1
|
Dong S, Maciejewska BM, Schofield RM, Hawkins N, Siviour CR, Grobert N. Electrospinning Nonspinnable Sols to Ceramic Fibers and Springs. ACS NANO 2024; 18:13538-13550. [PMID: 38717374 PMCID: PMC11140837 DOI: 10.1021/acsnano.3c12659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Electrospinning has been applied to produce ceramic fibers using sol gel-based spinning solutions consisting of ceramic precursors, a solvent, and a polymer to control the viscosity of the solution. However, the addition of polymers to the spinning solution makes the process more complex, increases the processing time, and results in porous mechanically weak ceramic fibers. Herein, we develop a coelectrospinning technique, where a nonspinnable sol (<10 mPa s) consisting of only the ceramic precursor(s) and solvent(s) is encapsulated inside a polymeric shell, forming core-shell precursor fibers that are further calcined into ceramic fibers with reduced porosity, decreased surface defects, uniform crystal packing, and controlled diameters. We demonstrate the versatility of this method by applying it to a series of nonspinnable sols and creating high-quality ceramic fibers containing TiO2, ZrO2, SiO2, and Al2O3. The polycrystalline TiO2 fibers possess excellent flexibility and a high Young's modulus reaching 54.3 MPa, solving the extreme brittleness problem of the previously reported TiO2 fibers. The single-component ZrO2 fibers exhibit a Young's modulus and toughness of 130.5 MPa and 11.9 KJ/m3, respectively, significantly superior to the counterparts prepared by conventional sol-gel electrospinning. We also report the creation of ceramic fibers in micro- and nanospring morphologies and examine the formation mechanisms using thermomechanical simulations. The fiber assemblies constructed by the helical fibers exhibit a density-normalized toughness of 3.5-5 times that of the straight fibers due to improved fracture strain. This work expands the selection of the electrospinning solution and enables the development of ceramic fibers with more attractive properties.
Collapse
Affiliation(s)
- Shiling Dong
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| | | | - Ryan M. Schofield
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| | - Nicholas Hawkins
- Department
of Engineering, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
| | - Clive R. Siviour
- Department
of Engineering, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
| | - Nicole Grobert
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| |
Collapse
|
2
|
Giacomini MC, Candia Scaffa PM, Gonçalves RS, Jacomine JC, Zabeu GS, Carrilho MRDO, Honório HM, Wang L. Performance of MDP-based system in eroded and carious dentin associated with proteolytic inhibitors: 18-Month exploratory study. J Mech Behav Biomed Mater 2020; 114:104177. [PMID: 33168489 DOI: 10.1016/j.jmbbm.2020.104177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 11/18/2022]
Abstract
The aim of this study was to explore the impact of the interaction between an MDP-based universal adhesive system in etch-and-rinse mode and two proteolytic inhibitors on the longevity of restorations bonded to artificially-affected-dentin substrates. 90 sound human third molars were randomly distributed into three groups according to the substrate: N-no challenges-control (stored in artificial saliva), ACD-artificial caries dentin (6 h DE + 18 h-RE/5 days + 48 h RE) and ERO-artificial erosion dentin (3 × 5 min/5 days with orange juice). They were further redistributed according to dentin pretreatment: W- water (control), CHX-2% digluconate chlorhexidine and E64- 5 μM E64-Trans-Epoxysuccinyl-L-Leucylamido-(4-guanidino) butane, which resulted in the following 9 groups (n = 10): N-W, N-CHX, N-E64, ACD-W, ACD-CHX, ACD-E64, ERO-W, ERO-CHX and ERO-E64. All specimens were restored with Adper Single Bond Universal (Etch-and-rinse mode)/Filtek Z250. Sticks (0.64 mm2) were obtained and subjected to microtensile test (μTBS) in a universal testing machine at 0.5 mm/min for 7-days, 6 and 18-month analyses. Failure modes were classified using optical microscopy (40X). Data were statistically analyzed by three-way ANOVA and Tukey tests (p < 0.05). All individual factors (p < 0.0001) and interaction between factors were statistically significant (substrate X pretreatment (p = 0.00093); substrate X time (p = 0.01035) and pretreatment X time (p = 0.0035). Caries-affected substrate was the most compromised one, disregarding the pretreatment. CHX was mostly affected compared with E64 up to 18 months, possibly due to its calcium-dependent mechanism.
Collapse
Affiliation(s)
- Marina Ciccone Giacomini
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-901, Brazil; Professor in University Centre Integrated Faculties of Ourinhos, BR-153, Km 338 S/N - Água Do Cateto, Ourinhos, SP, 19909-100, Brazil.
| | - Polliana Mendes Candia Scaffa
- Department of Biomaterials and Biomechanics, Oregon Health and Science University, OHSU, 2730 SW Moody Ave, Portland, OR, 97201, USA.
| | - Rafael Simões Gonçalves
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-901, Brazil.
| | - Juliana Carvalho Jacomine
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-901, Brazil.
| | - Giovanna Speranza Zabeu
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-901, Brazil; School of Dentistry, Centro Universitário Sagrado Coração - UNISAGRADO, Rua Irmã Arminda, 10-50, Jardim Brasil, Bauru, SP, 17011-160, Brazil.
| | | | - Heitor Marques Honório
- Department of Pediatric Dentistry, Orthodontics and Collective Health, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-901, Brazil.
| | - Linda Wang
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-901, Brazil.
| |
Collapse
|
3
|
Wang L, Freitas MCCDA, Prakki A, Mosquim V, González AHM, Rios D, Honório HM. Experimental self-etching resin infiltrants on the treatment of simulated carious white spot lesions. J Mech Behav Biomed Mater 2020; 113:104146. [PMID: 33125956 DOI: 10.1016/j.jmbbm.2020.104146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To evaluate the penetration depth (μm) of experimental resin infiltrants containing different percentages of triethylene glycol dimethacrylate (TEGDMA) and phosphoric acid 2-hydroxyethyl methacrylate ester (PAM) in artificial carious white spot lesions (WSL). METHODS WSL were produced in 65 bovine flat enamel specimens by pH cycling protocol, which were treated with either Icon (control) or experimental acidic infiltrants based on different percentages of TEGDMA and PAM monomers (acidic), and their association or not with previous acid-etching with phosphoric acid. Ten readings using Confocal Laser Scanning Microscopy were conducted on each specimen and the penetration depth was calculated from the surface until the deepest point with the fluorescent dye Rhodamine B (0.02 mg/mL). The pH and the viscosity of the experimental infiltrants were also tested. Data were statistically analyzed with two-way ANOVA and Tukey tests (α < 0.05). RESULTS The material factor and the interaction material*acid-etching were statistically significant. The lowest penetration depth was observed for the samples treated with the commercial infiltrant after etching with 15% hydrochloric acid. When specimens were pre-treated with PA, highest penetration was seen for specimens treated with 100% TEGDMA, which differed from all other groups. The lowest penetration was seen for those treated with 50:50 TEGDMA:PAM infiltrants. When specimens were not previously etched, highest penetration was seen for Icon, which differed only from those treated with 25% TEGDMA 75% PAM, where the lowest values were seen. The values of viscosity increased and the pH decreased with the addition of PAM in the infiltrant formulations. CONCLUSION the association between TEGDMA and PAM seems to allow similar infiltration depth reached by Icon infiltrant without acid etching the enamel surface.
Collapse
Affiliation(s)
- Linda Wang
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru-SP, Brazil.
| | - Maria Cristina Carvalho de Almendra Freitas
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru-SP, Brazil; DeVry FACID, DeVry Education Group, Teresina-PI, Brazil
| | - Anuradha Prakki
- Faculty of Dentistry, University of Toronto, Restorative Department, Toronto-ON, Canada
| | - Victor Mosquim
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru-SP, Brazil
| | | | - Daniela Rios
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru-SP, Brazil
| | - Heitor Marques Honório
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru-SP, Brazil
| |
Collapse
|