1
|
Sun Y, Shukla A, Ramachandran RA, Kanniyappan H, Yang B, Harlow R, Campbell SD, Thalji G, Mathew M. Fretting-corrosion at the Implant-Abutment Interface Simulating Clinically Relevant Conditions. Dent Mater 2024; 40:1823-1831. [PMID: 39174418 DOI: 10.1016/j.dental.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE Implant treatment is provided to individuals with normal, idealized masticatory forces and also to patients with parafunctional habits such as grinding, clenching, and bruxing. Dental erosion is a common increasing condition and is reported to affect 32 % of adults, increasing with age. This oral environment is conducive to tribocorrosion and the potential loss of materials from the implant surfaces and interfaces with prosthetic components. Although several fretting-corrosion studies have been reported, until now, no study has simulated clinically relevant micromotion. Therefore, our aim is to investigate fretting-corrosion using our new micro-fretting corrosion system, simulating clinical conditions with 5 µm motion at the implant-abutment interface under various occlusal loads and acidic exposures. METHODS We simulated four conditions in an oral environment by varying the contact load (83 N and 233 N) and pH levels (3 and 6.5). The commonly used dental implant material, Grade IV titanium, and abutment material Zirconia (ZrO2)/ Grade IV titanium were selected as testing couple materials. Artificial saliva was employed to represent an oral environment. In addition, a standard tribocorrosion protocol was followed, and the pin was controlled to oscillate on the disk with an amplitude of 5 μm during the mastication stage. After the testing, 3D profilometry and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) were utilized to analyze the worn surfaces. Inductively coupled plasma mass spectrometry (ICP-MS) was also used to measure the metal ion release. RESULTS Energy ratios were below 0.2, indicating a fretting regime of partial slip for all groups. Open-circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) were analyzed to compare the electrochemical behavior among groups. As a result, corrosive damage was observed to be more in the Ti4- Ti4 groups than in Zr-Ti4 ones, whereas more mechanical damage was found in the Zr-Ti4 groups than in the Ti4-Ti4 groups. Possible mechanisms were proposed in the discussion to explain these findings. SIGNIFICANCE The results observed from this study might be helpful to clinicians with implant selection. For example, for patients with bruxism, a titanium implant paired with a titanium abutment may be preferable, while patients with GERD may benefit more from a titanium implant paired with a zirconia abutment.
Collapse
Affiliation(s)
- Yani Sun
- Department of Civil, Material, and Environmental Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Apurwa Shukla
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, Chicago, IL, USA
| | | | - Hemalatha Kanniyappan
- Department of Biomedical Sciences, University of Illinois-School of Medicine at Rockford, Rockford, IL, USA
| | - Bin Yang
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, Chicago, IL, USA
| | - Rand Harlow
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, Chicago, IL, USA
| | - Stephen D Campbell
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, Chicago, IL, USA
| | - Ghadeer Thalji
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, Chicago, IL, USA
| | - Mathew Mathew
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, Chicago, IL, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA; Department of Biomedical Sciences, University of Illinois-School of Medicine at Rockford, Rockford, IL, USA.
| |
Collapse
|
2
|
Pantović Pavlović MR, Ignjatović NL, Gudić S, Vrsalović L, Božić KĐ, Popović ME, Pavlović MM. Modified Titanium Surface with Nano Amorphous Calcium Phosphate@Chitosan Oligolactate as Ion Loading Platform with Multifunctional Properties for Potential Biomedical Application. Ann Biomed Eng 2024; 52:2221-2233. [PMID: 38662122 DOI: 10.1007/s10439-024-03521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Titanium (Ti) is widely used in medical and dental implants. Calcium phosphate (CPs) coatings enhance Ti implants' osteoinductive properties, and additives further improve these coatings. Recently, a nano amorphous calcium phosphate (nACP) coating decorated with chitosan oligolactate (ChOL) and selenium (Se) showed immunomodulatory effects. This study investigates the surface morphology, composition, bioactivity, mechanical properties, and Se-release mechanism of the nACP@ChOL-Se hybrid coating on Ti substrates. Amorphous calcium phosphate (ACP) was synthesized, and the nACP@ChOL-Se hybrid coating was deposited on Ti substrates using in situ anaphoretic deposition. Physico-chemical characterization was used to analyze the surface of the coating (scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy). The distribution of Se within the coating was examined with energy-dispersive X-ray spectroscopy (EDS). Bioactivity was evaluated in simulated body fluid (SBF), and adhesion was tested using a scratch test method. In vitro testing determined the release mechanism of Se. SEM images illustrated the surface morphology, while AFM provided a detailed analysis of surface roughness. XRD analysis revealed structural and phase composition, and EDS confirmed Se distribution within the coating. The coating exhibited bioactivity in SBF and showed good adhesion according to the scratch test. In vitro testing uncovered the release mechanism of Se from the coating. This study successfully characterized the surface morphology, composition, bioactivity, and Se-release mechanism of the nACP@ChOL-Se hybrid coating on Ti substrates, offering insights for developing immunomodulatory coatings for medical and dental applications.
Collapse
Affiliation(s)
- Marijana R Pantović Pavlović
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
- Center of Excellence in Chemistry and Environmental Engineering-ICTM, University of Belgrade, Belgrade, 11000, Serbia
| | - Nenad L Ignjatović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, 11000, Serbia
| | - Senka Gudić
- Faculty of Chemistry and Technology, University of Split, 21000, Split, Croatia
| | - Ladislav Vrsalović
- Faculty of Chemistry and Technology, University of Split, 21000, Split, Croatia
| | - Katarina Đ Božić
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
- Center of Excellence in Chemistry and Environmental Engineering-ICTM, University of Belgrade, Belgrade, 11000, Serbia
| | - Marko E Popović
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
| | - Miroslav M Pavlović
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia.
- Center of Excellence in Chemistry and Environmental Engineering-ICTM, University of Belgrade, Belgrade, 11000, Serbia.
| |
Collapse
|
3
|
Li Q, Li S, Sun H, Niinomi M, Nakano T. Preparation and characterizations of antibacterial iodine-containing coatings on pure Ti. J Mech Behav Biomed Mater 2024; 151:106366. [PMID: 38176198 DOI: 10.1016/j.jmbbm.2023.106366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
Iodine-containing coatings were prepared on pure Ti surfaces via electrochemical deposition to enhance their antibacterial properties. The factors influencing iodine content were analyzed using an orthogonal experiment. The electrochemically deposited samples were characterized using scanning electron microscopy with energy dispersive spectroscopy and X-ray photoelectron spectroscopy, and their antibacterial properties and cytotoxicity were evaluated. The results showed that changing the deposition time is an effective way to control the iodine content. The iodine content, coating thickness, and adhesion of the samples increased with deposition time. Iodine in the coatings mainly exists in three forms, which are I2, I3-, and pentavalent iodine. For samples with iodine-containing coatings, the antibacterial ratios against E. coli and S. aureus were greater than 90% and increased with increasing iodine content. Although the samples with iodine-containing coatings showed some inhibition of the proliferation of MC3T3-E1 cells, the cell viabilities were all higher than 80%, suggesting that iodine-containing coatings are biosafe.
Collapse
Affiliation(s)
- Qiang Li
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; Shanghai Engineering Research Center of High-Performance Medical Device Materials, Shanghai, 200093, PR China.
| | - Shuaishuai Li
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Hao Sun
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Mitsuo Niinomi
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan; Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Guimarães LHDS, Pereira Neto ARL, de Oliveira TL, Kataoka MSDS, Pinheiro JDJV, Alves Júnior SDM. Platelet-rich fibrin stimulates the proliferation and expression of proteins related to survival, adhesion, and angiogenesis in gingival fibroblasts cultured on a titanium nano-hydroxyapatite-treated surface. J Oral Biosci 2024; 66:160-169. [PMID: 38048849 DOI: 10.1016/j.job.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVES This in vitro study aimed to evaluate the cell viability and expression of proteins related to angiogenesis, adhesion, and cell survival (vascular endothelial growth factor, paxillin, vinculin, fibronectin, and protein kinase B) in gingival fibroblasts that were cultured on titanium discs treated with or without nanohydroxyapatite and exposed to platelet-rich fibrin (PRF)-conditioned medium. METHODS To obtain the conditioned medium, the PRF membranes were prepared and incubated for 48 h in a culture medium without fetal bovine serum. Analyses were performed at 24 and 48 h for the cells cultured on machined-titanium discs or surfaces treated with nanohydroxyapatite in a control medium or PRF-conditioned medium, resulting in four experimental groups (CT-TI, CT-NANO, PRF-TI, and PRF-NANO). RESULTS A decrease in the viability of the gingival fibroblasts was not observed in any of the experimental groups. The PRF-NANO group showed significantly higher immunoexpression of paxillin and AKT at 24 and 48 h (p < 0.01). The same result was observed for vinculin expression at 24 h (p < 0.001). The expression of fibronectin at 48 h and VEGF at 24 and 48 h was significantly higher when the cells were exposed to the PRF-conditioned medium, regardless of the disc surface (p < 0.05). CONCLUSION Gingival fibroblasts cultured on a nanohydroxyapatite-treated surface and in a PRF-conditioned medium showed a greater expression of proteins modulating adhesion, angiogenesis, and cell survival. Our results may contribute to the understanding of the mechanisms related to peri-implant soft tissue sealing.
Collapse
Affiliation(s)
| | | | - Thaianna Lima de Oliveira
- Department of Periodontology, School of Dentistry, Federal University of Pará, Av. Augusto Correa 01, Belém, PA, Brazil.
| | - Maria Sueli da Silva Kataoka
- Department of Oral Pathology, School of Dentistry, Federal University of Pará, Av. Augusto Correa 01, Belém, PA, Brazil.
| | - João de Jesus Viana Pinheiro
- Department of Oral Pathology, School of Dentistry, Federal University of Pará, Av. Augusto Correa 01, Belém, PA, Brazil.
| | - Sérgio de Melo Alves Júnior
- Department of Oral Pathology, School of Dentistry, Federal University of Pará, Av. Augusto Correa 01, Belém, PA, Brazil.
| |
Collapse
|
5
|
Ayub A, Ikram M, Haider A, Shahzadi I, Ul-Hamid A, Shahzadi A, Algaradah MM, Fouda AM, Nabgan W, Imran M. Enhanced Industrial Dye Degradation and Antibacterial Activity Supported by the Molecular Docking Study of Yttrium and Carbon Sphere-Doped Lanthanum Oxide Nanostructures. ACS OMEGA 2023; 8:37564-37572. [PMID: 37841132 PMCID: PMC10569003 DOI: 10.1021/acsomega.3c05938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
As the population grows, the scientific community remains focused on researching new materials, methods, and devices to ensure the availability of safe drinking water. The main aim of this research was to decrease the recombination rate of the charge carriers of La2O3 and enhance the catalytic and antimicrobial activity by employing Y/Cs- doped La2O3, respectively. In the current study, different concentrations of yttrium (Y) and a fixed amount of carbon spheres (Cs) doped into lanthanum oxide (La2O3) nanostructures (NSs) were synthesized by the coprecipitation technique. Cs are used as a cocatalyst as they have a high surface area and small size attributed to increased active sites and decreased recombination rate. Moreover, Y was further incorporated as it activates the generation of reactive oxygen species in the inhibition zone, enhancing the antibacterial activity and reducing the emission intensity. Advanced techniques were utilized to determine the structural properties, optical emission and absorption, elemental composition, and d-spacing of the synthesized samples. The reported ternary catalyst works efficiently, improving the catalytic activity and bactericidal potential. Moreover, in silico molecular docking studies, Cs-doped La2O3 and Y/Cs-doped La2O3 nanostructures toward DNA gyrase Escherichia coli showed good efficacy for antibacterial activity.
Collapse
Affiliation(s)
- Atiya Ayub
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad
Nawaz Shareef, University of Agriculture, 66000 Multan, Punjab, Pakistan
| | - Iram Shahzadi
- Punjab
University College of Pharmacy, University
of the Punjab, Lahore 54000, Pakistan
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Anum Shahzadi
- Department
of Pharmacy, COMSATS University Islamabad,
Lahore Campus, Lahore 54000, Pakistan
| | | | - Ahmed M. Fouda
- Chemistry
Department, Faculty of Science, King Khalid
University, Abha 61413, Saudi Arabia
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av
Països Catalans 26, 43007 Tarragona, Spain
| | - Muhammad Imran
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| |
Collapse
|
6
|
De Lama-Odría MDC, del Valle LJ, Puiggalí J. Lanthanides-Substituted Hydroxyapatite for Biomedical Applications. Int J Mol Sci 2023; 24:3446. [PMID: 36834858 PMCID: PMC9965831 DOI: 10.3390/ijms24043446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Lately, there has been an increasing demand for materials that could improve tissue regenerative therapies and provide antimicrobial effects. Similarly, there is a growing need to develop or modify biomaterials for the diagnosis and treatment of different pathologies. In this scenario, hydroxyapatite (HAp) appears as a bioceramic with extended functionalities. Nevertheless, there are certain disadvantages related to the mechanical properties and lack of antimicrobial capacity. To circumvent them, the doping of HAp with a variety of cationic ions is emerging as a good alterative due to the different biological roles of each ion. Among many elements, lanthanides are understudied despite their great potential in the biomedical field. For this reason, the present review focuses on the biological benefits of lanthanides and how their incorporation into HAp can alter its morphology and physical properties. A comprehensive section of the applications of lanthanides-substituted HAp nanoparticles (HAp NPs) is presented to unveil the potential biomedical uses of these systems. Finally, the need to study the tolerable and non-toxic percentages of substitution with these elements is highlighted.
Collapse
Affiliation(s)
- María del Carmen De Lama-Odría
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11–15, 08028 Barcelona, Spain
| |
Collapse
|
7
|
TiO 2/HA and Titanate/HA Double-Layer Coatings on Ti6Al4V Surface and Their Influence on In Vitro Cell Growth and Osteogenic Potential. J Funct Biomater 2022; 13:jfb13040271. [PMID: 36547531 PMCID: PMC9787412 DOI: 10.3390/jfb13040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Hydroxyapatite (HA) layers are appropriate biomaterials for use in the modification of the surface of implants produced inter alia from a Ti6Al4V alloy. The issue that must be solved is to provide implants with appropriate biointegration properties, enabling the permanent link between them and bone tissues, which is not so easy with the HA layer. Our proposition is the use of the intermediate layer ((IL) = TiO2, and titanate layers) to successfully link the HA coating to a metal substrate (Ti6Al4V). The morphology, structure, and chemical composition of Ti6Al4V/IL/HA systems were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). We evaluated the apatite-forming ability on the surface of the layer in simulated body fluid. We investigated the effects of the obtained systems on the viability and growth of human MG-63 osteoblast-like cells, mouse L929 fibroblasts, and adipose-derived human mesenchymal stem cells (ADSCs) in vitro, as well as on their osteogenic properties. Based on the obtained results, we can conclude that both investigated systems reflect the physiological environment of bone tissue and create a biocompatible surface supporting cell growth. However, the nanoporous TiO2 intermediate layer with osteogenesis-supportive activity seems most promising for the practical application of Ti6Al4V/TiO2/HA as a system of bone tissue regeneration.
Collapse
|
8
|
Carboxymethyl Dextran-Based Nanomicelle Coatings on Microarc Oxidized Titanium Surface for Percutaneous Implants: Drug Release, Antibacterial Properties, and Biocompatibility. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9225647. [PMID: 35865662 PMCID: PMC9296324 DOI: 10.1155/2022/9225647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Bacterial contamination and biofilm formation onpercutaneous implants can lead to device failure and be life-threatening. To solve this issue, we constructed a carboxymethyl dextran- (CMD-) based nanomicelle antibacterial coating on the microarc-oxidized titanium (MAO-Ti) surface (described in the supplementary file). The self-assembled CMD-based nanomicelles and octadecylamine (ODA) were developed as a drug carrier and loaded with minocycline (MC). The characterization and stability of the MC-loaded nanomicelles were determined. The surface roughness, hydrophilicity, and drug release property of the coatings were also investigated. Our findings showed that the cross-linked MC-loaded nanomicelles (MC@(ODA-CMD)CL) were more stable than the uncross-linked nanomicelles. Moreover, MC@(ODA-CMD)CL was successfully incorporated into the pores of MAO-Ti, which significantly increased the surface hydrophilicity of the coatings without influencing their surface roughness. In addition, the coatings demonstrated a sustained release time of 360 h, with a cumulative release rate reaching 86.6%. Staphylococcus aureus (S. aureus) was used to determine the antibacterial properties of the coatings, and human skin fibroblasts were seeded on them to investigate their biocompatibility. The results showed that the coatings significantly reduced the number of adhesive S. aureus and promoted the viability, adhesion, and morphology of the human skin fibroblasts compared to smooth titanium (S-Ti) sheets. In conclusion, MC-loaded CMD-based nanomicelles coated on MAO-Ti surface (MC@(ODA-CMD)CL-Ti) demonstrated sustained-release properties, excellent antibacterial properties and biocompatibility, and promising potential as coatings for percutaneous implants.
Collapse
|
9
|
Gulati K, Scimeca JC, Ivanovski S, Verron E. Double-edged sword: Therapeutic efficacy versus toxicity evaluations of doped titanium implants. Drug Discov Today 2021; 26:2734-2742. [PMID: 34246772 DOI: 10.1016/j.drudis.2021.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
Titanium-based orthopaedic/dental implants modified with various metal-doping strategies can enhance local therapy and bioactivity. Intentional or unintentional (because of loading and wear) release of metal ions/nanoparticles (NPs) from metal-doped implants can be therapeutic or cause adverse local tissue reactions, compromising long-term survival. Strategies to incorporate metals into implants, such as superficial or deep loading inside nano-engineered surfaces, including nanotubes, and the physiochemical characteristics of the released species significantly influence both their therapeutic and cytotoxic potential. In this review, we compare and contrast this 'double-edged sword' to arrive at an improved understanding of metal-doped implants to enable controlled therapy while minimising cytotoxicity concerns.
Collapse
Affiliation(s)
- Karan Gulati
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia
| | | | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia
| | - Elise Verron
- Université de Nantes, CNRS, UMR 6230, CEISAM, UFR Sciences et Techniques, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France.
| |
Collapse
|
10
|
Fathi AM, Ahmed MK, Afifi M, Menazea AA, Uskoković V. Taking Hydroxyapatite-Coated Titanium Implants Two Steps Forward: Surface Modification Using Graphene Mesolayers and a Hydroxyapatite-Reinforced Polymeric Scaffold. ACS Biomater Sci Eng 2020; 7:360-372. [DOI: 10.1021/acsbiomaterials.0c01105] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- A. M. Fathi
- Physical Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - M. K. Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez 43518, Egypt
- Egypt Nanotechnology Center (EGNC), Cairo University, El-Sheikh Zayed 12588, Egypt
| | - M. Afifi
- Egypt Nanotechnology Center (EGNC), Cairo University, El-Sheikh Zayed 12588, Egypt
- Ultrasonic laboratory, National Institute of Standards, Giza 12211, Egypt
| | - A. A. Menazea
- Laser Technology Unit, National Research Centre, Dokki, Giza 12622, Egypt
- Spectroscopy Department, Physics Division, National Research Centre, Dokki, Giza 12622, Egypt
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano, Irvine, California 92604, United States
| |
Collapse
|
11
|
Bhaskar N, Sulyaeva V, Gatapova E, Kaichev V, Rogilo D, Khomyakov M, Kosinova M, Basu B. SiC xN yO z Coatings Enhance Endothelialization and Bactericidal activity and Reduce Blood Cell Activation. ACS Biomater Sci Eng 2020; 6:5571-5587. [PMID: 33320557 DOI: 10.1021/acsbiomaterials.0c00472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For biomedical applications, a number of ceramic coatings have been investigated, but the interactions with the components of living system remain unexplored for oxycarbonitride coatings. While addressing this aspect, the present study aims to provide an understanding of the biocompatibility of novel SiCxNyOz coatings that could validate the hypothesis that such coatings may not only enhance the cell-material interaction by re-endothelialization but also can help to reduce bacterial adhesion and activation of blood cells. This work reports the physicochemical properties, hemocompatibility, endothelialization, and antibacterial properties of novel amorphous SiCxNyOz coatings deposited on commercial pure titanium (Ti) by radiofrequency (RF) magnetron sputtering at varied nitrogen (N2) flow rates. A comparison is made with diamond-like carbon (DLC) coatings, which are clinically used. The surface roughness, surface wettability, nanoscale hardness, and surface energy of SiCxNyOz coatings were found to be dependent on the nitrogen (N2) flow rate. Importantly, the as-deposited SiCxNyOz coatings exhibited much better nanoscale hardness and scratch resistance than DLC coatings. Furthermore, Raman spectroscopy analysis of the SiCxNyOz coating deposited on Ti showed a change in the graphitic/disordered carbon content. Cytocompatibility and hemocompatibility properties of the as-deposited SiCxNyOz coating were evaluated using the Mus musculus lymphoid endothelial cell line (SVEC4-10) and rabbit blood in vitro. WST-1 assay analysis showed that these coatings, when compared to DLC, exhibited a better proliferation of endothelial cells, which can potentially result in improved surface endothelialization. Furthermore, qualitative and quantitative analyses of immunofluorescence images revealed a dense cellular layer of SVEC4-10 on SiCxNyOz coatings, deposited at 15 and 30 sccm nitrogen flow rates. As far as compatibility with rabbit blood is concerned, the hemolysis of the SiCxNyOz coatings was less than 4%, with slightly lower values for coatings deposited without N2 flow. The SiCxNyOz coatings support less platelet adhesion and aggregation, with no signature of morphological deformation, as compared to the uncoated titanium substrate or DLC coatings. Furthermore, SiCxNyOz coatings were also found to be effectively extending the blood coagulation time for a period of 60 min. The antimicrobial study of as-deposited SiCxNyOz coatings on E. coli and S. aureus bacteria revealed the effective inhibition of bacterial proliferation after 24 h of culture. An attempt has been made to explain the cyto- and hemocompatibility properties with antimicrobial efficacy of coatings in terms of the variation in the coating composition and surface energy. Taken together, we conclude that SiC1.3N0.76O0.87 coating having a roughness of 17 nm and a surface free energy of 54.0 ± 0.7 mN/m can exhibit the best combination of hardness, elastic modulus, scratch resistance, cytocompatibility, hemocompatibility, and bactericidal properties.
Collapse
Affiliation(s)
- Nitu Bhaskar
- Materials Research Center, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Veronica Sulyaeva
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Elizaveta Gatapova
- Kutateladze Institute of Thermophysics SB RAS, 1, Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vasilii Kaichev
- Boreskov Institute of Catalysis SB RAS, 5, Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Dmitry Rogilo
- Rzhanov Institute of Semiconductor Physics SB RAS, 13, Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Maxim Khomyakov
- Institute of Laser Physics SB RAS, 15B, Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Marina Kosinova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Bikramjit Basu
- Materials Research Center, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
12
|
Arrés M, Salama M, Rechena D, Paradiso P, Reis L, Alves MM, Botelho do Rego AM, Carmezim MJ, Vaz MF, Deus AM, Santos C. Surface and mechanical properties of a nanostructured citrate hydroxyapatite coating on pure titanium. J Mech Behav Biomed Mater 2020; 108:103794. [PMID: 32469718 DOI: 10.1016/j.jmbbm.2020.103794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 01/13/2023]
Abstract
The presence of a biomimetic HAP coating on titanium surface, which reduces the structural stiffness, is essential to improve implants biocompatibility and osteointegration. In this study, new citrate-HAP (cHAP) coatings were produced by a simple hydrothermal method on pure titanium (Ti) surface, without requiring any additional pretreatment on this metal surface. The formed cHAP coatings consisting of nanorod-like hydroxyapatite particles, conferred nanoroughness and wettability able to endow improved biological responses. Indeed, the presence of citrate species in the precipitate medium seems to be responsible for controlling the morphology of the new coatings. The presence of citrate groups on the surface of cHAP coatings, identified by chemical composition analysis, due to their implication in bone metabolism can additionally bring an add-value for bone implant applications. From a mechanical point of view, the Finite Element algorithm showing that cHAP coatings tend to decrease the mechanical stress at pure Ti, further favors these new coatings applicability. Overall, the simple and expedite strategy used to developed new biomimetic coatings of citrate-HAP resulted in improved physicochemical, morphological and mechanical properties of Ti, which can endeavor improved implantable materials in bone healing surgical procedures.
Collapse
Affiliation(s)
- Mar Arrés
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Mariana Salama
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo Rechena
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Patrizia Paradiso
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Luis Reis
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Marta M Alves
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Botelho do Rego
- CQFM (IN) and BSIRG (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Maria J Carmezim
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; ESTSetubal, CDP2T, Instituto Politécnico de Setúbal, Setúbal, Portugal
| | - Maria Fátima Vaz
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Augusto M Deus
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Santos
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; ESTSetubal, CDP2T, Instituto Politécnico de Setúbal, Setúbal, Portugal.
| |
Collapse
|