1
|
Rojas-Azofeifa D, Sasa M, Lomonte B, Diego-García E, Ortiz N, Bonilla F, Murillo R, Tytgat J, Díaz C. Biochemical characterization of the venom of Central American scorpion Didymocentrus krausi Francke, 1978 (Diplocentridae) and its toxic effects in vivo and in vitro. Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:54-67. [PMID: 30517877 DOI: 10.1016/j.cbpc.2018.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 11/28/2022]
Abstract
Venoms of medically important scorpions from Buthidae family have been intensively studied, in contrast to non-buthid venoms, for which knowledge is scarce. In this work, we characterized the venom of a Diplocentridae species, Didymocentrus krausi, a small fossorial scorpion that inhabits the Tropical Dry Forest of Central America. D. krausi venom soluble fraction contains proteases with enzymatic activity on gelatin and casein. Mass spectrometry and venomic analysis confirmed the presence of elastase-like, cathepsin-O-like proteases and a neprilysin-like metalloproteinase. We did not detect phospholipase A2, C or D, nor hyaluronidase activity in the venom. By homology-based venom gland transcriptomic analysis, NDBPs, a β-KTx-like peptide, and other putative toxin transcripts were found, which, together with a p-benzoquinone compound present in the venom, could potentially explain its direct hemolytic and cytotoxic effects in several mammalian cell lines. Cytotoxicity of D. krausi venom was higher than the effect of venoms from two buthid scorpion species distributed in Costa Rica, Centruroides edwardsii and Tityus pachyurus. Even though D. krausi venom was not lethal to mice or crickets, when injected in mouse gastrocnemius muscle at high doses it induced pathological effects at 24 h, which include myonecrosis, weak hemorrhage, and inflammatory infiltration. We observed an apparent thrombotic effect in the skin blood vessels, but no in vitro fibrinogenolytic activity was detected. In crickets, D. krausi venom induced toxicity and paralysis in short periods of time.
Collapse
Affiliation(s)
- Daniela Rojas-Azofeifa
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Elia Diego-García
- Cátedras CONACYT-El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico; Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Belgium
| | - Natalia Ortiz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fabián Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Renato Murillo
- Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San José, Costa Rica
| | - Jan Tytgat
- Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Belgium
| | - Cecilia Díaz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
2
|
Classes, Databases, and Prediction Methods of Pharmaceutically and Commercially Important Cystine-Stabilized Peptides. Toxins (Basel) 2018; 10:toxins10060251. [PMID: 29921767 PMCID: PMC6024828 DOI: 10.3390/toxins10060251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Cystine-stabilized peptides represent a large family of peptides characterized by high structural stability and bactericidal, fungicidal, or insecticidal properties. Found throughout a wide range of taxa, this broad and functionally important family can be subclassified into distinct groups dependent upon their number and type of cystine bonding patters, tertiary structures, and/or their species of origin. Furthermore, the annotation of proteins related to the cystine-stabilized family are under-represented in the literature due to their difficulty of isolation and identification. As a result, there are several recent attempts to collate them into data resources and build analytic tools for their dynamic prediction. Ultimately, the identification and delivery of new members of this family will lead to their growing inclusion into the repertoire of commercial viable alternatives to antibiotics and environmentally safe insecticides. This review of the literature and current state of cystine-stabilized peptide biology is aimed to better describe peptide subfamilies, identify databases and analytics resources associated with specific cystine-stabilized peptides, and highlight their current commercial success.
Collapse
|
3
|
Bioinformatics-Aided Venomics. Toxins (Basel) 2015; 7:2159-87. [PMID: 26110505 PMCID: PMC4488696 DOI: 10.3390/toxins7062159] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 12/12/2022] Open
Abstract
Venomics is a modern approach that combines transcriptomics and proteomics to explore the toxin content of venoms. This review will give an overview of computational approaches that have been created to classify and consolidate venomics data, as well as algorithms that have helped discovery and analysis of toxin nucleic acid and protein sequences, toxin three-dimensional structures and toxin functions. Bioinformatics is used to tackle specific challenges associated with the identification and annotations of toxins. Recognizing toxin transcript sequences among second generation sequencing data cannot rely only on basic sequence similarity because toxins are highly divergent. Mass spectrometry sequencing of mature toxins is challenging because toxins can display a large number of post-translational modifications. Identifying the mature toxin region in toxin precursor sequences requires the prediction of the cleavage sites of proprotein convertases, most of which are unknown or not well characterized. Tracing the evolutionary relationships between toxins should consider specific mechanisms of rapid evolution as well as interactions between predatory animals and prey. Rapidly determining the activity of toxins is the main bottleneck in venomics discovery, but some recent bioinformatics and molecular modeling approaches give hope that accurate predictions of toxin specificity could be made in the near future.
Collapse
|
4
|
He Y, Zhao R, Di Z, Li Z, Xu X, Hong W, Wu Y, Zhao H, Li W, Cao Z. Molecular diversity of Chaerilidae venom peptides reveals the dynamic evolution of scorpion venom components from Buthidae to non-Buthidae. J Proteomics 2013; 89:1-14. [DOI: 10.1016/j.jprot.2013.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/04/2013] [Accepted: 06/09/2013] [Indexed: 11/16/2022]
|
5
|
Hmed B, Serria HT, Mounir ZK. Scorpion peptides: potential use for new drug development. J Toxicol 2013; 2013:958797. [PMID: 23843786 PMCID: PMC3697785 DOI: 10.1155/2013/958797] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/19/2013] [Accepted: 05/20/2013] [Indexed: 12/13/2022] Open
Abstract
Several peptides contained in scorpion fluids showed diverse array of biological activities with high specificities to their targeted sites. Many investigations outlined their potent effects against microbes and showed their potential to modulate various biological mechanisms that are involved in immune, nervous, cardiovascular, and neoplastic diseases. Because of their important structural and functional diversity, it is projected that scorpion-derived peptides could be used to develop new specific drugs. This review summarizes relevant findings improving their use as valuable tools for new drugs development.
Collapse
Affiliation(s)
- BenNasr Hmed
- Laboratory of Pharmacology, Medicine Faculty of Sfax, Street of Majida Boulila, 3029 Sfax, Tunisia
| | - Hammami Turky Serria
- Laboratory of Pharmacology, Medicine Faculty of Sfax, Street of Majida Boulila, 3029 Sfax, Tunisia
| | - Zeghal Khaled Mounir
- Laboratory of Pharmacology, Medicine Faculty of Sfax, Street of Majida Boulila, 3029 Sfax, Tunisia
| |
Collapse
|
6
|
Ruiming Z, Yibao M, Yawen H, Zhiyong D, Yingliang W, Zhijian C, Wenxin L. Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components. BMC Genomics 2010; 11:452. [PMID: 20663230 PMCID: PMC3091649 DOI: 10.1186/1471-2164-11-452] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/28/2010] [Indexed: 11/13/2022] Open
Abstract
Background Lychas mucronatus is one scorpion species widely distributed in Southeast Asia and southern China. Anything is hardly known about its venom components, despite the fact that it can often cause human accidents. In this work, we performed a venomous gland transcriptome analysis by constructing and screening the venom gland cDNA library of the scorpion Lychas mucronatus from Yunnan province and compared it with the previous results of Hainan-sourced Lychas mucronatus. Results A total of sixteen known types of venom peptides and proteins are obtained from the venom gland cDNA library of Yunnan-sourced Lychas mucronatus, which greatly increase the number of currently reported scorpion venom peptides. Interestingly, we also identified nineteen atypical types of venom molecules seldom reported in scorpion species. Surprisingly, the comparative transcriptome analysis of Yunnan-sourced Lychas mucronatus and Hainan-sourced Lychas mucronatus indicated that enormous diversity and vastly abundant difference could be found in venom peptides and proteins between populations of the scorpion Lychas mucronatus from different geographical regions. Conclusions This work characterizes a large number of venom molecules never identified in scorpion species. This result provides a comparative analysis of venom transcriptomes of the scorpion Lychas mucronatus from different geographical regions, which thoroughly reveals the fact that the venom peptides and proteins of the same scorpion species from different geographical regions are highly diversified and scorpion evolves to adapt a new environment by altering the primary structure and abundance of venom peptides and proteins.
Collapse
Affiliation(s)
- Zhao Ruiming
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
7
|
Wu W, Yin S, Ma Y, Wu YL, Zhao R, Gan G, Ding J, Cao Z, Li W. Molecular cloning and electrophysiological studies on the first K(+) channel toxin (LmKTx8) derived from scorpion Lychas mucronatus. Peptides 2007; 28:2306-12. [PMID: 18006119 DOI: 10.1016/j.peptides.2007.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2007] [Revised: 10/05/2007] [Accepted: 10/05/2007] [Indexed: 12/19/2022]
Abstract
LmKTx8, the first toxic gene isolated from the venom of scorpion Lychas mucronatus by constructing cDNA library method, was expressed and characterized physiologically. The mature peptide has 40 residues including six conserved cysteines, and is classified as one of alpha-KTx11 subfamily. Using patch-clamp recording, the recombinant LmKTx8 (rLmKTx8) was used to test the effect on voltage-gated K(+) channels (Kv1.3) stably expressed in COS7 cells and large conductance-Ca(2+)-activated K(+) (BK) channels expressed in HEK293. The results of electrophysiological experiments showed that the rLmKTx8 was a potent inhibitor of Kv1.3 channels with an IC(50)=26.40+/-1.62nM, but 100nM rLmKTx8 did not block the BK currents. LmKTx8 or its analogs might serve as a potential candidate for the development of new drugs for autoimmune diseases.
Collapse
Affiliation(s)
- Wenlan Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Schwartz EF, Schwartz CA, Gómez-Lagunas F, Zamudio FZ, Possani LD. HgeTx1, the first K+-channel specific toxin characterized from the venom of the scorpion Hadrurus gertschi Soleglad. Toxicon 2006; 48:1046-53. [PMID: 17030052 DOI: 10.1016/j.toxicon.2006.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/28/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
A novel toxin was identified, purified and characterized from the venom of the Mexican scorpion Hadrurus gertschi (abbreviated HgeTx1). It has a molecular mass of 3950 atomic mass units (a.m.u.) and contains 36 amino acids with four disulfide bridges established between Cys1-Cys5, Cys2-Cys6, Cys3-Cys7 and Cys4-Cys8. It blocks reversibly the Shaker B K(+)-channels with a Kd of 52nM. HgeTx1 shares 60%, 45% and 40% sequence identity, respectively, with Heterometrus spinnifer toxin1 (HsTX1), Scorpio maurus K(+)-toxin (maurotoxin) and Pandinus imperator toxin1 (Pi1), all four-disulfide bridged toxins. It is 57-58% identical with the other scorpion K(+)-channel toxins that contain only three disulfide bridges. Sequence comparison, chain length and number of disulfide bridges analysis classify HgeTx1 into subfamily 6 of the alpha-KTx scorpion toxins (systematic name: alpha-KTx 6.14).
Collapse
Affiliation(s)
- Elisabeth F Schwartz
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | | | | | | | | |
Collapse
|
9
|
Tan PTJ, Veeramani A, Srinivasan KN, Ranganathan S, Brusic V. SCORPION2: A database for structure–function analysis of scorpion toxins. Toxicon 2006; 47:356-63. [PMID: 16445955 DOI: 10.1016/j.toxicon.2005.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 12/01/2005] [Accepted: 12/06/2005] [Indexed: 10/25/2022]
Abstract
Scorpion toxins are important experimental tools for characterization of vast array of ion channels and serve as scaffolds for drug design. General public database entries contain limited annotation whereby rich structure-function information from mutation studies is typically not available. SCORPION2 contains more than 800 records of native and mutant toxin sequences enriched with binding affinity and toxicity information, 624 three-dimensional structures and some 500 references. SCORPION2 has a set of search and prediction tools that allow users to extract and perform specific queries: text searches of scorpion toxin records, sequence similarity search, extraction of sequences, visualization of scorpion toxin structures, analysis of toxic activity, and functional annotation of previously uncharacterized scorpion toxins. The SCORPION2 database is available at http://sdmc.i2r.a-star.edu.sg/scorpion/.
Collapse
Affiliation(s)
- Paul T J Tan
- Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore, Singapore 119613.
| | | | | | | | | |
Collapse
|
10
|
Tan PTJ, Ranganathan S, Brusic V. Deduction of functional peptide motifs in scorpion toxins. J Pept Sci 2006; 12:420-7. [PMID: 16432807 DOI: 10.1002/psc.744] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Scorpion toxins are important physiological probes for characterizing ion channels. Molecular databases have limited functional annotation of scorpion toxins. Their function can be inferred by searching for conserved motifs in sequence signature databases that are derived statistically but are not necessarily biologically relevant. Mutation studies provide biological information on residues and positions important for structure-function relationship but are not normally used for extraction of binding motifs. 3D structure analyses also aid in the extraction of peptide motifs in which non-contiguous residues are clustered spatially. Here we present new, functionally relevant peptide motifs for ion channels, derived from the analyses of scorpion toxin native and mutant peptides.
Collapse
Affiliation(s)
- Paul T J Tan
- Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613
| | | | | |
Collapse
|
11
|
Ali SA, Wang B, Alam M, Beck A, Stoeva S, Voelter W, Abbasi A, Duszenko M. Structure-activity relationship of an alpha-toxin Bs-Tx28 from scorpion (Buthus sindicus) venom suggests a new alpha-toxin subfamily. Arch Biochem Biophys 2005; 445:81-94. [PMID: 16309623 DOI: 10.1016/j.abb.2005.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/14/2005] [Accepted: 10/14/2005] [Indexed: 11/18/2022]
Abstract
Scorpion venoms are among the most widely known source of peptidyl neurotoxins used for callipering different ion channels, e.g., for Na(+), K(+), Ca(+) or Cl(-). An alpha-toxin (Bs-Tx28) has been purified from the venom of scorpion Buthus sindicus, a common yellow scorpion of Sindh, Pakistan. The primary structure of Bs-Tx28 was established using a combination of MALDI-TOF-MS, LC-ESI-MS, and automated Edman degradation analysis. Bs-Tx28 consists of 65 amino acid residues (7274.3+/-2Da), including eight cysteine residues, and shows very high sequence identity (82-94%) with other long-chain alpha-neurotoxins, active against receptor site-3 of mammalian (e.g., Lqq-IV and Lqh-IV from scorpions Leiurus sp.) and insect (e.g., BJalpha-IT and Od-1 from Buthotus judaicus and Odonthobuthus doriae, respectively) voltage-gated Na(+) channels. Multiple sequence alignment and phylogenetic analysis of Bs-Tx28 with other known alpha- and alpha-like toxins suggests the presence of a new and separate subfamily of scorpion alpha-toxins. Bs-Tx28 which is weakly active in both, mammals and insects (LD(50) 0.088 and 14.3microg/g, respectively), shows strong induction of the rat afferent nerve discharge in a dose-dependent fashion (EC(50)=0.01microg/mL) which was completely abolished in the presence of tetrodotoxin suggesting the binding of Bs-Tx28 to the TTX-sensitive Na(+)-channel. Three-dimensional structural features of Bs-Tx28, established by homology modeling, were compared with other known classical alpha-mammal (AaH-II), alpha-insect (Lqh-alphaIT), and alpha-like (BmK-M4) toxins and revealed subtle variations in the Nt-, Core-, and RT-CT-domains (functional domains) which constitute a "necklace-like" structure differing significantly in all alpha-toxin subfamilies. On the other hand, a high level of conservation has been observed in the conserved hydrophobic surface with the only substitution of W43 (Y43/42) and an additional hydrophobic character at position F40 (L40/A/V/G39), as compared to the other mentioned alpha-toxins. Despite major differences within the primary structure and activities of Bs-Tx28, it shares a common structural and functional motif (e.g., transRT-farCT) within the RT-CT domain which is characteristic of scorpion alpha-mammal toxins.
Collapse
Affiliation(s)
- Syed Abid Ali
- International Center for Chemical Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Rodríguez de la Vega RC, Possani LD. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon 2005; 46:831-44. [PMID: 16274721 DOI: 10.1016/j.toxicon.2005.09.006] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Scorpion venoms contain a large number of bioactive components. Several of the long-chain peptides were shown to be responsible for neurotoxic effects, due to their ability to recognize Na(+) channels and to cause impairment of channel functions. Here, we revisited the basic paradigms in the study of these peptides in the light of recent data concerning their structure-function relationships, their functional divergence and extant biodiversity. The reviewed topics include: the criteria for classification of long-chain peptides according to their function, and a revision of the state-of-the-art knowledge concerning the surface areas of contact of these peptides with known Na(+) channels. Additionally, we compiled a comprehensive list encompassing 191 different amino acid sequences from long-chain peptides purified from scorpion venoms. With this dataset, a phylogenetic tree was constructed and discussed taking into consideration their documented functional divergence. A critical view on problems associated with the study of these scorpion peptides is presented, drawing special attention to the points that need revision and to the subjects under intensive research at this moment, regarding scorpion toxins specific for Na(+) channels and the other related long-chain peptides recently described.
Collapse
Affiliation(s)
- Ricardo C Rodríguez de la Vega
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Av. Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico
| | | |
Collapse
|