1
|
Liu Z, Gao J, Gong H. Spatiotemporal Characterization of Microstructure Morphology, Mechanical Properties and Bone Remodeling of Rat Tibia Under Uniaxial Compressive Overload Loading. Ann Biomed Eng 2024; 52:2388-2402. [PMID: 38744754 DOI: 10.1007/s10439-024-03531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Bone tissue is subjected to increased mechanical stress during high-intensity work. Inadequate bone remodeling reparability can result in the continuous accumulation of microdamage, leading to stress fractures. The aim of this work was to investigate the characteristics and repair mechanisms of tibial microdamage under several degrees of overload. Also, we aimed at better understanding the effects of overload on the multi-scale structure and mechanical properties of bone. Sixty 5-month female rats were divided into three groups with different time points. Micro-CT was used to evaluate the three-dimensional microstructure, and three-point bending, quasi-static fracture toughness and creep mechanical test were carried out to evaluate the mechanical properties. SEM was used to observe the morphological characteristics of fracture surfaces. Section staining was used to count the microdamage parameters and numbers of osteoblasts and osteoclasts. The microarchitectures of cancellous and cortical bones in the three overload groups showed different degrees of damage. Overload led to a messy crystal structure of cortical bone, with slender microcracks mixed in, and a large number of broken fibers of cancellous bone. The properties associated with the elastic plasticity, fracture toughness, and viscoelasticity of cortical bone reduced in three groups, with that corresponding to day 30 presenting the highest damage. The accumulation of microdamage mainly occurred in the first 14 days, that is, the crack density peaked on day 14. Peak-targeted bone remodeling of cortical and cancellous bones occurred mainly between days 14 and 30. The influence of overload mechanical environment on bone quality at different time points was deeply investigated, which is of great significance for the etiology and treatment of stress fractures.
Collapse
Affiliation(s)
- Zhehao Liu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
- Department of Engineering Mechanics, College of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022, People's Republic of China
| | - Jiazi Gao
- Department of Engineering Mechanics, College of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022, People's Republic of China
| | - He Gong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.
- Department of Engineering Mechanics, College of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022, People's Republic of China.
| |
Collapse
|
2
|
Hao J, Yu X, Tang K, Ma X, Lu H, Wu C. 3D modular bioceramic scaffolds for the investigation of the interaction between osteosarcoma cells and MSCs. Acta Biomater 2024; 184:431-443. [PMID: 38897335 DOI: 10.1016/j.actbio.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Recent advances in bone tissue engineering have shown promise for bone repair post osteosarcoma excision. However, conflicting research on mesenchymal stem cells (MSCs) has raised concerns about their potential to either promote or inhibit tumor cell proliferation. It is necessary to thoroughly understand the interactions between MSCs and tumor cells. Most previous studies only focused on the interactions between cells within the tumor tissues. It has been challenging to develop an in vitro model of osteosarcoma excision sites replicating the complexity of the bone microenvironment and cell distribution. In this work, we designed and fabricated modular bioceramic scaffolds to assemble into a co-culture model. Because of the bone-like composition and mechanical property, tricalcium phosphate bioceramic could mimic the bone microenvironment and recapitulate the cell-extracellular matrix interaction. Moreover, the properties for easy assembly enabled the modular units to mimic the spatial distribution of cells in the osteosarcoma excision site. Under this co-culture model, MSCs showed a noticeable tumor-stimulating effect with a potential risk of tumor recurrence. In addition, tumor cells also could inhibit the osteogenic ability of MSCs. To undermine the stimulating effects of MSCs on tumor cells, we present the methods of pre-differentiated MSCs, which had lower expression of IL-8 and higher expression of osteogenic proteins. Both in vitro and in vivo studies confirm that pre-differentiated MSCs could maintain high osteogenic capacity without promoting tumor growth, offering a promising approach for MSCs' application in bone regeneration. Overall, 3D modular scaffolds provide a valuable tool for constructing hard tissue in vitro models. STATEMENT OF SIGNIFICANCE: Bone tissue engineering using mesenchymal stem cells (MSCs) and biomaterials has shown promise for bone repair post osteosarcoma excision. However, conflicting researches on MSCs have raised concerns about their potential to either promote or inhibit tumor cell proliferation. It remains challenges to develop in vitro models to investigate cell interactions, especially of osteosarcoma with high hardness and special composition of bone tissue. In this work, modular bioceramic scaffolds were fabricated and assembled to co-culture models. The interactions between MSCs and MG-63 were manifested as tumor-stimulating and osteogenesis-inhibiting, which means potential risk of tumor recurrence. To undermine the stimulating effect, pre-differentiation method was proposed to maintain high osteogenic capacity without tumor-stimulating, offering a promising approach for MSCs' application in bone regeneration.
Collapse
Affiliation(s)
- Jianxin Hao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Xiaopeng Yu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Kai Tang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Xueru Ma
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Hongxu Lu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China
| | - Chengtie Wu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China.
| |
Collapse
|
3
|
Iwasaki N, Karali A, Roldo M, Blunn G. Full-Field Strain Measurements of the Muscle-Tendon Junction Using X-ray Computed Tomography and Digital Volume Correlation. Bioengineering (Basel) 2024; 11:162. [PMID: 38391648 PMCID: PMC10886230 DOI: 10.3390/bioengineering11020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
We report, for the first time, the full-field 3D strain distribution of the muscle-tendon junction (MTJ). Understanding the strain distribution at the junction is crucial for the treatment of injuries and to predict tear formation at this location. Three-dimensional full-field strain distribution of mouse MTJ was measured using X-ray computer tomography (XCT) combined with digital volume correlation (DVC) with the aim of understanding the mechanical behavior of the junction under tensile loading. The interface between the Achilles tendon and the gastrocnemius muscle was harvested from adult mice and stained using 1% phosphotungstic acid in 70% ethanol. In situ XCT combined with DVC was used to image and compute strain distribution at the MTJ under a tensile load (2.4 N). High strain measuring 120,000 µε, 160,000 µε, and 120,000 µε for the first principal stain (εp1), shear strain (γ), and von Mises strain (εVM), respectively, was measured at the MTJ and these values reduced into the body of the muscle or into the tendon. Strain is concentrated at the MTJ, which is at risk of being damaged in activities associated with excessive physical activity.
Collapse
Affiliation(s)
- Nodoka Iwasaki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|