1
|
McHendrie R, Nguyen NH, Nguyen MT, Fallahnezhad K, Vasilev K, Truong VK, Hashemi R. Development of Novel Antibacterial Ti-Nb-Ga Alloys with Low Stiffness for Medical Implant Applications. J Funct Biomater 2024; 15:167. [PMID: 38921540 PMCID: PMC11204729 DOI: 10.3390/jfb15060167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
With the rising demand for medical implants and the dominance of implant-associated failures including infections, extensive research has been prompted into the development of novel biomaterials that can offer desirable characteristics. This study develops and evaluates new titanium-based alloys containing gallium additions with the aim of offering beneficial antibacterial properties while having a reduced stiffness level to minimise the effect of stress shielding when in contact with bone. The focus is on the microstructure, mechanical properties, antimicrobial activity, and cytocompatibility to inform the suitability of the designed alloys as biometals. Novel Ti-33Nb-xGa alloys (x = 3, 5 wt%) were produced via casting followed by homogenisation treatment, where all results were compared to the currently employed alloy Ti-6Al-4V. Optical microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) results depicted a single beta (β) phase microstructure in both Ga-containing alloys, where Ti-33Nb-5Ga was also dominated by dendritic alpha (α) phase grains in a β-phase matrix. EDS analysis indicated that the α-phase dendrites in Ti-33Nb-5Ga were enriched with titanium, while the β-phase was richer in niobium and gallium elements. Mechanical properties were measured using nanoindentation and microhardness methods, where the Young's modulus for Ti-33Nb-3Ga and Ti-33Nb-5Ga was found to be 75.4 ± 2.4 and 67.2 ± 1.6 GPa, respectively, a significant reduction of 37% and 44% with respect to Ti-6Al-4V. This reduction helps address the disproportionate Young's modulus between titanium implant components and cortical bone. Importantly, both alloys successfully achieved superior antimicrobial properties against Gram-negative P. aeruginosa and Gram-positive S. aureus bacteria. Antibacterial efficacy was noted at up to 90 ± 5% for the 3 wt% alloy and 95 ± 3% for the 5 wt% alloy. These findings signify a substantial enhancement of the antimicrobial performance when compared to Ti-6Al-4V which exhibited very small rates (up to 6.3 ± 1.5%). No cytotoxicity was observed in hGF cell lines over 24 h. Cell morphology and cytoskeleton distribution appeared to depict typical morphology with a prominent nucleus, elongated fibroblastic spindle-shaped morphology, and F-actin filamentous stress fibres in a well-defined structure of parallel bundles along the cellular axis. The developed alloys in this work have shown very promising results and are suggested to be further examined towards the use of orthopaedic implant components.
Collapse
Affiliation(s)
- Rhianna McHendrie
- College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia
| | - Ngoc Huu Nguyen
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Manh Tuong Nguyen
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Khosro Fallahnezhad
- College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Reza Hashemi
- College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia
| |
Collapse
|
2
|
McHendrie R, Xiao W, Truong VK, Hashemi R. Gallium-Containing Materials and Their Potential within New-Generation Titanium Alloys for Biomedical Applications. Biomimetics (Basel) 2023; 8:573. [PMID: 38132512 PMCID: PMC10741799 DOI: 10.3390/biomimetics8080573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
With the rising demand for implantable orthopaedic medical devices and the dominance of device-associated infections, extensive research into the development of novel materials has been prompted. Among these, new-generation titanium alloys with biocompatible elements and improved stiffness levels have received much attention. Furthermore, the development of titanium-based materials that can impart antibacterial function has demonstrated promising results, where gallium has exhibited superior antimicrobial action. This has been evidenced by the addition of gallium to various biomaterials including titanium alloys. Therefore, this paper aims to review the antibacterial activity of gallium when incorporated into biomedical materials, with a focus on titanium-based alloys. First, discussion into the development of new-generation Ti alloys that possess biocompatible elements and reduced Young's moduli is presented. This includes a brief review of the influence of alloying elements, processing techniques and the resulting biocompatibilities of the materials found in the literature. The antibacterial effect of gallium added to various materials, including bioglasses, liquid metals, and bioceramics, is then reviewed and discussed. Finally, a key focus is given to the incorporation of gallium into titanium systems for which the inherent mechanical, biocompatible, and antibacterial effects are reviewed and discussed in more detail, leading to suggestions and directions for further research in this area.
Collapse
Affiliation(s)
- Rhianna McHendrie
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| | - Wenlong Xiao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia;
| | - Reza Hashemi
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| |
Collapse
|
3
|
Marković G, Manojlović V, Ružić J, Sokić M. Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6355. [PMID: 37834492 PMCID: PMC10573332 DOI: 10.3390/ma16196355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
Titanium alloys have been present for decades as the main components for the production of various orthopedic and dental elements. However, modern times require titanium alloys with a low Young's modulus, and without the presence of cytotoxic alloying elements. Machine learning was used with aim to analyze biocompatible titanium alloys and predict the composition of Ti alloys with a low Young's modulus. A database was created using experimental data for alloy composition, Young's modulus, and mechanical and thermal properties of biocompatible titanium alloys. The Extra Tree Regression model was built to predict the Young's modulus of titanium alloys. By processing data of 246 alloys, the specific heat was discovered to be the most influential parameter that contributes to the lowering of the Young's modulus of titanium alloys. Further, the Monte Carlo method was used to predict the composition of future alloys with the desired properties. Simulation results of ten million samples, with predefined conditions for obtaining titanium alloys with a Young's modulus lower than 70 GPa, show that it is possible to obtain several multicomponent alloys, consisting of five main elements: titanium, zirconium, tin, manganese and niobium.
Collapse
Affiliation(s)
- Gordana Marković
- Institute for Technology of Nuclear and Other Mineral Raw Materials, 11000 Belgrade, Serbia; (G.M.); (M.S.)
| | - Vaso Manojlović
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jovana Ružić
- Department of Materials, “Vinča” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Miroslav Sokić
- Institute for Technology of Nuclear and Other Mineral Raw Materials, 11000 Belgrade, Serbia; (G.M.); (M.S.)
| |
Collapse
|
4
|
Murphy B, Baez J, Morris MA. Characterising Hydroxyapatite Deposited from Solution onto Novel Substrates: Growth Mechanism and Physical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2483. [PMID: 37686991 PMCID: PMC10489777 DOI: 10.3390/nano13172483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Whilst titanium, stainless steel, and cobalt-chrome alloys are the most common materials for use in orthopaedic implant devices, there are significant advantages in moving to alternative non-metallic substrates. Substrates such as polymers may have advantageous mechanical biological properties whilst other substrates may bring unique capability. A key challenge in the use of non-metal products is producing substrates which can be modified to allow the formation of well-adhered hydroxyapatite films which promote osteointegration and have other beneficial properties. In this work, we aim to develop methodology for the growth of hydroxyapatite films on surfaces other than bulk metallic parts using a wet chemical coating process, and we provide a detailed characterisation of the coatings. In this study, hydroxyapatite is grown from saturated solutions onto thin titanium films and silicon substrates and compared to results from titanium alloy substrates. The coating process efficacy is shown to be dependent on substrate roughness, hydrophilicity, and activation. The mechanism of the hydroxyapatite growth is investigated in terms of initial attachment and morphological development using SEM and XPS analysis. XPS analysis reveals the exact chemical state of the hydroxyapatite compositional elements of Ca, P, and O. The characterisation of grown hydroxyapatite layers by XRD reveals that the hydroxyapatite forms from amorphous phases, displaying preferential crystal growth along the [002] direction, with TEM imagery confirming polycrystalline pockets amid an amorphous matrix. SEM-EDX and FTIR confirmed the presence of hydroxyapatite phases through elemental atomic weight percentages and bond assignment. All data are collated and reviewed for the different substrates. The results demonstrate that once hydroxyapatite seeds, it crystallises in the same manner as bulk titanium whether that be on a titanium or silicon substrate. These data suggest that a range of substrates may be coated using this facile hydroxyapatite deposition technique, just broadening the choice of substrate for a particular function.
Collapse
Affiliation(s)
- Bríd Murphy
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Jhonattan Baez
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Mick A. Morris
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| |
Collapse
|
5
|
Wong KK, Hsu HC, Wu SC, Hung TL, Ho WF. Structure, Properties, and Corrosion Behavior of Ti-Rich TiZrNbTa Medium-Entropy Alloys with β+α″+α' for Biomedical Application. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7953. [PMID: 36431438 PMCID: PMC9696250 DOI: 10.3390/ma15227953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Five Ti-rich β+α″+α′ Ti−Zr−Nb−Ta biomedical medium-entropy alloys with excellent mechanical properties and corrosion resistance were developed by considering thermodynamic parameters and using the valence electron concentration formula. The results of this study demonstrated that the traditional valence electron concentration formula for predicting phases is not entirely applicable to medium-entropy alloys. All solution-treated samples with homogeneous compositions were obtained at a low temperature (900 °C) and within a short period (20 min). All solution-treated samples exhibited low elastic moduli ranging from 49 to 57 GPa, which were significantly lower than those of high-entropy alloys with β phase. Solution-treated Ti65−Zr29−Nb3−Ta3 exhibited an ultra-high bending strength (1102 MPa), an elastic recovery angle (>30°), and an ultra-low elastic modulus (49 GPa), which are attributed to its α″ volume fraction as high as more than 60%. The pitting potentials of all samples were higher than 1.8 V, and their corrosion current densities were lower than 10−5 A/cm3 in artificially simulated body fluid at 37 °C. The surface oxide layers on Ti65−Zr29−Nb3−Ta3 comprised TiO2, ZrO2, Nb2O5, and Ta2O5 (as discovered through X-ray photoelectron spectroscopy) and provided the alloy with excellent corrosion and pitting resistance.
Collapse
Affiliation(s)
- Ka-Kin Wong
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Hsueh-Chuan Hsu
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Shih-Ching Wu
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Tun-Li Hung
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Wen-Fu Ho
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| |
Collapse
|
6
|
Relation between Mechanical Milling Parameters in Phase Transformation and Oxygen Content in Ti–Nb–Mo Powders for Posterior Sintering. METALS 2022. [DOI: 10.3390/met12081238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The influence of open vessels during milling for 12, 24, 40 and 60 h on microstructure homogeneity and oxygen content effect in the β Ti–Nb–Mo system microstructure were studied. The β phase increased with longer milling times and the strain hardening on particles was verified at 60 h when agglomeration was greater and was also noticed after 40 h in the continuous mode. Oxygen content dropped slightly until 40 h and increased after 60 h, a result linked with the observed hardening. For 40 h in the continuous mode, the oxygen content was noted near 12 h, 24 h and 40 h with high hardness values. For the sintered parts, the α phase and oxygen content significantly increased in all samples. Microhardness-sintered samples decreased compared to sample powders due to grain growth during the sintering. Bending strength was higher at 60 h with more oxygen and α phase content. After 40 h in the continuous mode, more suitable mechanical properties were reached because hardness and bending strength were closer to bone tissue, which was associated with strain hardening and a small crystallite size.
Collapse
|
7
|
Pandey AK, Gautam RK, Behera CK. Microstructure, mechanical strength, chemical resistance, and antibacterial behavior of Ti-5Cu- x%Nb biomedical alloy. Biomed Mater 2022; 17. [PMID: 35679847 DOI: 10.1088/1748-605x/ac7763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 06/09/2022] [Indexed: 01/01/2023]
Abstract
Titanium-based biomedical alloys are susceptible as they are used as a substitute for human bone. In this study, titanium alloy, Ti-5Cu-x%Nb (x= 0, 5, 10, 15) (%wt) was developed by powder metallurgy route. The effect of alloying niobium with Ti-5Cu alloy and its effect on the microstructure, mechanical strength, corrosion resistance, and antibacterial properties have been evaluated. The results show that the sintered alloy has bothα-Ti and Ti2Cu phases. With increasing niobium content in the alloy,β-Ti was also detected. Additionally, it was found that the micro-hardness and compressive strength of the studied alloy was better than commercially pure titanium (cpTi), while the Young's modulus was lower than cpTi. These properties are highly favorable for using this alloy to replicate the human cortical bone. The alloy was also tested for anticorrosive property in Ringer's solution. The antibacterial activity was also examined forStaphylococcus aureusandEscherichia colibacteria. The alloy showed promising anticorrosive and antibacterial ability.
Collapse
Affiliation(s)
- Anurag Kumar Pandey
- Department of Mechanical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India
| | - R K Gautam
- Department of Mechanical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India
| | - C K Behera
- Department of Metallurgical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, 221005, India
| |
Collapse
|
8
|
Discovery of New Ti-Based Alloys Aimed at Avoiding/Minimizing Formation of α” and ω-Phase Using CALPHAD and Artificial Intelligence. METALS 2020. [DOI: 10.3390/met11010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, we studied a Ti-Nb-Zr-Sn system for exploring novel composition and temperatures that will be helpful in maximizing the stability of β phase while minimizing the formation of α” and ω-phase. The Ti-Nb-Zr-Sn system is free of toxic elements. This system was studied under the framework of CALculation of PHAse Diagram (CALPHAD) approach for determining the stability of various phases. These data were analyzed through artificial intelligence (AI) algorithms. Deep learning artificial neural network (DLANN) models were developed for various phases as a function of alloy composition and temperature. Software was written in Python programming language and DLANN models were developed utilizing TensorFlow/Keras libraries. DLANN models were used to predict various phases for new compositions and temperatures and provided a more complete dataset. This dataset was further analyzed through the concept of self-organizing maps (SOM) for determining correlations between phase stability of various phases, chemical composition, and temperature. Through this study, we determined candidate alloy compositions and temperatures that will be helpful in avoiding/minimizing formation of α” and ω-phase in a Ti-Zr-Nb-Sn system. This approach can be utilized in other systems such as ω-free shape memory alloys. DLANN models can even be used on a common Android mobile phone.
Collapse
|
9
|
Abstract
The influence of complex thermo-mechanical processing (TMP) on the mechanical properties of a Ti-Nb-Zr-Fe-O bio-alloy was investigated in this study. The proposed TMP program involves a schema featuring a series of severe plastic deformation (SPD) and solution treatment (STs). The purpose of this study was to find the proper parameter combination for the applied TMP and thus enhance the mechanical strength and diminish the Young’s modulus. The proposed chemical composition of the studied β-type Ti-alloy was conceived from already-appreciated Ti-Nb-Ta-Zr alloys with high β-stability by replacing the expensive Ta with more accessible Fe and O. These chemical additions are expected to better enhance β-stability and thus avoid the generation of ω, α’, and α” during complex TMP, as well as allow for the processing of a single bcc β-phase with significant grain diminution, increased mechanical strength, and a low elasticity value/Young’s modulus. The proposed TMP program considers two research directions of TMP experiments. For comparisons using structural and mechanical perspectives, the two categories of the experimental samples were analyzed using SEM microscopy and a series of tensile tests. The comparison also included some already published results for similar alloys. The analysis revealed the advantages and disadvantages for all compared categories, with the conclusions highlighting that the studied alloys are suitable for expanding the database of possible β-Ti bio-alloys that could be used depending on the specific requirements of different biomedical implant applications.
Collapse
|
10
|
Jawed SF, Liu YJ, Wang JC, Rabadia CD, Wang LQ, Li YH, Zhang XH, Zhang LC. Tailoring deformation and superelastic behaviors of beta-type Ti-Nb-Mn-Sn alloys. J Mech Behav Biomed Mater 2020; 110:103867. [PMID: 32957184 DOI: 10.1016/j.jmbbm.2020.103867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/20/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
A group of Ti-25Nb-xMn-ySn (in wt%; x = 2, 4 and y = 1, 5) alloys were designed using the "BF-d-electron superelasticity" empirical relationship and subsequently were cast in order to investigate their microstructure, deformation and superelastic behaviors. Monolithic β phase is found in all investigated alloys except in Ti-25Nb-2Mn-1Sn alloy which exhibits α"+β dual-phase microstructure. During compression testing, the Ti-25Nb-2Mn-1Sn alloy fails and demonstrates sufficient plasticity of ~ 41% and ultimate compressive strength of ~ 1800 MPa, where other alloys do not fail within the load capacity of 100 kN. Among all the investigated alloys, Ti-25Nb-4Mn-1Sn alloy exhibits the highest yield strength (~ 710 MPa) while Ti-25Nb-2Mn-1Sn alloy possesses the highest hardness (~ 244 HV). In this work, yield strength is influenced by solid solution and grain boundary strengthening while hardness is affected by the amount of constituent phases in each alloy. Additionally, Ti-25Nb-4Mn-1Sn shows highest recoverable strain (2.35%) and superelastic recovery ratio (90%) during cyclic loading-unloading up to 3% strain level, with highest total energy absorption among the investigated alloys. Moreover, all the Ti-25Nb-xMn-ySn alloys display shear bands except that Ti-25Nb-2Mn-1Sn alloy displays shear bands together with some cracks on the outer surface of compressively deformed morphologies.
Collapse
Affiliation(s)
- S F Jawed
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Y J Liu
- School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - J C Wang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - C D Rabadia
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - L Q Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China.
| | - Y H Li
- School of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - X H Zhang
- School of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - L C Zhang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
11
|
Kim KM, Kim HY, Miyazaki S. Effect of Zr Content on Phase Stability, Deformation Behavior, and Young's Modulus in Ti-Nb-Zr Alloys. MATERIALS 2020; 13:ma13020476. [PMID: 31963854 PMCID: PMC7014103 DOI: 10.3390/ma13020476] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 11/30/2022]
Abstract
Ti alloys have attracted continuing research attention as promising biomaterials due to their superior corrosion resistance and biocompatibility and excellent mechanical properties. Metastable β-type Ti alloys also provide several unique properties such as low Young’s modulus, shape memory effect, and superelasticity. Such unique properties are predominantly attributed to the phase stability and reversible martensitic transformation. In this study, the effects of the Nb and Zr contents on phase constitution, transformation temperature, deformation behavior, and Young’s modulus were investigated. Ti–Nb and Ti–Nb–Zr alloys over a wide composition range, i.e., Ti–(18–40)Nb, Ti–(15–40)Nb–4Zr, Ti–(16–40)Nb–8Zr, Ti–(15–40)Nb–12Zr, Ti–(12–17)Nb–18Zr, were fabricated and their properties were characterized. The phase boundary between the β phase and the α′′ martensite phase was clarified. The lower limit content of Nb to suppress the martensitic transformation and to obtain a single β phase at room temperature decreased with increasing Zr content. The Ti–25Nb, Ti–22Nb–4Zr, Ti–19Nb–8Zr, Ti–17Nb–12Zr and Ti–14Nb–18Zr alloys exhibit the lowest Young’s modulus among Ti–Nb–Zr alloys with Zr content of 0, 4, 8, 12, and 18 at.%, respectively. Particularly, the Ti–14Nb–18Zr alloy exhibits a very low Young’s modulus less than 40 GPa. Correlation among alloy composition, phase stability, and Young’s modulus was discussed.
Collapse
Affiliation(s)
- Kyong Min Kim
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan;
| | - Hee Young Kim
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan;
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Correspondence: (H.Y.K.); (S.M.)
| | - Shuichi Miyazaki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Foundation for Advancement of International Science, Tsukuba, Ibaraki 305-0821, Japan
- Center of Advanced Innovation Technologies-VŠB-Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava-Poruba, Czech Republic
- Correspondence: (H.Y.K.); (S.M.)
| |
Collapse
|