1
|
Mesa-Restrepo A, Byers E, Brown JL, Ramirez J, Allain JP, Posada VM. Osteointegration of Ti Bone Implants: A Study on How Surface Parameters Control the Foreign Body Response. ACS Biomater Sci Eng 2024; 10:4662-4681. [PMID: 39078702 DOI: 10.1021/acsbiomaterials.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The integration of titanium (Ti)-based implants with bone is limited, resulting in implant failure. This lack of osteointegration is due to the foreign body response (FBR) that occurs after the implantation of biodevices. The process begins with protein adsorption, which is governed by implant surface properties, e.g., chemistry, charge, wettability, and/or topography. The distribution and composition of the protein layer in turn influence the recruitment, differentiation, and modulation of immune and bone cells. The subsequent events that occur at the bone-material interface will ultimately determine whether the implant is encapsulated or will integrate with bone. Despite the numerous studies evaluating the influence of surface properties in the various stages of the FBR, the factors that affect tissue-material interactions are often studied in isolation or in small correlations due to the technical challenges involved in assessing them in vitro or in vivo. Consequently, the influence of protein conformation on the Ti bone implant surface design remains an unresolved research question. The objective of this review is to comprehensively evaluate the existing literature on the effect of surface parameters of Ti and its alloys in the stages of FBR, with a particular focus on protein adsorption and osteoimmunomodulation. This evaluation aims to systematically describe these effects on bone formation.
Collapse
Affiliation(s)
- Andrea Mesa-Restrepo
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Elizabeth Byers
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Justin L Brown
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Juan Ramirez
- Departamento de Ingeniería Mecánica, Universidad Nacional de Colombia, Cra 64C nro 73-120, 050024 Medellin, Colombia
| | - Jean Paul Allain
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Viviana M Posada
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Wang S, Jia Z, Dai M, Feng X, Tang C, Liu L, Cao L. Advances in natural and synthetic macromolecules with stem cells and extracellular vesicles for orthopedic disease treatment. Int J Biol Macromol 2024; 268:131874. [PMID: 38692547 DOI: 10.1016/j.ijbiomac.2024.131874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Serious orthopedic disorders resulting from myriad diseases and impairments continue to pose a considerable challenge to contemporary clinical care. Owing to its limited regenerative capacity, achieving complete bone tissue regeneration and complete functional restoration has proven challenging with existing treatments. By virtue of cellular regenerative and paracrine pathways, stem cells are extensively utilized in the restoration and regeneration of bone tissue; however, low survival and retention after transplantation severely limit their therapeutic effect. Meanwhile, biomolecule materials provide a delivery platform that improves stem cell survival, increases retention, and enhances therapeutic efficacy. In this review, we present the basic concepts of stem cells and extracellular vesicles from different sources, emphasizing the importance of using appropriate expansion methods and modification strategies. We then review different types of biomolecule materials, focusing on their design strategies. Moreover, we summarize several forms of biomaterial preparation and application strategies as well as current research on biomacromolecule materials loaded with stem cells and extracellular vesicles. Finally, we present the challenges currently impeding their clinical application for the treatment of orthopedic diseases. The article aims to provide researchers with new insights for subsequent investigations.
Collapse
Affiliation(s)
- Supeng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China; Ningxia Medical University, Ningxia 750004, China
| | - Zhiqiang Jia
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xujun Feng
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Lingling Cao
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China.
| |
Collapse
|
3
|
Wu H, Ueno T, Nozaki K, Xu H, Nakano Y, Chen P, Wakabayashi N. Lithium-Modified TiO 2 Surface by Anodization for Enhanced Protein Adsorption and Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55232-55243. [PMID: 38014813 DOI: 10.1021/acsami.3c06749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Promoting osseointegration is an essential step in improving implant success rates. Lithium has gradually gained popularity for promoting alkaline phosphatase activity and osteogenic gene expression in osteoblasts. The incorporation of lithium into a titanium surface has been reported to change its surface charge, thereby enhancing its biocompatibility. In this study, we applied anodization as a novel approach to immobilizing Li on a titanium surface and evaluated the changes in its surface characteristics. The objective of this study was to determine the effect of Li treatment of titanium on typical proteins, such as albumin, laminin, and fibronectin, in terms of their adsorption level as well as on the attachment of osteoblast cells. Titanium disks were acid-etched by 66 wt % H2SO4 at 120 °C for 90 s and set as the control group. The etched samples were placed in contact with an anode, while a platinum bar served as the counter electrode. Both electrodes were mounted on a custom electrochemical cell filled with 1 M LiCl. The samples were anodized at constant voltages of 1, 3, and 9 V. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) results showed no significant differences in the topography. However, the ζ potentials of the 3 V group were higher than those of the control group at a physiological pH of 7.4. Interestingly, the adsorption level of the extracellular matrix protein was mostly enhanced on the 3 V-anodized surface. The number of attached cells on the Li-anodized surfaces increased. The localization of vinculin at the tips of the stretching cytoplasmic projections was observed more frequently in the osteoblasts on the 3 V-anodized surface. Although the optimal concentration or voltage for Li application should be investigated further, this study suggests that anodization could be an effective method to immobilize lithium ions on a titanium surface and that modifying the surface charge characteristics enables a direct protein-to-material interaction with enhanced biological adhesion.
Collapse
Affiliation(s)
- Huaze Wu
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| | - Takeshi Ueno
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| | - Kosuke Nozaki
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| | - Huichuan Xu
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| | - Yuki Nakano
- Anton Paar Japan K.K, Riverside Sumida Central Tower Palace, 1-19-9 Tsutsumidori, Sumida City 131-0034, Tokyo, Japan
| | - Peng Chen
- Division of Interdisciplinary Co-Creation (ICC-Division), Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku 980-8575, Sendai, Japan
| | - Noriyuki Wakabayashi
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| |
Collapse
|
4
|
Yang Y, Lin Y, Xu R, Zhang Z, Zeng W, Xu Q, Deng F. Micro/Nanostructured Topography on Titanium Orchestrates Dendritic Cell Adhesion and Activation via β2 Integrin-FAK Signals. Int J Nanomedicine 2022; 17:5117-5136. [PMID: 36345509 PMCID: PMC9636866 DOI: 10.2147/ijn.s381222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Background and Purpose In clinical application of dental implants, the functional state of dendritic cells (DCs) has been suggested to have a close relationship with the implant survival rate or speed of osseointegration. Although microscale surfaces have a stable osteogenesis property, they also incline to trigger unfavorable DCs activation and threaten the osseointegration process. Nanoscale structures have an advantage in regulating cell immune response through orchestrating cell adhesion, indicating the potential of hierarchical micro/nanostructured surface in regulation of DCs’ activation without sacrificing the advantage of microscale topography. Materials and Methods Two micro/nanostructures were fabricated based on microscale rough surfaces through anodization or alkali treatment, the sand-blasted and acid-etched (SA) surface served as control. The surface characteristics, in vitro and in vivo DC immune reactions and β2 integrin-FAK signal expression were systematically investigated. The DC responses to different surface topographies after FAK inhibition were also tested. Results Both micro/nano-modified surfaces exhibited unique composite structures, with higher hydrophilicity and lower roughness compared to the SA surface. The DCs showed relatively immature functional states with round morphologies and significantly downregulated β2 integrin-FAK levels on micro/nanostructures. Implant surfaces with micro/nano-topographies also triggered lower levels of DC inflammatory responses than SA surfaces in vivo. The inhibited FAK activation effectively reduced the differences in topography-caused DC activation and narrowed the differences in DC activation among the three groups. Conclusion Compared to the SA surface with solely micro-scale topography, titanium surfaces with hybrid micro/nano-topographies reduced DC inflammatory response by influencing their adhesion states. This regulatory effect was accompanied by the modulation of β2 integrin-FAK signal expression. The β2 integrin-FAK-mediated adhesion plays a critical role in topography-induced DC activation, which represents a potential target for material–cell interaction regulation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yujing Lin
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Ruogu Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Zhengchuan Zhang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Wenyi Zeng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Qiong Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China,Correspondence: Qiong Xu; Feilong Deng, Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, No. 56, Ling Yuan Xi Road, Guangzhou, 510055, People’s Republic of China, Tel +86 20 83862537, Fax +86 20 83822807, Email ;
| | - Feilong Deng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Park JW, Seo JH, Lee HJ. Enhanced osteogenic differentiation of mesenchymal stem cells by surface lithium modification in a sandblasted/acid-etched titanium implant. J Biomater Appl 2022; 37:447-458. [PMID: 35594165 DOI: 10.1177/08853282221104242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study investigated the osteogenesis-related cell functions of osteoprogenitor cells modulated by surface chemistry modification using lithium (Li) ions in a current clinical oral implant surface in order to gain insights into the future development of titanium (Ti) implants with enhanced osteogenic capacity. Wet chemical treatment was performed to modify a sandblasted/acid-etched (SLA) Ti implant surface using Li ions. The osteogenesis-related cell response to the surface Li ion-modified SLA sample was evaluated using two kinds of murine bone marrow stem cells, bipotent ST2 cells and primary multipotent mesenchymal stem cells (MSCs). The modified surface exhibited the formation of an Li-containing Ti oxide layer with plate-like nanostructures. The Li-incorporated surface enhanced early cellular events, including spreading, focal adhesion formation and integrin mRNA expression (α2, α5, αv and β3), and accelerated osteogenic differentiation of bipotent ST2 cells compared with unmodified SLA surface. Surface Li modification significantly increased GSK-3β phosphorylation and suppressed β-catenin phosphorylation, and promoted the subsequent osteogenic differentiation of primary MSCs. These results indicate that surface chemistry modification of SLA implants by wet chemical treatment with Li ions induces a more favorable osseointegration outcome through the promotion of the osteogenic differentiation of bone marrow MSCs via the positive regulation of GSK-3β and β-catenin activity.
Collapse
Affiliation(s)
- Jin-Woo Park
- Department of Periodontology, School of Dentistry, 65498Kyungpook National University, Daegu, Korea.,Jin-Woo Park, Department of Periodontology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-Gu, Daegu 41940, Korea.
| | - Ji-Hun Seo
- Department of Materials Science and Engineering, 542877Korea University, Seoul, Korea
| | - Heon-Jin Lee
- School of Dentistry, 65498Kyungpook National University, Daegu, Korea
| |
Collapse
|
6
|
Lin J, Dong H, Wen Y, Zhuang X, Li S. Surface Free Energy of Titanium Disks Enhances Osteoblast Activity by Affecting the Conformation of Adsorbed Fibronectin. FRONTIERS IN MATERIALS 2022; 9. [DOI: 10.3389/fmats.2022.840813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
This study evaluated the influence of surface free energy (SFE) of titanium disks on the adsorption and conformation of fibronectin (FN) and the biological behavior of osteoblasts cultured on the FN-treated modified surfaces. High [H]-SFE titanium disks were irradiated by a 30 W UV light, while low (L)-SFE titanium disks received no treatment. The surface characteristics of the titanium disks were examined using scanning electron microscope, optical surface profilometer, X-ray photoelectron spectroscopy, and contact angle measurements. Adsorbed FN on different groups was investigated using attenuated total reflection-Fourier transform infrared spectroscopy. MG-63 cells were cultured on FN-treated titanium disks to evaluate the in vitro bioactivity. The experiment showed H-SFE titanium disks adsorbed more FN and acquired more ß-turn content than L-SFE group. MG-63 cells cultured on FN-treated H-SFE titanium disks showed better osteogenic responses, including adhesion, proliferation, alkaline phosphatase activity and mineralization than that on FN-treated L-SFE titanium disks. Compared to L-SFE titanium disks, integrin-β1, integrin-α5 and Rac-1 mRNA levels were significantly higher in MG-63 cells on FN-treated H-SFE after 3 h of culture. These findings suggest that the higher SFE of H-SFE compared to L-SFE titanium disks induced changes in the conformation of adsorbed FN that enhanced the osteogenic activity of MG-63 cells.
Collapse
|
7
|
Saito N, Mikami R, Mizutani K, Takeda K, Kominato H, Kido D, Ikeda Y, Buranasin P, Nakagawa K, Takemura S, Ueno T, Hosaka K, Hanawa T, Shinomura T, Iwata T. Impaired dental implant osseointegration in rat with streptozotocin-induced diabetes. J Periodontal Res 2022; 57:412-424. [PMID: 35037248 DOI: 10.1111/jre.12972] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/03/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Few studies have reported on the impact of oxidative stress on the dental implant failure. The aim of this study was to investigate the impact of hyperglycemia-induced oxidative stress on dental implant osseointegration in diabetes mellitus (DM). METHODS Acid-treated titanium implants were bilaterally placed in the maxillary alveolar ridge of streptozotocin-induced diabetic (DM group) and control rats after extraction of first molars. Histological analysis and micro-push-out test were performed 4 weeks after surgery. Oxidative stress and osteogenic markers in the surrounding bone were quantified by real-time polymerase chain reaction. In the in vitro study, rat bone marrow-derived mesenchymal stem cells (BMMSCs) were cultured on acid-treated titanium discs in a high-glucose (HG) or normal environment. Intracellular reactive oxygen species (ROS), cell proliferation, alkaline phosphatase (ALP) activity, and extracellular calcification were evaluated following antioxidant treatment with N-acetyl-L-cysteine (NAC). RESULTS The implant survival rate was 92.9% and 75.0% in control and DM group, respectively. Bone-implant contact and push-out loads were significantly lower in the DM group. Expression of superoxide dismutase 1 at the mRNA level and on immunohistochemistry was significantly lower in the DM group. In vitro experiments revealed that the HG condition significantly increased ROS expression and suppressed the proliferation and extracellular calcification of BMMSCs, while NAC treatment significantly restored ROS expression, cell proliferation, and calcification. The ALP activity of both groups was not significantly different. CONCLUSION In diabetes, high-glucose-induced oxidative stress downregulates proliferation and calcification of BMMSCs, impairing osseointegration and leading to implant failure.
Collapse
Affiliation(s)
- Natsumi Saito
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Risako Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohei Takeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiromi Kominato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Daisuke Kido
- Oral Diagnosis and General Dentistry, Dental Hospital, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Ikeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Prima Buranasin
- Department of Conservative Dentistry and Prosthodontics, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| | - Keita Nakagawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shu Takemura
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takeshi Ueno
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Keiichi Hosaka
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takao Hanawa
- Department of Metallic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tamayuki Shinomura
- Department of Tissue Regeneration, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
8
|
Influence of Bioinspired Lithium-Doped Titanium Implants on Gingival Fibroblast Bioactivity and Biofilm Adhesion. NANOMATERIALS 2021; 11:nano11112799. [PMID: 34835563 PMCID: PMC8618897 DOI: 10.3390/nano11112799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/20/2023]
Abstract
Soft tissue integration (STI) at the transmucosal level around dental implants is crucial for the long-term success of dental implants. Surface modification of titanium dental implants could be an effective way to enhance peri-implant STI. The present study aimed to investigate the effect of bioinspired lithium (Li)-doped Ti surface on the behaviour of human gingival fibroblasts (HGFs) and oral biofilm in vitro. HGFs were cultured on various Ti surfaces—Li-doped Ti (Li_Ti), NaOH_Ti and micro-rough Ti (Control_Ti)—and were evaluated for viability, adhesion, extracellular matrix protein expression and cytokine secretion. Furthermore, single species bacteria (Staphylococcus aureus) and multi-species oral biofilms from saliva were cultured on each surface and assessed for viability and metabolic activity. The results show that both Li_Ti and NaOH_Ti significantly increased the proliferation of HGFs compared to the control. Fibroblast growth factor-2 (FGF-2) mRNA levels were significantly increased on Li_Ti and NaOH_Ti at day 7. Moreover, Li_Ti upregulated COL-I and fibronectin gene expression compared to the NaOH_Ti. A significant decrease in bacterial metabolic activity was detected for both the Li_Ti and NaOH_Ti surfaces. Together, these results suggest that bioinspired Li-doped Ti promotes HGF bioactivity while suppressing bacterial adhesion and growth. This is of clinical importance regarding STI improvement during the maintenance phase of the dental implant treatment.
Collapse
|
9
|
Barberi J, Spriano S. Titanium and Protein Adsorption: An Overview of Mechanisms and Effects of Surface Features. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1590. [PMID: 33805137 PMCID: PMC8037091 DOI: 10.3390/ma14071590] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Titanium and its alloys, specially Ti6Al4V, are among the most employed materials in orthopedic and dental implants. Cells response and osseointegration of implant devices are strongly dependent on the body-biomaterial interface zone. This interface is mainly defined by proteins: They adsorb immediately after implantation from blood and biological fluids, forming a layer on implant surfaces. Therefore, it is of utmost importance to understand which features of biomaterials surfaces influence formation of the protein layer and how to guide it. In this paper, relevant literature of the last 15 years about protein adsorption on titanium-based materials is reviewed. How the surface characteristics affect protein adsorption is investigated, aiming to provide an as comprehensive a picture as possible of adsorption mechanisms and type of chemical bonding with the surface, as well as of the characterization techniques effectively applied to model and real implant surfaces. Surface free energy, charge, microroughness, and hydroxylation degree have been found to be the main surface parameters to affect the amount of adsorbed proteins. On the other hand, the conformation of adsorbed proteins is mainly dictated by the protein structure, surface topography at the nano-scale, and exposed functional groups. Protein adsorption on titanium surfaces still needs further clarification, in particular concerning adsorption from complex protein solutions. In addition, characterization techniques to investigate and compare the different aspects of protein adsorption on different surfaces (in terms of roughness and chemistry) shall be developed.
Collapse
Affiliation(s)
- Jacopo Barberi
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy;
| | | |
Collapse
|
10
|
Martínez‐Hernández M, Hannig M, García‐Pérez VI, Olivares‐Navarrete R, Fecher‐Trost C, Almaguer‐Flores A. Roughness and wettability of titanium implant surfaces modify the salivary pellicle composition. J Biomed Mater Res B Appl Biomater 2020; 109:1017-1028. [DOI: 10.1002/jbm.b.34766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Miryam Martínez‐Hernández
- Facultad de Odontología, División de Estudios de Posgrado e Investigación Universidad Nacional Autónoma de México CDMX Mexico
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry University Hospital, Saarland University Homburg/Saar Germany
| | - Victor I. García‐Pérez
- Facultad de Odontología, División de Estudios de Posgrado e Investigación Universidad Nacional Autónoma de México CDMX Mexico
| | - Rene Olivares‐Navarrete
- Department of Biomedical Engineering, School of Engineering Virginia Commonwealth University Richmond Virginia USA
| | - Claudia Fecher‐Trost
- Institute of Experimental and Clinical Pharmacology and Toxicology Saarland University Homburg/Saar Germany
| | - Argelia Almaguer‐Flores
- Facultad de Odontología, División de Estudios de Posgrado e Investigación Universidad Nacional Autónoma de México CDMX Mexico
| |
Collapse
|
11
|
Yu W, Zhang H, A L, Yang S, Zhang J, Wang H, Zhou Z, Zhou Y, Zhao J, Jiang Z. Enhanced bioactivity and osteogenic property of carbon fiber reinforced polyetheretherketone composites modified with amino groups. Colloids Surf B Biointerfaces 2020; 193:111098. [PMID: 32498001 DOI: 10.1016/j.colsurfb.2020.111098] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 11/19/2022]
Abstract
Polyetheretherketone (PEEK) is considered as a potential dental and orthopedic implant material owing to its favorable thermal and chemical stability, biocompatibility and mechanical properties. However, the inherent bio-inert and inferior osseointegration of PEEK have hampered its clinical application. In addition, carbon fiber is widely used as a filler to reinforce polymers for sturdy composites owing to its high strength, modulus, etc. In the study, carbon fiber reinforced PEEK (CPEEK) composites were fabricated and modified with amino groups by plasma-enhanced chemical vapor deposition surface modification technique. The surface characterization of composites was evaluated by FE-SEM, EDS, AFM, Water contact angle, XPS and FTIR, which revealed that amino groups were successfully incorporated on the modified CPEEK surface and significantly increased the hydrophilicity. In vitro study, cell adhesion, proliferation, ALP activity, ECM mineralization, real-time PCR analysis, and ELISA analysis showed the adhesion, proliferation and osteogenic differentiation of MG-63 cells on the amino group-modified CPEEK surface were higher than the CPEEK, equal to or better than pure titanium. Hence, the results indicated that the amino group-modified CPEEK possessed enhanced bioactivity and osteogenic property, which may be a potential candidate material for dental implants.
Collapse
Affiliation(s)
- Wanqi Yu
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Haibo Zhang
- Engineering Research Center of High Performance Plastic, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lan A
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Shihui Yang
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Jingjie Zhang
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Hanchi Wang
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhe Zhou
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yanmin Zhou
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Jinghui Zhao
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China.
| | - Zhenhua Jiang
- Engineering Research Center of High Performance Plastic, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|