1
|
Kilic NM, Gelen SS, Er Zeybekler S, Odaci D. Carbon-Based Nanomaterials Decorated Electrospun Nanofibers in Biosensors: A Review. ACS OMEGA 2024; 9:3-15. [PMID: 38222586 PMCID: PMC10785068 DOI: 10.1021/acsomega.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Nanomaterials have revolutionized scientific research due to their exceptional physical and chemical capabilities. Carbon-based nanomaterials such as graphene and its derivates have excellent electrical, optical, thermal, physical, and chemical properties that have made them indispensable in several industries worldwide, including medicine, electronics, and energy. By incorporating carbon-based nanomaterials as nanofillers in electrospun nanofibers (ESNFs), smoother and highly conductive nanofibers can be achieved that possess a large surface area and porosity. This approach provides a superior alternative to traditional materials in the development of improved biosensors. Carbon-based ESNFs, among the most exciting new-generation materials, have many applications, including filtration, pharmaceuticals, biosensors, and membranes. The electrospinning technique is a highly efficient and cost-effective method for producing desired nanofibers compared to other methods. Various types of natural and synthetic organic polymers have been successfully utilized in solution electrospinning to produce nanofibers directly. To create diagnostics devices, various biomolecules like antibodies, enzymes, aptamers, ligands, and even cells can be bound to the surface of nanofibers. Electrospun nanofibers can serve as an immobilization matrix to create a biofunctional surface. Thus, biosensors with desired features can be produced in this way. This study comprehensively reviews biosensors that integrate nanodiamonds, fullerenes, carbon nanotubes, graphene oxide, and carbon dots into electrospun nanofibers.
Collapse
Affiliation(s)
- Nur Melis Kilic
- Ege
University, Faculty of Science
Biochemistry Department, 35100 Bornova-Izmir, Turkey
| | - Sultan Sacide Gelen
- Ege
University, Faculty of Science
Biochemistry Department, 35100 Bornova-Izmir, Turkey
| | - Simge Er Zeybekler
- Ege
University, Faculty of Science
Biochemistry Department, 35100 Bornova-Izmir, Turkey
| | - Dilek Odaci
- Ege
University, Faculty of Science
Biochemistry Department, 35100 Bornova-Izmir, Turkey
| |
Collapse
|
2
|
Han WH, Wang QY, Kang YY, Shi LR, Long Y, Zhou X, Hao CC. Cross-linking electrospinning. NANOSCALE 2023; 15:15513-15551. [PMID: 37740390 DOI: 10.1039/d3nr03956k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Although electrospinning (e-spinning) has witnessed rapid development in recent years, it has also been criticized by environmentalists due to the use of organic solvents. Therefore, aqueous e-spinning (green e-spinning) is considered a more attractive technique. However, considering the poor water resistance and mechanical properties of electrospun (e-spun) nanofibers, cross-linking is a perfect solution. In this review, we systematically discuss the cross-linking e-spinning system for the first time, including cross-linking strategies (in situ, liquid immersion, vapor, and spray cross-linking), cross-linking mechanism (physical and chemical cross-linking) of e-spun nanofibers, and the various applications (e.g., tissue engineering, drug delivery, water treatment, food packaging, and sensors) of cross-linked e-spun nanofibers. Among them, we highlight several cross-linking methods, including UV light cross-linking, electron beam cross-linking, glutaraldehyde (and other commonly used cross-linking agents) chemical cross-linking, thermal cross-linking, and enzymatic cross-linking. Finally, we confirm the significance of cross-linking e-spinning and reveal the problems in the construction of this system.
Collapse
Affiliation(s)
- Wei-Hua Han
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China
| | - Qing-Yu Wang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yuan-Yi Kang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Li-Rui Shi
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yu Long
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xin Zhou
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Chun-Cheng Hao
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
3
|
Ghasemzadeh MS, Ahmadpour A. Design and synthesis of high performance magnetically separable exfoliated g-C 3N 4/γ-Fe 2O 3/ZnO yolk-shell nanoparticles: a novel and eco-friendly photocatalyst toward removal of organic pollutants from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80162-80180. [PMID: 37294493 DOI: 10.1007/s11356-023-28113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Herein, a new visible-light active exfoliated g-C3N4/γ-Fe2O3/ZnO yolk-shell nanoparticles (NPs) was synthesized as a magnetically separable photocatalyst. For an in-depth understanding of the magnetic photocatalyst's structural, morphological, and optical properties, the products were extensively characterized with FT-IR, XRD, TEM, HRTEM, FESEM, EDS, EDS-mapping, VSM, DRS, EIS, and photocurrent. The photocatalyst was then utilized to degrade Levofloxacin (LEVO) and Indigo Carmine (IC) by visible light at room temperature. The exfoliated g-C3N4/γ-Fe2O3/ZnO yolk-shell NPs photocatalyst revealed 80% and 95.6% degradation efficiency for Levofloxacin and Indigo Carmine within 25 and 15 min, respectively. In addition, the optimal factors such as concentration, loading of photocatalyst, and pH were also assessed. Levofloxacin degradation mechanistic studies showed that electrons and holes significantly contribute to the photocatalytic process of photocatalyst degradation. In addition, after 5 times regeneration, exfoliated g-C3N4/γ-Fe2O3/ZnO yolk-shell NPs remained as an excellent magnetic photocatalyst for the eco-friendly degradation of Levofloxacin and Indigo Carmine (76% and 90%), respectively. The superior photocatalytic performance of exfoliated g-C3N4/γ-Fe2O3/ZnO yolk-shell nanoparticles (NPs) was mostly ascribed to the synergistic advantages of stronger visible light response, larger specific surface area, and the more effective separation and transfer of photogenerated charge carriers. Based on these results, the highly effective magnetic photocatalyst achieved better results than numerous studied catalysts in the literature. The degradation of Levofloxacin and Indigo Carmine under environmentally friendly conditions can be achieved using exfoliated g-C3N4/γ-Fe2O3/ZnO yolk-shell NPs (V) as an efficient and green photocatalyst. The magnetic photocatalyst was characterized by spectroscopic and microscopic methods, revealing a spherical shape and particle size of 23 nm. Additionally, the magnetic photocatalyst could be separated from the reaction mixture by a magnet without significantly reducing its catalytic activity.
Collapse
Affiliation(s)
- Maryam Sadat Ghasemzadeh
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box, Mashhad, 91779-48944, Iran
- Industrial Catalysts, Adsorbents and Environment Lab., Oil and Gas Research Institute, Ferdowsi University of Mashhad, P.O. Box, Mashhad, 91779-48974, Iran
| | - Ali Ahmadpour
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box, Mashhad, 91779-48944, Iran.
- Industrial Catalysts, Adsorbents and Environment Lab., Oil and Gas Research Institute, Ferdowsi University of Mashhad, P.O. Box, Mashhad, 91779-48974, Iran.
| |
Collapse
|
4
|
Abadi PGS, Irani M, Rad LR. Mechanisms of the removal of the metal ions, dyes, and drugs from wastewaters by the electrospun nanofiber membranes. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Asgari S, Mohammadi Ziarani G, Badiei A, Ajalloueian F, Vasseghian Y. Electrospun composite nanofibers as novel high-performance and visible-light photocatalysts for removal of environmental pollutants: A review. ENVIRONMENTAL RESEARCH 2022; 215:114296. [PMID: 36116501 DOI: 10.1016/j.envres.2022.114296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution caused by industries and human manipulations is coming a serious global challenge. On the other hand, the world is facing an energy crisis caused by population growth. Designing solar-driven photocatalysts which are inspired by the photosynthesis of plant leaves is a fantastic solution to use solar energy as green, available, and unlimited energy containing ∼50% visible light for the removal of environmental pollutants. The polymeric and non-polymeric-based electrospun composite nanofibers (NFs) are as innovative photocatalytic candidates which increase photocatalytic activity and transition from UV light to visible light and overcome the aggregation, photocorrosion, toxicity, and hard recycling and separation of the nanosized powder form of photocatalysts. The composite NFs are fabricated easily by either embedding the photocatalytic agents into the NFs during electrospinning or via their decorating on the surface of NFs post-electrospinning. Polyacrylonitrile-based, tungsten trioxide-based, zinc oxide-based, and titanium dioxide-based composite NFs were revealed as the most reported composite NFs. All the lately investigated electrospun composite NFs indicated long-term stability, high photocatalytic efficiency (∼> 80%) within a short time of light radiation (10-430 min), and high stability after several cycles of use. They were applied in various applications including degradation of dyes/antibiotics, water splitting, wastewater treatment, antibacterial usage, etc. The photogenerated species especially holes, O2∙-, and .OH were mostly responsible for the photocatalytic mechanism and pathway. The electrospun composite NFs have the potential to use in large-scale productions in condition that their thickness and recycling conditions are optimized, and their toxicity and detaching are resolved.
Collapse
Affiliation(s)
- Shadi Asgari
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box 1993893973, Tehran, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box 1993893973, Tehran, Iran.
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Ajalloueian
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800, Kgs, Lyngby, Denmark
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India; The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein, 2088, South Africa.
| |
Collapse
|
6
|
Kanjwal MA, Ghaferi AA. Graphene Incorporated Electrospun Nanofiber for Electrochemical Sensing and Biomedical Applications: A Critical Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8661. [PMID: 36433257 PMCID: PMC9697565 DOI: 10.3390/s22228661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The extraordinary material graphene arrived in the fields of engineering and science to instigate a material revolution in 2004. Graphene has promptly risen as the super star due to its outstanding properties. Graphene is an allotrope of carbon and is made up of sp2-bonded carbon atoms placed in a two-dimensional honeycomb lattice. Graphite consists of stacked layers of graphene. Due to the distinctive structural features as well as excellent physico-chemical and electrical conductivity, graphene allows remarkable improvement in the performance of electrospun nanofibers (NFs), which results in the enhancement of promising applications in NF-based sensor and biomedical technologies. Electrospinning is an easy, economical, and versatile technology depending on electrostatic repulsion between the surface charges to generate fibers from the extensive list of polymeric and ceramic materials with diameters down to a few nanometers. NFs have emerged as important and attractive platform with outstanding properties for biosensing and biomedical applications, because of their excellent functional features, that include high porosity, high surface area to volume ratio, high catalytic and charge transfer, much better electrical conductivity, controllable nanofiber mat configuration, biocompatibility, and bioresorbability. The inclusion of graphene nanomaterials (GNMs) into NFs is highly desirable. Pre-processing techniques and post-processing techniques to incorporate GNMs into electrospun polymer NFs are precisely discussed. The accomplishment and the utilization of NFs containing GNMs in the electrochemical biosensing pathway for the detection of a broad range biological analytes are discussed. Graphene oxide (GO) has great importance and potential in the biomedical field and can imitate the composition of the extracellular matrix. The oxygen-rich GO is hydrophilic in nature and easily disperses in water, and assists in cell growth, drug delivery, and antimicrobial properties of electrospun nanofiber matrices. NFs containing GO for tissue engineering, drug and gene delivery, wound healing applications, and medical equipment are discussed. NFs containing GO have importance in biomedical applications, which include engineered cardiac patches, instrument coatings, and triboelectric nanogenerators (TENGs) for motion sensing applications. This review deals with graphene-based nanomaterials (GNMs) such as GO incorporated electrospun polymeric NFs for biosensing and biomedical applications, that can bridge the gap between the laboratory facility and industry.
Collapse
|
7
|
Kumar S, Shandilya M, Uniyal P, Thakur S, Parihar N. Efficacy of polymeric nanofibrous membranes for proficient wastewater treatment. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Ramalingam G, Perumal N, Priya AK, Rajendran S. A review of graphene-based semiconductors for photocatalytic degradation of pollutants in wastewater. CHEMOSPHERE 2022; 300:134391. [PMID: 35367486 DOI: 10.1016/j.chemosphere.2022.134391] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Water is the lifeblood of all living things; we often overlook the fact that the water cycle and the life cycle are inextricably linked. However, it has become contaminated as a result of industrialization, which has impacted the ecosystem by emitting numerous dyes, organic solvents, petroleum products, heavy metals, chemicals, diseases, and solid wastes. The absence of treatment in reusing wastewater is the root of the issues. Hence it is essential to treat the water to preserve the ecosystem and also for human health. In recent years, graphene-based photocatalysts are attracted much in the waste water treatment process due to their outstanding physical, chemical, and mechanical properties. Since in the graphene-based photocatalyst, graphene has exceptional electron conductivity, a broad range of light absorption, a large surface area, and a high adsorption capacity. When it is integrated into metals, metal-containing nanocomposites, semiconductor nanocomposites, polymers, MXene, and other compounds, it can greatly boost the photocatalytic activity towards the photo destruction of contaminants. Hence in this review, water pollution, methods of waste water treatment, fundamental principles of photocatalysis, the photocatalytic activity of other materials in wastewater treatment, and how the photocatalytic efficiency against the removal of organic dyes can be enhanced when coalesced with graphene are detailed.
Collapse
Affiliation(s)
- Gomathi Ramalingam
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Nagapandiselvi Perumal
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| |
Collapse
|
9
|
Homocianu M, Pascariu P. High-performance photocatalytic membranes for water purification in relation to environmental and operational parameters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114817. [PMID: 35276562 DOI: 10.1016/j.jenvman.2022.114817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/16/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Growing technologies, increasing population and environmental pollution lead to severe contamination of water and require advanced water treatment technologies. These aspects lead to the need to purify water with advanced smart materials. This paper reviews the recent advances (during the last 5 years) in photocatalytic composite membranes used for water treatment. For this purpose, the authors have reviewed the main materials used in the development of (photocatalytic membranes) PMs, environmental and operational factors affecting the performance of photocatalytic membranes, and the latest developments and applications of PMs in water purifications. The composite photocatalytic membranes show good performance in the removal and degradation of pollutants from water.
Collapse
Affiliation(s)
- Mihaela Homocianu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Petronela Pascariu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| |
Collapse
|
10
|
Mohamed A, Yousef S, Tonkonogovas A, Makarevicius V, Stankevičius A. High performance of PES-GNs MMMs for gas separation and selectivity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103565] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
11
|
Varkey V, Jose E T. Investigations on the Structural and Optical Properties of electrospun ZnO – poly (styrene – co-methyl methacrylate) Nanofiber Composites. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1971717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Vinitha Varkey
- Department of Chemistry, Kuriakose Gregorios College, Pampady, Kottayam, India
| | - Tomlal Jose E
- Department of Chemistry, St. Berchmans College, Changanacherry, Kottayam, India
| |
Collapse
|
12
|
Lopresti F, Pavia FC, Ceraulo M, Capuana E, Brucato V, Ghersi G, Botta L, La Carrubba V. Physical and biological properties of electrospun poly(d,l-lactide)/nanoclay and poly(d,l-lactide)/nanosilica nanofibrous scaffold for bone tissue engineering. J Biomed Mater Res A 2021; 109:2120-2136. [PMID: 33942505 PMCID: PMC8518812 DOI: 10.1002/jbm.a.37199] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Electrospun scaffolds exhibiting high physical performances with the ability to support cell attachment and proliferation are attracting more and more scientific interest for tissue engineering applications. The inclusion of inorganic nanoparticles such as nanosilica and nanoclay into electrospun biopolymeric matrices can meet these challenging requirements. The silica and clay incorporation into polymeric nanofibers has been reported to enhance and improve the mechanical properties as well as the osteogenic properties of the scaffolds. In this work, for the first time, the physical and biological properties of polylactic acid (PLA) electrospun mats filled with different concentrations of nanosilica and nanoclay were evaluated and compared. The inclusion of the particles was evaluated through morphological investigations and Fourier transform infrared spectroscopy. The morphology of nanofibers was differently affected by the amount and kind of fillers and it was correlated to the viscosity of the polymeric suspensions. The wettability of the scaffolds, evaluated through wet contact angle measurements, slightly increased for both the nanocomposites. The crystallinity of the systems was investigated by differential scanning calorimetry highlighting the nucleating action of both nanosilica and nanoclay on PLA. Scaffolds were mechanically characterized with tensile tests to evaluate the reinforcing action of the fillers. Finally, cell culture assays with pre-osteoblastic cells were conducted on a selected composite scaffold in order to compare the cell proliferation and morphology with that of neat PLA scaffolds. Based on the results, we can convince that nanosilica and nanoclay can be both considered great potential fillers for electrospun systems engineered for bone tissue regeneration.
Collapse
Affiliation(s)
| | | | - Manuela Ceraulo
- Department of EngineeringUniversity of Palermo, RU INSTMPalermoItaly
| | - Elisa Capuana
- Department of EngineeringUniversity of Palermo, RU INSTMPalermoItaly
| | - Valerio Brucato
- Department of EngineeringUniversity of Palermo, RU INSTMPalermoItaly
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of PalermoPalermoItaly
| | - Luigi Botta
- Department of EngineeringUniversity of Palermo, RU INSTMPalermoItaly
| | - Vincenzo La Carrubba
- Department of EngineeringUniversity of Palermo, RU INSTMPalermoItaly
- ATeN CenterUniversity of PalermoPalermoItaly
| |
Collapse
|
13
|
Efficient Photocatalytic Degradation of Organic Pollutant in Wastewater by Electrospun Functionally Modified Polyacrylonitrile Nanofibers Membrane Anchoring TiO 2 Nanostructured. MEMBRANES 2021; 11:membranes11100785. [PMID: 34677551 PMCID: PMC8540019 DOI: 10.3390/membranes11100785] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
In this study, polyacrylonitrile (PAN_P) nanofibers (NFs) were fabricated by electrospinning. The PAN_P NFs membrane was functionalized with diethylenetriamine to prepare a functionalized polyacrylonitrile (PAN_F) NFs membrane. TiO2 nanoparticles (NPs) synthesized in the laboratory were anchored to the surface of the PAN_F NFs membrane by electrospray to prepare a TiO2 NPs coated NFs membrane (PAN_Coa). A second TiO2/PAN_P composite membrane (PAN_Co) was prepared by embedding TiO2 NPs into the PAN_P NFs by electrospinning. The membranes were characterized by microscopic, spectroscopic and X-ray techniques. Scanning electron micrographs (SEM) revealed smooth morphologies for PAN_P and PAN_F NFs membranes and a dense cloud of TiO2 NPs on the surface of PAN_Coa NFs membrane. The attenuated total reflectance in the infrared (ATR-IR) proved the addition of the new amine functionality to the chemical structure of PAN. Transmission electron microscope images (TEM) revealed spherical TiO2 NPs with sizes between 18 and 32 nm. X-ray powder diffraction (XRD) patterns and energy dispersive X-ray spectroscopy (EDX) confirmed the existence of the anatase phase of TiO2. Surface profilometry da-ta showed increased surface roughness for the PAN_F and PAN_Coa NFs membranes. The adsorption-desorption isotherms and hysteresis loops for all NFs membranes followed the IV -isotherm and the H3 -hysteresis loop, corresponding to mesoporous and slit pores, respectively. The photocatalytic activities of PAN_Coa and PAN_Co NFs membranes against methyl orange dye degradation were evaluated and compared with those of bare TiO2 NPs.The higher photocatalytic activity of PAN_Coa membrane (92%, 20 ppm) compared to (PAN_Co) NFs membrane (41.64%, 20 ppm) and bare TiO2 (49.60%, 20 ppm) was attributed to the synergy between adsorption, lower band gap, high surface roughness and surface area.
Collapse
|
14
|
Selatile K, Ray SS, Ojijo V, Sadiku RE. Morphological, Thermal, and Mechanical Properties of Electrospun Recycled Poly(ethylene terephthalate)/Graphene Oxide Composite Nanofiber Membranes. ACS OMEGA 2021; 6:21005-21015. [PMID: 34423208 PMCID: PMC8375097 DOI: 10.1021/acsomega.1c02578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
This study investigates the influence of graphene oxide (GO) on the properties of electrospun recycled poly(ethylene terephthalate) (rPET) composite nanofiber membranes. GO nanosheet layers, with good hydrophilic properties, were incorporated at various loadings (0-8 wt %) during electrospinning. The surface morphological analysis revealed that GO loadings of less than 0.5 wt % lead to smoother fiber surfaces due to less agglomeration, as shown by the scanning electron microscope images. The smooth fiber surface shows that the nanosheets are intact within the rPET polymer matrix at low GO loadings. The differential scanning calorimetry results reveal that nucleation increases linearly with GO content as observed by the change in crystallization peak temperature (T c) of rPET from 184 to 200 °C. Both the T c and characteristic rPET crystallization peak in the X-ray diffraction pattern indicate the presence of a physical interaction between the GO sheets and the rPET polymer matrix. A decrease of up to 10° in the water contact angle at 0.5 wt % GO loading; beyond this, it starts to increase due to the agglomeration of GO sheets. From this study, it is preferable to maintain the GO content to a maximum of 0.5 wt % to maximize hydrophilicity. This has the implication of enhanced filtration permeation flux in applications where hydrophilic membranes are desired.
Collapse
Affiliation(s)
- Koena Selatile
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Division
of Polymer Technology, Department of Chemical, Metallurgical and Materials
Engineering & Institute of Nanoengineering Research, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Vincent Ojijo
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Rotimi Emmanuel Sadiku
- Division
of Polymer Technology, Department of Chemical, Metallurgical and Materials
Engineering & Institute of Nanoengineering Research, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
15
|
Highly Efficient Visible Light Photodegradation of Cr(VI) Using Electrospun MWCNTs-Fe3O4@PES Nanofibers. Catalysts 2021. [DOI: 10.3390/catal11070868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of highly efficient photocatalysis has been prepared by two different methods for the photodegradation of Cr(VI) from an aqueous solution under visible light. The electrospun polyethersulfone (PES)/iron oxide (Fe3O4) and multi-wall carbon nanotubes (MWCNTs) composite nanofibers have been prepared using the electrospinning technique. The prepared materials were characterized by SEM and XRD analysis. The result reveals the successful fabrication of the composite nanofiber with uniformly and smooth nanofibers. The effect of numerous parameters were explored to investigate the effects of pH value, contact time, concentration of Cr(VI), and reusability. The MWCNTs-Fe3O4@PES composite nanofibers exhibited excellent photodegradation of Cr(VI) at pH 2 in 80 min. The photocatalysis materials are highly stable without significant reduction of the photocatalytic efficiency of Cr(VI) after five cycles. Therefore, due to its easy separation and reuse without loss of photocatalytic efficiency, the photocatalysis membrane has tremendous potential for the removal of heavy metals from aqueous solutions.
Collapse
|
16
|
Abdelmaksoud M, Mohamed A, Sayed A, Khairy S. Physical properties of PVDF-GO/black-TiO 2 nanofibers and its photocatalytic degradation of methylene blue and malachite green dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30613-30625. [PMID: 33587272 DOI: 10.1007/s11356-021-12618-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Black TiO2 and graphene oxide (GO) have attracted intensive attention as an effective catalyst on visible light driven for photodegrading of dyes. In this study, nano-black TiO2 was prepared by a simple hydrogenation of the anatase titanium oxide, and the graphene oxide was prepared by applying the modified Hummers method. The diffuse reflectance spectroscopy has been investigated to find out the optical energy gaps of the treated and nano-black samples. The prepared powders and nanofiber membranes are carefully examined to ensure their single phase and compound structure formation as well as to measure the equivalent crystallite size and particle distributions. The optimum degradation efficiency of malachite green and methylene blue dyes occurred at pH values of 8 and 10, respectively. The maximum photocatalytic degradation efficiencies of malachite green (MG) and methylene blue (MB) were found to be 74 and 39%, respectively, under visible light after 30 min. The degradation efficiency of MG is peaked at pH 8 and 20 mg of the nano-black TiO2. The stability and flexibility of the nanofibers allow their application in a continuous system and can be reused after several cycles.
Collapse
Affiliation(s)
- Muhammed Abdelmaksoud
- Physics Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed, 12588, Egypt
| | - Alaa Mohamed
- Department of Mechatronics, Canadian International College, Fifth Settlement, New Cairo, Egypt.
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Abderrahman Sayed
- Physics Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed, 12588, Egypt
| | - Sherif Khairy
- Physics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
17
|
Mohamed A, Sanchez EPV, Bogdanova E, Bergfeldt B, Mahmood A, Ostvald RV, Hashem T. Efficient Fluoride Removal from Aqueous Solution Using Zirconium-Based Composite Nanofiber Membranes. MEMBRANES 2021; 11:147. [PMID: 33672530 PMCID: PMC7923772 DOI: 10.3390/membranes11020147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
Herein, composite nanofiber membranes (CNMs) derived from UiO-66 and UiO-66-NH2 Zr-metal-organic frameworks (MOFs) were successfully prepared, and they exhibited high performance in adsorptive fluoride removal from aqueous media. The resultant CNMs were confirmed using different techniques, such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Brunauer-Emmett-Teller (BET) in addition to Fourier-transform infrared spectroscopy (FTIR). The parameters that govern the fluoride adsorption were evaluated, including adsorbent dose, contact time, and pH value, in addition to initial concentration. The crystalline structures of CNMs exhibited high hydrothermal stability and remained intact after fluoride adsorption. It could also be observed that the adsorbent dose has a significant effect on fluoride removal at high alkaline values. The results show that UiO-66-NH2 CNM exhibited high fluoride removal due to electrostatic interactions that strongly existed between F- and metal sites in MOF in addition to hydrogen bonds formed with MOF amino groups. The fluoride removal efficiency reached 95% under optimal conditions of 20 mg L-1, pH of 8, and 40% adsorbent dose at 60 min. The results revealed that UiO-66-NH2 CNM possesses a high maximum adsorption capacity (95 mg L-1) over UiO-66 CNM (75 mg L-1), which exhibited better fitting with the pseudo-second-order model. Moreover, when the initial fluoride concentration increased from 20 to 100 mg/L, fluoride adsorption decreased by 57% (UiO-66 CNM) and 30% (UiO-66-NH2 CNM) after 60 min. After three cycles, CNM revealed the regeneration ability, demonstrating that UiO-66-NH2 CNMs are auspicious adsorbents for fluoride from an aqueous medium.
Collapse
Affiliation(s)
- Alaa Mohamed
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (E.P.V.S.); (A.M.)
- Egypt Nanotechnology Center, EGNC, Cairo University, Giza 12613, Egypt
| | - Elvia P. Valadez Sanchez
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (E.P.V.S.); (A.M.)
| | - Evgenia Bogdanova
- School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; (E.B.); (R.V.O.)
| | - Britta Bergfeldt
- Institute for Technical Chemistry (ITC), Karlsruhe Institute for Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Ammar Mahmood
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (E.P.V.S.); (A.M.)
| | - Roman V. Ostvald
- School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; (E.B.); (R.V.O.)
| | - Tawheed Hashem
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (E.P.V.S.); (A.M.)
- International X-ray Optics Lab, Institute of Physics and Technology, National Research Tomsk Polytechnic University (TPU), 30 Lenin Ave., 634050 Tomsk, Russia
| |
Collapse
|
18
|
Aamer H, Heo S, Jo Y. Characterization of multifunctional
PAN
/
ZnO
nanofibrous composite filter for fine dust capture and photocatalytic activity. J Appl Polym Sci 2021. [DOI: 10.1002/app.50607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hanaa Aamer
- Department of Environmental Science and Engineering Kyung Hee University Yongin South Korea
| | - Sujeong Heo
- Department of Environmental Science and Engineering Kyung Hee University Yongin South Korea
| | - Young‐Min Jo
- Department of Environmental Science and Engineering Kyung Hee University Yongin South Korea
| |
Collapse
|
19
|
CNT and rGO reinforced PMMA based bone cement for fixation of load bearing implants: Mechanical property and biological response. J Mech Behav Biomed Mater 2021; 116:104320. [PMID: 33571842 DOI: 10.1016/j.jmbbm.2021.104320] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Polymethyl methacrylate (PMMA) bone cements (BCs) have some drawbacks, including limited bioactivity and bone formation, as well as inferior mechanical properties, which may result in failure of the BC. To deal with the mentioned issues, novel bioactive polymethyl methacrylate-hardystonite (PMMA-HT) bone cement (BC) reinforced with 0.25 and 0.5 wt% of carbon nanotube (CNT) and reduced graphene oxide (rGO) was synthesized. In this context, the obtained bone cements were evaluated in terms of their mechanical and biological characteristics. The rGO reinforced bone cement exhibited better mechanical properties to the extent that the addition of 0.5 wt% of rGO where its compressive and tensile strength of bioactive PMMA-HT/rGO cement escalated from 92.07 ± 0.72 MPa, and 40.02 ± 0.71 MPa to 187.48 ± 5.79 MPa and 64.92 ± 0.75 MPa, respectively. Besides, the mechanisms of toughening, apatite formation, and cell interaction in CNT and rGO encapsulated PMMA have been studied. Results showed that the existence of CNT and rGO in BCs led to increase of MG63 osteoblast viability, and proliferation. However, rGO reinforced bone cement was more successful in supporting MG63 cell attachment compared to the CNT counterpart due to its wrinkled surface, which made a suitable substrate for cell adhesion. Based on the results, PMMA-HT/rGO can be a proper bone cement for the fixation of load-bearing implants.
Collapse
|
20
|
Al-Dhahebi AM, Gopinath SCB, Saheed MSM. Graphene impregnated electrospun nanofiber sensing materials: a comprehensive overview on bridging laboratory set-up to industry. NANO CONVERGENCE 2020; 7:27. [PMID: 32776254 PMCID: PMC7417471 DOI: 10.1186/s40580-020-00237-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/07/2020] [Indexed: 05/04/2023]
Abstract
Owing to the unique structural characteristics as well as outstanding physio-chemical and electrical properties, graphene enables significant enhancement with the performance of electrospun nanofibers, leading to the generation of promising applications in electrospun-mediated sensor technologies. Electrospinning is a simple, cost-effective, and versatile technique relying on electrostatic repulsion between the surface charges to continuously synthesize various scalable assemblies from a wide array of raw materials with diameters down to few nanometers. Recently, electrospun nanocomposites have emerged as promising substrates with a great potential for constructing nanoscale biosensors due to their exceptional functional characteristics such as complex pore structures, high surface area, high catalytic and electron transfer, controllable surface conformation and modification, superior electric conductivity and unique mat structure. This review comprehends graphene-based nanomaterials (GNMs) (graphene, graphene oxide (GO), reduced GO and graphene quantum dots) impregnated electrospun polymer composites for the electro-device developments, which bridges the laboratory set-up to the industry. Different techniques in the base polymers (pre-processing methods) and surface modification methods (post-processing methods) to impregnate GNMs within electrospun polymer nanofibers are critically discussed. The performance and the usage as the electrochemical biosensors for the detection of wide range analytes are further elaborated. This overview catches a great interest and inspires various new opportunities across a wide range of disciplines and designs of miniaturized point-of-care devices.
Collapse
Affiliation(s)
- Adel Mohammed Al-Dhahebi
- Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructure & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Subash Chandra Bose Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - Mohamed Shuaib Mohamed Saheed
- Centre of Innovative Nanostructure & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
- Department of Mechanical Engineering , Universiti Teknologi PETRONAS , 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| |
Collapse
|
21
|
Zhang R, Wang Y, Ma D, Ahmed S, Qin W, Liu Y. Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites. ULTRASONICS SONOCHEMISTRY 2019; 59:104731. [PMID: 31442767 DOI: 10.1016/j.ultsonch.2019.104731] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 08/11/2019] [Indexed: 05/04/2023]
Abstract
Nanofibrous composite membranes consisting of polyvinyl alcohol (PVA), graphene oxide (GO), and zinc oxide nanoparticles (ZnO NPs) were prepared by and ultrasonic processing, and electrospinning. The performance of the membranes containing different GO-to-ZnO NP mass ratios was comprehensively investigated in terms of density, mechanical properties, water vapor permeability, optical property, biodegradability and antimicrobial properties. The results showed that an appropriate sonication time (30 min) improved the membrane performance; the composite nanofibrous membrane with a GO-to-ZnO NP mass ratio of 3:7 and 30 min sonication exhibited the best performance with a water vapor permeability of (0.62 ± 0.01) × 10-2 g·h-1 m-2 pa-1, and strain and stress values of 307.84 ± 2.96% and 12.82 ± 0.56 MPa, respectively. Particularly, the UV barrier property of the composite nanofibrous membrane was enhanced. Furthermore, the membrane exhibited strong antibacterial activity against foodborne pathogenic and spoilage bacteria. Thu, it can thus be used as an active food packaging material to ensure the safety of food products and to extend their shelf-life.
Collapse
Affiliation(s)
- Rong Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yihao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Donghui Ma
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Khalil A, Nasser WS, Osman TA, Toprak MS, Muhammed M, Uheida A. Surface modified of polyacrylonitrile nanofibers by TiO 2/MWCNT for photodegradation of organic dyes and pharmaceutical drugs under visible light irradiation. ENVIRONMENTAL RESEARCH 2019; 179:108788. [PMID: 31590001 DOI: 10.1016/j.envres.2019.108788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
This work describes the fabrication of two composite nanofibers systems containing polyacrylonitrile polymer (PAN), Multiwall carbon nanotubes (MWCNT) and Titania (TiO2) nanoparticles. Photodegradation experiments were performed to study the effect of various parameters including pH, catalyst dose, pollutant concentration and reaction time for three model compounds, methylene blue (MB), indigo carmine (IC), and ibuprofen (IBU) under visible light. Morphology and structure of the modified composite nanofibers were characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermogravimetric analysis (TGA), Photoluminescence (PL) spectroscopy, Raman spectra, and X-ray Photoelectron Spectra (XPS) analyses. The photocatalytic performance was achieved in a rather short time visible light (<30 min) and under low power intensity (125 W) compared to earlier reports. Kinetics data fitted well using pseudo-first order model to describe the mechanism of photocatalytic degradation processes. The stability and flexibility of the fabricated composite nanofibers allow their application in a continuous flow system and their re-use after several cycles.
Collapse
Affiliation(s)
- Alaa Khalil
- Mechanical Engineering Department, Canadian International College, Fifth Settlement, New Cairo, Egypt; Department of Applied Physics, KTH Royal Institute of Technology, SE10691, Stockholm, Sweden; Egypt Nanotechnology Center, EGNC, Cairo University, 12613, Giza, Egypt.
| | - Walaa S Nasser
- Research Institute of Medical Entomology, 12611, Giza, Egypt
| | - T A Osman
- Mechanical Design and Production Engineering Department, Cairo University, 12613, Giza, Egypt
| | - Muhammet S Toprak
- Department of Applied Physics, KTH Royal Institute of Technology, SE10691, Stockholm, Sweden
| | - Mamoun Muhammed
- Department of Applied Physics, KTH Royal Institute of Technology, SE10691, Stockholm, Sweden; IGSR, Alexandria University, Alexandria, 21526, Egypt
| | - Abdusalam Uheida
- Department of Applied Physics, KTH Royal Institute of Technology, SE10691, Stockholm, Sweden
| |
Collapse
|
23
|
Sarwar Z, Yousef S, Tatariants M, Krugly E, Čiužas D, Danilovas PP, Baltusnikas A, Martuzevicius D. Fibrous PEBA-graphene nanocomposite filaments and membranes fabricated by extrusion and additive manufacturing. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Khalil A, Aboamera NM, Nasser WS, Mahmoud WH, Mohamed GG. Photodegradation of organic dyes by PAN/SiO2-TiO2-NH2 nanofiber membrane under visible light. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Effect of hydroxyapatite concentration and size on morpho-mechanical properties of PLA-based randomly oriented and aligned electrospun nanofibrous mats. J Mech Behav Biomed Mater 2019; 101:103449. [PMID: 31563845 DOI: 10.1016/j.jmbbm.2019.103449] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
The growing demand for nanofibrous biocomposites able to provide peculiar properties requires systematic investigations of processing-structure-property relationships. Understanding the morpho-mechanical properties of an electrospun scaffold as a function of the filler features and mat microstructure can aid in designing these systems. In this work, the reinforcing effect of micrometric and nanometric hydroxyapatite particles in polylactic acid-based electrospun scaffold presenting random and aligned fibers orientation, was evaluated. The particles incorporation was investigated trough Fourier transform infrared spectroscopy in attenuated total reflectance. The morphology of the nanofibers was analyzed through scanning electron microscopy and it was correlated with the viscosity of polymeric solutions studied by rheological measurements. Scaffolds were mechanical characterized with tensile tests in order to find a correlation between the preparation method and the strength of the mats. The influence of hydroxyapatite particles on the crystallinity of the composites was investigated by differential scanning calorimetry. Finally, cell culture assays with pre-osteoblatic cells were conducted on a selected composite scaffold in order to compare the cell proliferation and morphology with that of polylactic acid scaffolds. Based on the results, we can prove that polylactic acid/hydroxyapatite composites can be one of the biomaterials with the greatest potential for bone tissue regeneration.
Collapse
|
26
|
Abdel-Mottaleb MM, Khalil A, Osman TA, Khattab A. Removal of hexavalent chromium by electrospun PAN/GO decorated ZnO. J Mech Behav Biomed Mater 2019; 98:205-212. [PMID: 31260912 DOI: 10.1016/j.jmbbm.2019.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
A novel composite nanofibers material have fabricated by using electrospinning technique followed by chemical cross-linking with zinc oxide (ZnO). The surface sensitization and morphology changes of the fabricated composite nanofibers were studied by using X-Ray Diffraction (XRD) analysis, Scanning Electron Microscopy (SEM) and transmission electron microscope (TEM). The effect of operating parameters includes the amount of ZnO, initial solution PH, and hexavalent chromium concentration on adsorption were investigated. The maximum adsorption capacity was found to be 690 mg/g at pH 6, which is much higher than most of the reported adsorbents. The adsorption equilibrium reached within 25 and 180 min as the initial solution concentration increased from 10 to 300 mg/L, and the data fitted well using nonlinear pseudo first order model with determination coefficient (R2) in between 0.97 and 0.99. Adsorption isotherms correlate the data on equilibrium adsorption with different mathematical models to describe the behaviour of an adsorption process and provide valuable information for optimizing the design of an adsorption system.
Collapse
Affiliation(s)
- M M Abdel-Mottaleb
- Production Engineering and Printing Technology Department, Akhbar El-Youm Academy, 12655, Giza, Egypt.
| | - Alaa Khalil
- Egypt Nanotechnology Center, EGNC, Cairo University, 12613, Giza, Egypt; Mechanical Engineering Department, Candian International College, Fifth Settlement, New Cairo, Egypt.
| | - T A Osman
- Mechanical Design and Production Engineering Department, Cairo University, 12613, Giza, Egypt
| | - A Khattab
- Mechanical Design and Production Engineering Department, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
27
|
Electrospun Nanofibers Embedding ZnO/Ag2CO3/Ag2O Heterojunction Photocatalyst with Enhanced Photocatalytic Activity. Catalysts 2019. [DOI: 10.3390/catal9070565] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The immobilization of photocatalyst onto substrate has a great potential for energy-intensive separation to avoid the costly separation process and unwanted release of photocatalyst into the treated water. In this study, electrospun nanofiber composed of polyvinylidene fluoride (PVDF) with the immobilized ZnO, ZnO/Ag2CO3, ZnO/Ag2CO3/Ag2O, and ZnO/Ag2O photocatalysts were prepared via the electrospinning process. The immobilized ZnO and heterojunctioned ZnO in the PVDF electrospun nanofiber were proven via X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The electrospinning allowed high chemical binding of the nanofiber composite with good physical interaction between the photocatalyst and the electrospun nanofiber. AFM images obtained for the nanofibers were found to be rougher than that of the pristine PVDF electrospun nanofiber. Among the photocatalyst embedded, the immobilized ZnO/Ag2CO3/Ag2O had endowed the nanofiber with an excellent photocatalytic activity and recyclability for the degradation of the RR120 under UV light irradiation. Based on the results, effective immobilization of ZnO/Ag2CO3/Ag2O in PVDF nanofiber with 99.62% photodegradation in 300 min compared to PVDF-ZnO, PVDF-ZnO/Ag2CO3, and PVDF-ZnO/Ag2O of 28.14%, 90.49%, and 96.34%, respectively. The effective ZnO/Ag2CO3/Ag2O immobilization into polymers with affinity toward organic dye pollutants could both increase the efficiency and reduce the energy requirements for water treatment via the photocatalytic application.
Collapse
|