM. Vibratory insertion of press-fit acetabular components requires less force than a single blow technique. Bone Joint Res 2024; 13:272-278. [PMID: 38834190 DOI: 10.1302/2046-3758.136.bjr-2023-0263.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Aims Periprosthetic fracture and implant loosening are two of the major reasons for revision surgery of cementless implants. Optimal implant fixation with minimal bone damage is challenging in this procedure. This pilot study investigates whether vibratory implant insertion is gentler compared to consecutive single blows for acetabular component implantation in a surrogate polyurethane (PU) model. Methods Acetabular components (cups) were implanted into 1 mm nominal under-sized cavities in PU foams (15 and 30 per cubic foot (PCF)) using a vibratory implant insertion device and an automated impaction device for single blows. The impaction force, remaining polar gap, and lever-out moment were measured and compared between the impaction methods. Results Impaction force was reduced by 89% and 53% for vibratory insertion in 15 and 30 PCF foams, respectively. Both methods positioned the component with polar gaps under 2 mm in 15 PCF foam. However, in 30 PCF foam, the vibratory insertion resulted in a clinically undesirable polar gap of over 2 mm. A higher lever-out moment was achieved with the consecutive single blow insertion by 42% in 15 PCF and 2.7 times higher in 30 PCF foam. Conclusion Vibratory implant insertion may lower periprosthetic fracture risk by reducing impaction forces, particularly in low-quality bone. Achieving implant seating using vibratory insertion requires adjustment of the nominal press-fit, especially in denser bone. Further preclinical testing on real bone tissue is necessary to assess whether its viscoelasticity in combination with an adjusted press-fit can compensate for the reduced primary stability after vibratory insertion observed in this study.
Collapse
Affiliation(s)
- Yasaman Niki
- Institute of Biomechanics, Hamburg University of Technology (TUHH), Hamburg, Germany
| | - Gerd Huber
- Institute of Biomechanics, Hamburg University of Technology (TUHH), Hamburg, Germany
| | | | - Michael M Morlock
- Institute of Biomechanics, Hamburg University of Technology (TUHH), Hamburg, Germany
| |
Collapse
|
2
|
Yoshida K, Fukushima K, Sakai R, Uchiyama K, Takahira N, Ujihira M. A novel primary stability test method for artificial acetabular shells considering vertical load during level walking and shell position. PLoS One 2024; 19:e0296919. [PMID: 38421998 PMCID: PMC10903903 DOI: 10.1371/journal.pone.0296919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024] Open
Abstract
Uncemented acetabular shell primary stability is essential for optimal clinical outcomes. Push-out testing, rotation testing, and lever-out testing are major evaluation methods of primary stability between the shell and bone. However, these test methods do not consider shell loads during daily activity and shell installation angle. This study proposes a novel evaluation method of acetabular shell primary stability considering load during level walking and acetabular installation angles such as inclination and anteversion. To achieve this, a novel primary stability test apparatus was designed with a shell position of 40° acetabular inclination and 20° anteversion. The vertical load, corresponding to walking load, was set to 3 kN according to ISO 14242-1, which is the wear test standard for artificial hip joints. The vertical load was applied by an air cylinder controlled by a pressure-type electro-pneumatic proportional valve, with the vertical load value monitored by a load cell. Torque was measured when angular displacement was applied in the direction of extension during the application of vertical load. For comparison, we also measured torque using the traditional lever-out test. The novel primary stability test yielded significantly higher primary stabilities; 5.4 times greater than the lever-out test results. The novel primary stability test failure mode was more similar to the clinical failure than the traditional lever-out test. It is suggested that this novel primary stability test method, applying physiological walking loads and extension motions to the acetabular shell, better reflects in vivo primary stability than the traditional lever-out test.
Collapse
Affiliation(s)
- Kazuhiro Yoshida
- Department of Medical Engineering and Technology, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kensuke Fukushima
- Department of Orthopaedic Surgery, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Rina Sakai
- Department of Medical Engineering and Technology, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Katsufumi Uchiyama
- Department of Orthopaedic Surgery, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Naonobu Takahira
- Department of Orthopaedic Surgery, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masanobu Ujihira
- Department of Medical Engineering and Technology, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
3
|
Nishi M, Okano I, Yoshikawa Y, Tochio H, Usui Y, Inagaki K. Relationship Between Acetabular Hounsfield Unit Values and Periprosthetic Fractures in Cementless Total Hip Arthroplasty: A Matched Case-Control Study. Arthroplast Today 2022; 14:216-222.e1. [PMID: 35510068 PMCID: PMC9059077 DOI: 10.1016/j.artd.2021.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 12/04/2022] Open
Abstract
Background The association between regional bone status around the acetabulum and the incidence of intraoperative acetabulum fractures has not been extensively studied. We investigated the association of Hounsfield unit (HU) values on computed tomography in the regions of the acetabulum with periprosthetic fractures. Methods We retrospectively reviewed records of 301 consecutive patients who underwent cementless total hip arthroplasty between October 2016 and December 2020. Using preoperative computed tomography taken in the 4 weeks preceding total hip arthroplasty, we measured HU values in 4 different acetabulum regions (anterior, medial, posterior, and superior). After identifying fracture cases, we identified a control group—matched in terms of sex, age, and preoperative diagnosis—selected in a 1:3 ratio among nonfracture patients treated in the same inclusive period. As the average HU values differed by region, we used the standardized value to compare fracture-site HUs. We ranked the standardized HU values for each acetabular site and compared the fracture site rank between the groups. Results Intraoperative acetabular fractures were observed in 10 hips (3.2%), occurring most frequently in the superior region (40%). The standardized HU values of the fracture site were statistically lower in the fracture group (P = .039). We compared the ranks of the standardized HUs of the fractured parts with those of the corresponding parts in the control group; the fracture site had a significantly lower standardized HU rank, indicating that fractures tended to occur in the relatively “weaker-than-expected” parts. Conclusions Periprosthetic fractures tended to occur at relatively weak parts of the acetabulum.
Collapse
Affiliation(s)
- Masanori Nishi
- Corresponding author. Department of Orthopedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan. Tel.: +81337848543.
| | | | | | | | | | | |
Collapse
|
4
|
Yoshida K, Fukushima K, Sakai R, Uchiyama K, Takahira N, Ujihira M. Influence of outer geometry on primary stability for uncemented acetabular shells in developmental dysplasia of the hip. Proc Inst Mech Eng H 2020; 235:65-72. [PMID: 32996400 DOI: 10.1177/0954411920960000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Excellent primary stability of uncemented acetabular shells is essential to obtain successful clinical outcomes. However, in the case of developmental dysplasia of the hip (DDH), aseptic loosening may be induced by instability due to a decrease of the contact area between the acetabular shell and host bone. The aim of this study was to assess the primary stability of two commercially-available acetabular shells, hemispherical and hemielliptical, in normal and DDH models. Synthetic bone was reamed using appropriate surgical reamers for each reaming condition (normal acetabular model). The normal acetabular model was also cut diagonally at 40° to create a dysplasia model. Stability of the acetabular components was evaluated by the lever-out test. In the normal acetabular model conditions, the maximum primary stabilities of hemispherical and hemielliptical shells were observed in the 1-mm under- and 1-mm over-reamed conditions, respectively, and the resulting stabilities were comparable. The lateral defect in the dysplasia model had an adverse effect on the primary stabilities of the two designs. The lever-out moment of the hemielliptical acetabular shell was 1.4 times greater than that of the hemispherical acetabular shell in the dysplasia model. The hemispherical shell is useful for the normal acetabular condition, and the hemielliptical shell for the severe dysplasia condition, in the context of primary stability.
Collapse
Affiliation(s)
- Kazuhiro Yoshida
- Department of Medical Engineering and Technology, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kensuke Fukushima
- Department of Orthopaedic Surgery, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Rina Sakai
- Department of Medical Engineering and Technology, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Katsufumi Uchiyama
- Department of Orthopaedic Surgery, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Naonobu Takahira
- Department of Orthopaedic Surgery, Kitasato University, Sagamihara, Kanagawa, Japan.,Department of Rehabilitation, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masanobu Ujihira
- Department of Medical Engineering and Technology, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
5
|
Comparison of Test Setups for the Experimental Evaluation of the Primary Fixation Stability of Acetabular Cups. MATERIALS 2020; 13:ma13183982. [PMID: 32916802 PMCID: PMC7559462 DOI: 10.3390/ma13183982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
Sufficient primary fixation stability is the basis for the osseointegration of cementless acetabular cups. Several test methods have been established for determining the tilting moment of acetabular press-fit cups, which is a measure for their primary fixation stability. The central aim of this experimental study was to show the differences between the commonly used lever-out test method (Method 1) and the edge-load test method (Method 2) in which the cup insert is axially loaded (1 kN) during the tilting process with respect to the parameters, tilting moment, and interface stiffness. Therefore, using a biomechanical cup block model, a press-fit cup design with a macro-structured surface was pushed into three cavity types (intact, moderate superior defect, and two-point-pinching cavity) made of 15 pcf and 30 pcf polyurethane foam blocks (n = 3 per cavity and foam density combination), respectively. Subsequently, the acetabular cup was disassembled from the three artificial bone cavities using the lever-out and the edge-load test method. Tilting moments determined with Method 1 ranged from 2.72 ± 0.29 Nm to 49.08 ± 1.50 Nm, and with Method 2, they ranged from 41.40 ± 1.05 Nm to 112.86 ± 5.29 Nm. In Method 2, larger areas of abrasion were observed in the artificial bone cavity compared to Method 1. This indicates increased shear forces at the implant–bone interface in the former method. In conclusion, Method 1 simulates the technique used by orthopedic surgeons to assess the correct fit of the trial cup, while Method 2 simulates the tilting of the cup in the acetabular bone cavity under in situ loading with the hip resultant force.
Collapse
|
6
|
Fixation Stability of Uncemented Acetabular Cups With Respect to Different Bone Defect Sizes. J Arthroplasty 2020; 35:1720-1728. [PMID: 32063411 DOI: 10.1016/j.arth.2020.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/23/2019] [Accepted: 01/09/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In total hip arthroplasty, acetabular press-fit cups require a proper bone stock for sufficient primary implant fixation. The presence of acetabular bone defects compromises the primary fixation stability of acetabular press-fit cups. The aim of the present study is to determine the fixation stability of a cementless acetabular cup regarding standardized bone defects in an experimental setup. METHODS An acetabular defect model was developed and transferred to a biomechanical cup-block model. The lack of superior cup coverage was divided into 4 stages of superior rim loss (33%, 50%, 67%, and 83%) in the anterior-posterior direction and into 4 stages of mediolateral wall absence (11%, 22%, 33%, and 50%). This resulted in 11 different defect cavities, which were compared to the intact cavity in push-in and lever-out tests of one press-fit cup design (56 mm outer diameter). Thereby, push-in force, lever-out moment, lever-out angle, and interface stiffness were determined. RESULTS The determined lever-out moments range from 15.53 ± 1.38 Nm (intact cavity) to 1.37 ± 0.54 Nm (83%/50% defect). Smaller defects (33%/11%, 33%/22%, and 50%/11%) reduce the lever-out moments by an average of 33.9% ± 2.8%. CONCLUSION The lack of mediolateral acetabular coverage of 50% was assessed as critical for cementless cup fixation, whereby the contact zone between implant and bone in the defect is lost. A lack of 20% to 30% mediolateral coverage appears to be acceptable for press-fit cup fixation in the presence of primary stability. A defect of 50%/50% was identified as the threshold for using additional fixation methods.
Collapse
|
7
|
Goossens Q, Pastrav LC, Mulier M, Desmet W, Vander Sloten J, Denis K. Two Different Methods to Measure the Stability of Acetabular Implants: A Comparison Using Artificial Acetabular Models. SENSORS 2020; 20:s20010254. [PMID: 31906330 PMCID: PMC6983091 DOI: 10.3390/s20010254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 11/24/2022]
Abstract
The total number of total hip arthroplasties is increasing every year, and approximately 10% of these surgeries are revisions. New implant design and surgical techniques are evolving quickly and demand accurate preclinical evaluation. The initial stability of cementless implants is one of the main concerns of these preclinical evaluations. A broad range of initial stability test methods is currently used, which can be categorized into two main groups: Load-to-failure tests and relative micromotion measurements. Measuring relative micromotion between implant and bone is recognized as the golden standard for implant stability testing as this micromotion is directly linked to the long-term fixation of cementless implants. However, specific custom-made set-ups are required to measure this micromotion, with the result that numerous studies opt to perform more straightforward load-to-failure tests. A custom-made micromotion test set-up for artificial acetabular bone models was developed and used to compare load-to-failure (implant push-out test) with micromotion and to assess the influence of bone material properties and press-fit on the implant stability. The results showed a high degree of correlation between micromotion and load-to-failure stability metrics, which indicates that load-to-failure stability tests can be an appropriate estimator of the primary stability of acetabular implants. Nevertheless, micromotions still apply as the golden standard and are preferred when high accuracy is necessary. Higher bone density resulted in an increase in implant stability. An increase of press-fit from 0.7 mm to 1.2 mm did not significantly increase implant stability.
Collapse
Affiliation(s)
- Quentin Goossens
- Department of Mechanical Engineering, Campus Group T, KU Leuven, 3000 Leuven, Belgium
- Correspondence:
| | - Leonard Cezar Pastrav
- Department of Mechanical Engineering, Campus Group T, KU Leuven, 3000 Leuven, Belgium
| | - Michiel Mulier
- Department of Orthopedics, University Hospital Leuven, 3000 Leuven, Belgium
| | - Wim Desmet
- Department of Mechanical Engineering, PMA Division, KU Leuven, 3000 Leuven, Belgium
| | - Jos Vander Sloten
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium
| | - Kathleen Denis
- Department of Mechanical Engineering, Campus Group T, KU Leuven, 3000 Leuven, Belgium
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Morosato F, Traina F, Cristofolini L. Effect of different motor tasks on hip cup primary stability and on the strains in the periacetabular bone: An in vitro study. Clin Biomech (Bristol, Avon) 2019; 70:137-145. [PMID: 31491739 DOI: 10.1016/j.clinbiomech.2019.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/03/2019] [Accepted: 08/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Excessive prosthesis/bone motions and the bone strains around the acetabulum may prevent osteointegration and lead to cup loosening. These two factors depend on post-operative joint loading. We investigated how Walking (which is often simulated) and Standing-Up from seated (possibly more critical) influence the cup primary stability and periacetabular strains. METHODS Twelve composite hemipelvises were used in two test campaigns. Simplified loading conditions were adopted to simulate Walking and Standing-Up. For each motor task, a single-direction force was applied in load packages of increasing amplitude. Stable and unstable uncemented cups were implanted. Digital image correlation was used to measure implant/bone motions (three-dimensional translations and rotations, both permanent and inducible), and the strain distribution around the acetabulum. FINDINGS When stable implants were tested, higher permanent cranial translations were found during Walking (however the resultant migrations were comparable with Standing-Up); higher rotations were found for Standing-Up. When unstable implants were tested, motions were 1-2 order of magnitude higher. Strains increased significantly from stable to unstable implants. The peak strains were in the superior aspect of the acetabulum during Walking and in the superior-posterior aspect of the acetabulum and at the bottom of the posterior column during Standing-Up. INTERPRETATION Different cup migration trends were caused by simulated Walking and Standing-Up, both similar to those observed clinically. The cup mobilization pattern depended on the different simulated motor tasks. Pre-clinical testing of new uncemented cups could include simulation of both motor tasks. Our study could also translate to indication of what tasks should be avoided.
Collapse
Affiliation(s)
- Federico Morosato
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Francesco Traina
- Second Clinic of Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Luca Cristofolini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum - Università di Bologna, Bologna, Italy.
| |
Collapse
|
9
|
Additive Manufacturing of Customized Metallic Orthopedic Implants: Materials, Structures, and Surface Modifications. METALS 2019. [DOI: 10.3390/met9091004] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metals have been used for orthopedic implants for a long time due to their excellent mechanical properties. With the rapid development of additive manufacturing (AM) technology, studying customized implants with complex microstructures for patients has become a trend of various bone defect repair. A superior customized implant should have good biocompatibility and mechanical properties matching the defect bone. To meet the performance requirements of implants, this paper introduces the biomedical metallic materials currently applied to orthopedic implants from the design to manufacture, elaborates the structure design and surface modification of the orthopedic implant. By selecting the appropriate implant material and processing method, optimizing the implant structure and modifying the surface can ensure the performance requirements of the implant. Finally, this paper discusses the future development trend of the orthopedic implant.
Collapse
|
10
|
Weißmann V, Ramskogler T, Schulze C, Bader R, Hansmann H. Influence of Synthetic Bone Substitutes on the Anchorage Behavior of Open-Porous Acetabular Cup. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1052. [PMID: 30935040 PMCID: PMC6479851 DOI: 10.3390/ma12071052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND The development in implants such as acetabular cups using additive manufacturing techniques is playing an increasingly important role in the healthcare industry. METHOD This study compared the primary stability of four selectively laser-melted press-fit cups (Ti6Al4V) with open-porous, load-bearing structural elements on the surface. The aim was to assess whether the material of the artificial bone stock affects the primary stability of the acetabular cup. The surface structures consist of repeated open-porous, load-bearing elements orthogonal to the acetabular surface. Experimental pull-out and lever-out tests were performed on exact-fit and press-fit cups to evaluate the primary stability of the cups in different synthetic bone substitutes. The acetabular components were placed in three different commercially available synthetic materials (ROHACELL-IGF 110, SikaBlock M330, Sawbones Solid Rigid). Results & conclusions: Within the scope of the study, it was possible to show the differences in fixation strength between the tested acetabular cups depending on their design, the structural elements used, and the different bone substitute material. In addition, functional correlations could be found which provide a qualitative reference to the material density of the bone stock and the press-fit volume of the acetabular cups.
Collapse
Affiliation(s)
- Volker Weißmann
- Faculty of Engineering, University of Applied Sciences, Technology, Business and Design, Philipp-Müller-Str. 14, 23966 Wismar, Germany.
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medicial Center, Doberaner Strasse 142, 18057 Rostock, Germany.
| | - Tim Ramskogler
- Department Industrial Engineering, Technical University of Applied Sciences, Hetzenrichter Weg 15, 92637 Weiden, Germany.
| | - Christian Schulze
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medicial Center, Doberaner Strasse 142, 18057 Rostock, Germany.
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medicial Center, Doberaner Strasse 142, 18057 Rostock, Germany.
| | - Harald Hansmann
- Faculty of Engineering, University of Applied Sciences, Technology, Business and Design, Philipp-Müller-Str. 14, 23966 Wismar, Germany.
| |
Collapse
|
11
|
Experimental Characterization of the Primary Stability of Acetabular Press-Fit Cups with Open-Porous Load-Bearing Structures on the Surface Layer. METALS 2018. [DOI: 10.3390/met8100839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Nowadays, hip cups are being used in a wide range of design versions and in an increasing number of units. Their development is progressing steadily. In contrast to conventional methods of manufacturing acetabular cups, additive methods play an increasingly central role in the development progress. Method: A series of eight modified cups were developed on the basis of a standard press-fit cup with a pole flattening and in a reduced version. The surface structures consist of repetitive open-pore load-bearing textural elements aligned right-angled to the cup surface. We used three different types of unit cells (twisted, combined and combined open structures) for constructing of the surface structure. All cups were manufactured using selective laser melting (SLM) of titanium powder (Ti6Al4V). To evaluate the primary stability of the press fit cups in the artificial bone cavity, pull-out and lever-out tests were conducted. All tests were carried out under exact fit conditions. The closed-cell polyurethane (PU) foam, which was used as an artificial bone cavity, was characterized mechanically in order to preempt any potential impact on the test results. Results and conclusions: The pull-out forces as well as the lever moments of the examined cups differ significantly depending on the elementary cells used. The best results in pull-out forces and lever-out moments are shown by the press-fit cups with a combined structure. The results for the assessment of primary stability are related to the geometry used (unit cell), the dimensions of the unit cell, and the volume and porosity responsible for the press fit. Corresponding functional relationships could be identified. The findings show that the implementation of reduced cups in a press-fit design makes sense as part of the development work.
Collapse
|