1
|
Toledano M, Fernández-Romero E, Osorio MT, Osorio E, Aguilera FS, Toledano R, Osorio R. Investigation of the effect of Tideglusib on the hydroxyapatite formation, crystallinity and elasticity of conditioned resin-dentin interfaces. J Dent 2024; 150:105334. [PMID: 39218289 DOI: 10.1016/j.jdent.2024.105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES To investigate the effect of dentin infiltration with polymeric nanoparticles (NPs) doped with tideglusib (TDg) (TDg-NPs) on hydroxyapatite formation, crystallinity and elasticity of conditioned resin-dentin interfaces. METHODS Dentin conditioned surfaces were infiltrated with NPs or TDg-NPs. Bonded interfaces were created, stored for 24 h and submitted to mechanical and thermal challenging. Resin-dentin interfaces were evaluated through nanoindentation to determine the modulus of elasticity, X-ray diffraction and transmission electron microscopy through selected area diffraction and bright-filed imaging. RESULTS TDg-NPs provoked peaks narrowing after the diffraction-intensity analysis that corresponded with high crystallinity, with an increased modulus of Young after load cycling in comparison with the samples treated with undoped NPs. New minerals, in the group of TDg-NPs, showed the greatest both deviation of line profile from perfect crystal diffraction and dimension of the lattice strain, i.e., crystallite, grain size and microstrain and 002 plane-texture. The new minerals generated after TDg-NPs application and mechanical loading followed a well defined lineation. Undoped NPs mostly produced small hydroxyapatite crystallites, non crystalline or amorphous in nature with poor maturity. CONCLUSIONS Tideglusib promoted the precipitation of hydroxyapatite, as a major crystalline phase, at the intrafibrillar compartment of the collagen fibrils, enabling functional mineralization. TDg-NPs facilitated nucleation of crystals randomly oriented, showing less structural variation in angles and distances that improved crystallographic relative order of atoms and maturity. Nanocrystals inducted by TDg-NPs were hexagonal prisms of submicron size. Thermal challenging of dentin treated with TDg-NPs have provoked a decrease of functional mineralization and crystallinity, associated to immature hydroxyapatite. CLINICAL SIGNIFICANCE New polycrystalline lattice formation generated after TDg-NPs infiltration may become correlated with high mechanical performance. This association can be inferred from the superior crystallinity that was obtained in presence of tideglusib. Immature crystallites formed in dentin treated with undoped NPs will account for a high remineralizing activity.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Enrique Fernández-Romero
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain; Medicina Clínica y Salud Pública PhD Programme, University of Granada, Granada 18071, Spain
| | - María T Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Estrella Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain.
| | - Raquel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| |
Collapse
|
2
|
Li Y, Dong J, Zhan W, Shao Y, Zhu J, Sun N, Dong N, Li Y, Wu L, Zhou Q, Wang Q, Yin H, Cao X, Xu X, Dai R, Zhou Z, Wong HM, Li QL. Constructing the Enamel-Like Dentin Adhesion Interface to Achieve Durable Resin-Dentin Adhesion. ACS NANO 2024; 18:30031-30052. [PMID: 39412197 DOI: 10.1021/acsnano.4c11224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Enamel adhesion is acknowledged as durable; however, achieving long-lasting dentin adhesion remains a formidable challenge due to degradation of exposed collagen matrix after acid-etching of dentin. The idea of developing an enamel-like adhesion interface holds great promise in achieving enduring dentin adhesion. In this study, we constructed an enamel-like adhesion interface using a rapid remineralization strategy comprising an acidic primer and a rapid remineralization medium. Specifically, the acidic primer of 10-methacryloyloxydecyl dihydrogen phosphate (MDP) and epigallocatechin-3-gallate (EGCG) nanocomplex (MDP@EGCG primer) was utilized to partially demineralize dentin within 30 s, and the MDP@EGCG nanocomplex showed a strong interaction with exposed collagen, enhancing collagen remineralization properties. Then, the rapid remineralization medium containing polyaspartate (Pasp) stabilized amorphous calcium and phosphorus nanoclusters (rapid Pasp-CaP) was applied to modified dentin collagen for 1 min, which caused rapid collagen remineralization within a clinically acceptable time frame. This strategy successfully generated an inorganic rough and porous adhesive interface resembling etched enamel, fundamentally addressed issues of collagen exposure, and achieved durable dentin adhesion in vitro and in vivo while also ensuring user-friendliness. It exhibited potential in prolonging the lifespan of adhesive restorations in clinical settings. In addition, it holds significant promise in the fields of caries and dentin sensitivity treatment and collagen-based tissue engineering scaffolds.
Collapse
Affiliation(s)
- Yuzhu Li
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei 230032, China
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
- The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, 3004 Longgang Avenue, Shenzhen 518172, China
| | - Jianguo Dong
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Wenfang Zhan
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Yurui Shao
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Jiaxin Zhu
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Ning Sun
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Nihang Dong
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Youqin Li
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Leping Wu
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Qingli Zhou
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Qingqing Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Hanlin Yin
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Hefei 230094, China
| | - Xiaoma Cao
- The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, 3004 Longgang Avenue, Shenzhen 518172, China
| | - Xiaohua Xu
- The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, 3004 Longgang Avenue, Shenzhen 518172, China
| | - Ruoxi Dai
- Department of Comprehensive Care, School of Dental Medicine, Tufts University, Boston, Massachusetts 0211, United States
| | - Zheng Zhou
- School of Dentistry, University of Detroit Mercy, Detroit, Michigan 48208-2576, United States
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, The Prince Philip Dental Hospital, Hong Kong 999077, China
| | - Quan-Li Li
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei 230032, China
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
- The Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, 3004 Longgang Avenue, Shenzhen 518172, China
| |
Collapse
|
3
|
Toledano M, Fernández-Romero E, Osorio E, Aguilera FS, Lynch CD, Osorio MT, Toledano R, Osorio R. Effect of the anti-Alzheimer drug GSK-3β antagonist on numerical modeling of the energy dissipation through the resin-dentin interface. Dent Mater 2024:S0109-5641(24)00271-9. [PMID: 39271304 DOI: 10.1016/j.dental.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVES The aim of this study was to determine the viscoelastic performance and energy dissipation of conditioned dentin infiltrated with polymeric nanoparticles (NPs) doped with tideglusib (TDg) (TDg-NPs). METHODS Dentin conditioned surfaces were infiltrated with NPs and TDg-NPs. Bonded interfaces were created, stored for 24 h and submitted to mechanical and thermal challenging. Resin-dentin interfaces were evaluated through nano-DMA/complex-loss-storage moduli-tan delta assessment and atomic force microscopy (AFM) analysis. RESULTS Dentin infiltrated with NPs and load cycled attained the highest complex modulus at hybrid layer and bottom of hybrid layer. Intertubular dentin treated with undoped NPs showed higher complex modulus than peritubular dentin, after load cycling, provoking energy concentration and breakdown at the interface. After infiltrating with TDg-NPs, complex modulus was similar between peri-intertubular dentin and energy dissipated homogeneously. Tan delta at intertubular dentin was higher than at peritubular dentin, after using TDg-NPs and load cycling. This generated the widest bandwidth of the collagen fibrils and bridge-like mineral structures that, as sight of energy dissipation, fastened active dentin remodeling. TDg-NPs inducted scarce mineralization after thermo-cycling, but these bridging processes limited breakdown zones at the interface. SIGNIFICANCE TDg-based NPs are then proposed for effective dentin remineralization and tubular seal, from a viscoelastic approach.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Enrique Fernández-Romero
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; Medicina Clínica y Salud Pública PhD Programme, University of Granada, 18071 Granada, Spain
| | - Estrella Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain.
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Christopher D Lynch
- University Dental School & Hospital/Cork University Dental School & Hospital, Cork, Ireland
| | - María T Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Raquel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| |
Collapse
|
4
|
Toledano M, Fernández-Romero E, Aguilera FS, Osorio E, Rodríguez-Santana JA, Garrido M, Solís PA, García-Godoy F, Osorio R. Tunable polymer-peptide hybrids for dentin tissue repair. J Dent 2024; 148:105027. [PMID: 38679137 DOI: 10.1016/j.jdent.2024.105027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVES This study targets to assess the remineralization capability of conditioned dentin infiltrated with polymeric nanoparticles (NPs) doped with tideglusib (TDg) (TDg-NPs). METHODS Dentin conditioned surfaces were infiltrated with NPs and TDg-NPs. Bonded interfaces were created, stored for 24 h and submitted to mechanical and thermal challenging. Resin-dentin interfaces were evaluated through nanohardness, Masson's trichrome staining microscopy, and Raman analysis. RESULTS Dentin surfaces treated with TDg-NPs and load cycled produced higher nanohardness than the rest of the groups at the hybrid layer. At the bottom of the hybrid layer, all samples treated with TDg-NPs showed higher nanohardness than the rest of the groups. Active remineralization underneath the hybrid layer was detected in all groups after TDg application and load cycling, inducting new dentinal tubuli formation. After thermocycling, remineralization at the hybrid layer was not evidenced in the absence of NPs. Raman analysis showed increase mineralization, enriched carbonate apatite formation, and improved crosslinking and scaffolding of the collagen. CONCLUSIONS Mechanical loading on the specimens obtained after TDg-NPs dentin infiltration inducts an increase of mineralization at the resin/dentin interface, indicating remineralization of peritubular and intertubular dentin with augmented crystallographic maturity in crystals. Enriched collagen quality was produced, generating an adequate matrix organization to promote apatite nucleation, after tideglusib infiltration. CLINICAL SIGNIFICANCE At the present research, it has been proved the creation of reparative dentin, at the resin-dentin interface, after tideglusib dentin infiltration. Chemical stability, to favor integrity of the resin-dentin interface, is warranted in the presence of the TDg-NPs in the demineralized dentin collagen.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Enrique Fernández-Romero
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain; Medicina Clínica y Salud Pública PhD Programme, University of Granada, 18071 Granada, Spain
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Estrella Osorio
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain.
| | - José A Rodríguez-Santana
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Macarena Garrido
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Pedro A Solís
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Franklin García-Godoy
- Health Science Center, College of Dentistry, University of Tennessee, 875 Union Avenue, Memphis, TN 38103, United States
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry. Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| |
Collapse
|
5
|
Toledano M, Aguilera FS, Fernández-Romero E, Lagos AJ, Bonilla M, Lynch CD, Osorio R. Dentin remineralization using a stimuli-responsive engineered small molecule GSK3 antagonists-functionalized adhesive. Dent Mater 2024; 40:393-406. [PMID: 38114343 DOI: 10.1016/j.dental.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVES Tideglusib has shown great performance in terms of dentin regenerative properties. This study aims to evaluate bonding ability, of demineralized dentin infiltrated with polymeric nanoparticles (NPs) doped with tideglusib (TG) (TG-NPs). METHODS Dentin conditioned surfaces were infiltrated with NPs and TG-NPs. Bonded interfaces were created and stored for 24 h and then submitted to mechanical, chemical and thermal challenging. The resin-dentin interface was evaluated through a doubled dye fluorescent technique and a calcium chelator fluorophore under a confocal laser scanning microscopy, and by field emission scanning electron microscopy. RESULTS Dentin surfaces treated with TG-NPs and load cycled produced higher bond strength than the rest of the groups. Immersion of dentin specimens treated with undoped-NPs in collagenase solution attained the lowest microtensile bond strength (MTBS) values. Both porosity and nanoleakage decreased when dentin was infiltrated with TG-NPs, that revealed strong signals of xylenol orange stain at both hybrid layer and dentinal tubules. The presence of NPs, in general, inducted the presence of mineralized interfaces after mechanical loading and thermocycling. CONCLUSIONS Nanoparticles doped with tideglusib promoted the highest dentin bonding efficacy among groups, as they facilitated the maximum bond strength values with creation of mineral deposits at the hybrid layer and dentinal walls. Tideglusib enabled scarce porosity, nanoleakage and advanced sealing among dentin groups. SIGNIFICANCE Doping hydrophilic polymeric NPs with tideglusib, infiltrated in etched dentin represents a reproducible technique to create reparative dentin at the resin-dentin interface, by inducing therapeutic bioactivity.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain.
| | - Enrique Fernández-Romero
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Alejandro Js Lagos
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Marco Bonilla
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Christopher D Lynch
- University Dental School & Hospital/Cork University Dental School & Hospital, Cork, Ireland
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| |
Collapse
|
6
|
Gao X, Wang Z, Yang H, Huang C. Rapid Intrafibrillar Mineralization Strategy Enhances Adhesive-Dentin Interface. J Dent Res 2024; 103:42-50. [PMID: 37990799 DOI: 10.1177/00220345231205492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Biomimetic mineralization of dentin collagen appears to be a promising strategy to optimize dentin bonding durability. However, traditional postbonding mineralization strategies based on Ca/P ion release still have some drawbacks, such as being time-consuming, having a spatiotemporal mismatch, and having limited intrafibrillar minerals. To tackle these problems, a prebonding rapid intrafibrillar mineralization strategy was developed in the present study. Specifically, polyacrylic acid-stabilized amorphous calcium fluoride (PAA-ACF) was found to induce rapid intrafibrillar mineralization of the single-layer collagen model and dentin collagen at just 1 min and 10 min, as identified by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. This strategy has also been identified to strengthen the mechanical properties of demineralized dentin within a clinically acceptable timeframe. Significantly, the bonding strength of the PAA-ACF-treated groups outperformed the control group irrespective of aging modes. In addition, the endogenous matrix metalloproteinases as well as exogenous bacterial erosion were inhibited, thus reducing the degradation of dentin collagen. High-quality integration of the hybrid layer and the underlying dentin was also demonstrated. On the basis of the present results, the concept of "prebonding rapid intrafibrillar mineralization" was proposed. This user-friendly scheme introduced PAA-ACF-based intrafibrillar mineralization into dentin bonding for the first time. As multifunctional primers, PAA-ACF precursors have the potential to shed new light on prolonging the service life of adhesive restorations, with promising significance.
Collapse
Affiliation(s)
- X Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Z Wang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, China
| | - H Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - C Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Luo X, Niu J, Su G, Zhou L, Zhang X, Liu Y, Wang Q, Sun N. Research progress of biomimetic materials in oral medicine. J Biol Eng 2023; 17:72. [PMID: 37996886 PMCID: PMC10668381 DOI: 10.1186/s13036-023-00382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 11/25/2023] Open
Abstract
Biomimetic materials are able to mimic the structure and functional properties of native tissues especially natural oral tissues. They have attracted growing attention for their potential to achieve configurable and functional reconstruction in oral medicine. Though tremendous progress has been made regarding biomimetic materials, significant challenges still remain in terms of controversy on the mechanism of tooth tissue regeneration, lack of options for manufacturing such materials and insufficiency of in vivo experimental tests in related fields. In this review, the biomimetic materials used in oral medicine are summarized systematically, including tooth defect, tooth loss, periodontal diseases and maxillofacial bone defect. Various theoretical foundations of biomimetic materials research are reviewed, introducing the current and pertinent results. The benefits and limitations of these materials are summed up at the same time. Finally, challenges and potential of this field are discussed. This review provides the framework and support for further research in addition to giving a generally novel and fundamental basis for the utilization of biomimetic materials in the future.
Collapse
Affiliation(s)
- Xinyu Luo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Jiayue Niu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Guanyu Su
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Xue Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Ying Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Ningning Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China.
| |
Collapse
|
8
|
Cloyd AK, Boone K, Ye Q, Snead ML, Spencer P, Tamerler C. Engineered Peptides Enable Biomimetic Route for Collagen Intrafibrillar Mineralization. Int J Mol Sci 2023; 24:ijms24076355. [PMID: 37047325 PMCID: PMC10093982 DOI: 10.3390/ijms24076355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Overcoming the short lifespan of current dental adhesives remains a significant clinical need. Adhesives rely on formation of the hybrid layer to adhere to dentin and penetrate within collagen fibrils. However, the ability of adhesives to achieve complete enclosure of demineralized collagen fibrils is recognized as currently unattainable. We developed a peptide-based approach enabling collagen intrafibrillar mineralization and tested our hypothesis on a type-I collagen-based platform. Peptide design incorporated collagen-binding and remineralization-mediating properties using the domain structure conservation approach. The structural changes from representative members of different peptide clusters were generated for each functional domain. Common signatures associated with secondary structure features and the related changes in the functional domain were investigated by attenuated total reflectance Fourier-transform infrared (ATR-FTIR) and circular dichroism (CD) spectroscopy, respectively. Assembly and remineralization properties of the peptides on the collagen platforms were studied using atomic force microscopy (AFM). Mechanical properties of the collagen fibrils remineralized by the peptide assemblies was studied using PeakForce-Quantitative Nanomechanics (PF-QNM)-AFM. The engineered peptide was demonstrated to offer a promising route for collagen intrafibrillar remineralization. This approach offers a collagen platform to develop multifunctional strategies that combine different bioactive peptides, polymerizable peptide monomers, and adhesive formulations as steps towards improving the long-term prospects of composite resins.
Collapse
Affiliation(s)
- Aya K. Cloyd
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA 90007, USA
| | - Paulette Spencer
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Candan Tamerler
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
- Correspondence:
| |
Collapse
|
9
|
Wang B, Han F, You R, Chen C, Xie H. Polyphenols Can Improve Resin-Dentin Bond Durability by Promoting Amorphous Calcium Phosphate Nanoparticles to Backfill the Dentin Matrix. Int J Nanomedicine 2023; 18:1491-1505. [PMID: 36998600 PMCID: PMC10046144 DOI: 10.2147/ijn.s395631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
Objective To investigate the effects of proanthocyanidins (PA), myricetin, resveratrol, and kaempferol on the modification of dentin collagen and the inhibition of matrix metalloproteinase (MMP) activity, and to evaluate their contributions to the biomimetic remineralization and resin-dentin bonding performance. Methods Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and in situ zymography were applied to verify the collagen modification and MMP activity inhibition induced by these four polyphenols. Scanning electron microscopy/energy dispersive spectrometer (SEM/EDS) analysis, X-ray diffraction (XRD), ATR-FTIR, Vickers hardness numbers (VHN), and micro-computed tomography (micro-CT) were performed to characterize the remineralized dentin. Microtensile bond strength (μTBS) and nanoleakage were investigated to evaluate the effects of the four polyphenols on resin-dentin bonding durability. Results ATR-FTIR and in situ zymography confirmed that these four polyphenols could modify dentin collagen and inhibit MMP activity, respectively. Chemoanalytic characterization exhibited the efficacies of the four polyphenols in promoting dentin biomimetic remineralization. The surface hardness of PA-pretreated dentin was the greatest. Micro-CT results demonstrated that the PAs group possessed the highest amount of dentin surface minerals and the lowest amount of deep-layer minerals. The surface and deep-layer mineral contents of the Myr group were higher than Res and Kae groups. Treatment with these four polyphenols significantly increased the initial μTBS compared with the control group without primer conditioning. μTBS decreased significantly during aging, and the decrease was more severe in the PAs and Kae groups than in the Myr and Res groups. With or without aging, the polyphenol groups exhibited relatively less fluorescence. However, the Myr and Res groups showed less serious nanoleakage after aging. Conclusion PA, myricetin, resveratrol, and kaempferol can modify dentin collagen, inhibit MMP activity, promote biomimetic remineralization, and improve resin-dentin bond durability. Compared with PA and kaempferol, myricetin and resveratrol are more effective in improving resin-dentin bonding.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Prosthodontics, Affiliated Stomatology Hospital, Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Fei Han
- Department of Prosthodontics, Affiliated Stomatology Hospital, Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Ran You
- Department of Prosthodontics, Affiliated Stomatology Hospital, Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Chen Chen
- Department of Endodontics, Affiliated Stomatology Hospital, Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Haifeng Xie
- Department of Prosthodontics, Affiliated Stomatology Hospital, Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| |
Collapse
|
10
|
Hardan L, Chedid JCA, Bourgi R, Cuevas-Suárez CE, Lukomska-Szymanska M, Tosco V, Monjarás-Ávila AJ, Jabra M, Salloum-Yared F, Kharouf N, Mancino D, Haikel Y. Peptides in Dentistry: A Scoping Review. Bioengineering (Basel) 2023; 10:bioengineering10020214. [PMID: 36829708 PMCID: PMC9952573 DOI: 10.3390/bioengineering10020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Currently, it remains unclear which specific peptides could be appropriate for applications in different fields of dentistry. The aim of this scoping review was to scan the contemporary scientific papers related to the types, uses and applications of peptides in dentistry at the moment. Literature database searches were performed in the following databases: PubMed/MEDLINE, Scopus, Web of Science, Embase, and Scielo. A total of 133 articles involving the use of peptides in dentistry-related applications were included. The studies involved experimental designs in animals, microorganisms, or cells; clinical trials were also identified within this review. Most of the applications of peptides included caries management, implant osseointegration, guided tissue regeneration, vital pulp therapy, antimicrobial activity, enamel remineralization, periodontal therapy, the surface modification of tooth implants, and the modification of other restorative materials such as dental adhesives and denture base resins. The in vitro and in vivo studies included in this review suggested that peptides may have beneficial effects for treating early carious lesions, promoting cell adhesion, enhancing the adhesion strength of dental implants, and in tissue engineering as healthy promotors of the periodontium and antimicrobial agents. The lack of clinical trials should be highlighted, leaving a wide space available for the investigation of peptides in dentistry.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Jean Claude Abou Chedid
- Department of Pediatric Dentistry, Faculty of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| | | | - Vincenzo Tosco
- Department of Clinical Sciences and Stomatology (DISCO), Polytechnic University of Marche, 60126 Ancona, Italy
| | - Ana Josefina Monjarás-Ávila
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico
| | - Massa Jabra
- Faculty of Medicine, Damascus University, Damascus 0100, Syria
| | | | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| | - Davide Mancino
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| |
Collapse
|
11
|
Yu L, Wei M. Biomineralization of Collagen-Based Materials for Hard Tissue Repair. Int J Mol Sci 2021; 22:944. [PMID: 33477897 PMCID: PMC7833386 DOI: 10.3390/ijms22020944] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/23/2022] Open
Abstract
Hydroxyapatite (HA) reinforced collagen fibrils serve as the basic building blocks of natural bone and dentin. Mineralization of collagen fibrils play an essential role in ensuring the structural and mechanical functionalities of hard tissues such as bone and dentin. Biomineralization of collagen can be divided into intrafibrillar and extrafibrillar mineralization in terms of HA distribution relative to collagen fibrils. Intrafibrillar mineralization is termed when HA minerals are incorporated within the gap zone of collagen fibrils, while extrafibrillar mineralization refers to the minerals that are formed on the surface of collagen fibrils. However, the mechanisms resulting in these two types of mineralization still remain debatable. In this review, the evolution of both classical and non-classical biomineralization theories is summarized. Different intrafibrillar mineralization mechanisms, including polymer induced liquid precursor (PILP), capillary action, electrostatic attraction, size exclusion, Gibbs-Donnan equilibrium, and interfacial energy guided theories, are discussed. Exemplary strategies to induce biomimetic intrafibrillar mineralization using non-collagenous proteins (NCPs), polymer analogs, small molecules, and fluidic shear stress are discussed, and recent applications of mineralized collagen fibers for bone regeneration and dentin repair are included. Finally, conclusions are drawn on these proposed mechanisms, and the future trend of collagen-based materials for bone regeneration and tooth repair is speculated.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA;
| | - Mei Wei
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA;
- Department of Mechanical Engineering, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
12
|
Zhao L, Sun J, Zhang C, Chen C, Chen Y, Zheng B, Pan H, Shao C, Jin B, Tang R, Gu X. Effect of aspartic acid on the crystallization kinetics of ACP and dentin remineralization. J Mech Behav Biomed Mater 2020; 115:104226. [PMID: 33302092 DOI: 10.1016/j.jmbbm.2020.104226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Type I collagen and non-collagen proteins are the main organic components of dentin. This study aimed to investigate the biomimetic remineralization of demineralized dentin by aspartic acid (Asp), which is abundant in non-collagenous proteins (NCPs). Asp was added to a mineralizing solution containing polyacrylic acid (PAA) to explore the mechanism of Asp regulating the pure amorphous calcium phosphate (ACP) phase transition process. The remineralization process and superstructure of the remineralized layer of demineralized dentin were evaluated and analyzed by transmission electron microscope (TEM) and scanning electron microscope (SEM), and the biological stability of the remineralized layer was investigated by collagenase degradation experiment. It demonstrated that Asp promoted the crystallization kinetics of PAA-stabilized amorphous calcium phosphate to hydroxyapatite (HAP), and shortened the remineralization time of demineralized dentin from 7 days to 2 days. The newly formed remineralized dentin had similar morphology and biological stability to the natural dentin layer. The presence of a large number of Asp residues in NCPs promoted the phase transformation of ACP, and further revealed the mechanism of action of NCPs in dentin biomineralization. This experiment also showed that Asp promoted the biomimetic remineralization of dentin; the morphology and hierarchical structure of remineralized layer was similar to that of natural teeth, and had good biological properties.
Collapse
Affiliation(s)
- Luyi Zhao
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Jian Sun
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Ce Zhang
- Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Hangzhou, PR China
| | - Chaoqun Chen
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Yi Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Bo Zheng
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Haihua Pan
- Centre for Biopathways and Biomaterials and Department of Chemistry, Zhejiang University, Hangzhou, PR China
| | - Changyu Shao
- Centre for Biopathways and Biomaterials and Department of Chemistry, Zhejiang University, Hangzhou, PR China
| | - Biao Jin
- Centre for Biopathways and Biomaterials and Department of Chemistry, Zhejiang University, Hangzhou, PR China
| | - Ruikang Tang
- Centre for Biopathways and Biomaterials and Department of Chemistry, Zhejiang University, Hangzhou, PR China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|