1
|
Yoon J, Jo Y, Shin S. Understanding Antimicrobial Peptide Synergy: Differential Binding Interactions and Their Impact on Membrane Integrity. J Phys Chem B 2024; 128:9756-9771. [PMID: 39347577 DOI: 10.1021/acs.jpcb.4c03766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Research on antimicrobial peptides (AMPs) has been conducted as a solution to overcome antibiotic resistance. In particular, the synergistic effect that appears when two or more AMPs are used in combination has been observed. To find an effective synergistic combination, it is necessary to understand the underlying mechanism. However, a consistent explanation for this phenomenon has not yet been provided due to limitations in experimentally determining or predicting the structure of the heteroaggregates formed by the interactions between different AMPs and the interaction of the aggregate surface with the lipid membrane surface. In this study, we conducted molecular dynamics simulations for two heterogeneous aggregates of melittin-indolicidin and pexiganan-indolicidin to observe their structures in the solution phase and their interactions with the lipid membrane. We aimed to determine how the surfaces of these aggregates interact with the lipid membrane. Due to the different amino acid residue sequence characteristics of melittin and pexiganan, we found that when the two AMPs bind to indolicidin, they form aggregates with completely different structural characteristics. Accordingly, the sequence characteristics of pexiganan, which exhibits a relatively unstable structure compared to melittin in aqueous solution or on lipid membranes, allow for a more stable interaction with the lipid membrane when forming aggregates with indolicidin, effectively inhibiting the integrity of the lipid membranes. We also found that the amino acid residues forming the surface of the AMP aggregate show differential binding strengths to different lipid species forming the lipid membrane, thereby disrupting the membrane in a way that weakens its integrity. Through this, we provided insight into the basic principle of how the synergistic effect of AMPs occurs.
Collapse
Affiliation(s)
- Jeseong Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Youngbeom Jo
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seokmin Shin
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Wickline SA, Hou KK, Pan H. Peptide-Based Nanoparticles for Systemic Extrahepatic Delivery of Therapeutic Nucleotides. Int J Mol Sci 2023; 24:ijms24119455. [PMID: 37298407 DOI: 10.3390/ijms24119455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Peptide-based nanoparticles (PBN) for nucleotide complexation and targeting of extrahepatic diseases are gaining recognition as potent pharmaceutical vehicles for fine-tuned control of protein production (up- and/or down-regulation) and for gene delivery. Herein, we review the principles and mechanisms underpinning self-assembled formation of PBN, cellular uptake, endosomal release, and delivery to extrahepatic disease sites after systemic administration. Selected examples of PBN that have demonstrated recent proof of concept in disease models in vivo are summarized to offer the reader a comparative view of the field and the possibilities for clinical application.
Collapse
Affiliation(s)
- Samuel A Wickline
- Division of Cardiology, Department of Medical Engineering, University of South Florida, Tampa, FL 33602, USA
| | - Kirk K Hou
- Department of Ophthalmology, Stein and Doheny Eye Institutes, University of California, Los Angeles, CA 90095, USA
| | - Hua Pan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
3
|
Dürvanger Z, Juhász T, Liliom K, Harmat V. Structures of calmodulin-melittin complexes show multiple binding modes lacking classical anchoring interactions. J Biol Chem 2023; 299:104596. [PMID: 36906144 PMCID: PMC10140167 DOI: 10.1016/j.jbc.2023.104596] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Calmodulin (CaM) is a Ca2+ sensor protein found in all eukaryotic cells that regulates a large number of target proteins in a Ca2+ concentration-dependent manner. As a transient type hub protein, it recognizes linear motifs of its targets, though for the Ca2+-dependent binding no consensus sequence was identified. Its complex with melittin, a major component of bee venom, is often used as a model system of protein - protein complexes. Yet, the structural aspects of the binding are not well understood, as only diverse, low-resolution data are available concerning the association. We present the crystal structure of melittin in complex with Ca2+-saturated calmodulins from two, evolutionarily distant species, Homo sapiens and Plasmodium falciparum representing three binding modes of the peptide. Results - augmented by molecular dynamics simulations - indicate that multiple binding modes can exist for CaM-melittin complexes, as an intrinsic characteristic of the binding. While the helical structure of melittin remains, swapping of its salt bridges and partial unfolding of its C-terminal segment can occur. In contrast to the classical way of target recognition by CaM, we found that different sets of residues can anchor at the hydrophobic pockets of CaM, which were considered as main recognition sites. Finally, the nanomolar binding affinity of the CaM-melittin complex is created by an ensemble of arrangements of similar stability - tight binding is achieved not by optimized specific interactions but by simultaneously satisfying less optimal interaction patterns in co-existing different conformers.
Collapse
Affiliation(s)
- Zsolt Dürvanger
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Károly Liliom
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Veronika Harmat
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary; ELKH-ELTE Protein Modelling Research Group, Eötvös Loránd Research Network, Budapest, Hungary.
| |
Collapse
|
4
|
Ye R, Zheng Y, Chen Y, Wei X, Shi S, Chen Y, Zhu W, Wang A, Yang L, Xu Y, Peng J. Stable Loading and Delivery of Melittin with Lipid-Coated Polymeric Nanoparticles for Effective Tumor Therapy with Negligible Systemic Toxicity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55902-55912. [PMID: 34793125 DOI: 10.1021/acsami.1c17618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Melittin is a potential anticancer candidate with remarkable antitumor activity and ability to overcome tumor drug resistance. However, the clinical applications of melittin are largely restricted by its severe hemolytic activity and nonspecific cytotoxicity after systemic administration. Here, a biocompatible and stable melittin-loaded lipid-coated polymeric nanoparticle (MpG@LPN) formulation that contains a melittin/poly-γ-glutamic acid nanoparticle inner core, a lipid membrane middle layer, and a polyethylene glycol (PEG) and PEG-targeting molecule outer shell was designed. The formulations were prepared by applying a self-assembly procedure based on intermolecular interactions, including electrostatic attraction and hydrophobic effect. The core-shell MpG@LPN presented high efficiency for melittin encapsulation and high stability in physiological conditions. Hemolysis and cell proliferation assays showed that the PEG-modified MpG@LPN had almost no hemolytic activity and nonspecific cytotoxicity even at high concentrations. The modification of targeting molecules on the MpG@LPNs allowed for the selective binding with target tumor cells and cytolytic activity via apoptosis induction. In vivo experiments revealed that MpG@LPNs can remarkably inhibit the growth of tumors without the occurrence of hemolysis and tissue toxicity. Results suggested that the developed MpG@LPN with a core-shell structure can effectively address the main obstacles of melittin in clinical applications and has great potential in cancer treatment.
Collapse
Affiliation(s)
- Ran Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuan Zheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yang Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiaohui Wei
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Sanyuan Shi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuetan Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wanxin Zhu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Anqi Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Liuxin Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- School of Pharmacy and Chemistry, Dali University, Dali City 671000, P. R. China
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
5
|
Ventura CR, Wiedman GR. Substituting azobenzene for proline in melittin to create photomelittin: A light-controlled membrane active peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183759. [PMID: 34506797 DOI: 10.1016/j.bbamem.2021.183759] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022]
Abstract
In this article we present the synthesis and characterization of a new form of the membrane active peptide melittin: photomelittin. This peptide was created by substituting the proline residue in melittin for a synthetic azobenzene amino acid derivative. This azobenzene altered the membrane activity of the peptide while retaining much of the secondary structure. Furthermore, the peptide demonstrates added light-dependent activity in leakage assays. There is a 1.5-fold increase in activity when exposed to UV light as opposed to visible light. The peptides further exhibit light-dependent hemolytic activity against human red blood cells. This will enable future studies optimizing photomelittin and other azobenzene-containing membrane active peptides for uses in medicine, drug delivery, and other biotechnological applications.
Collapse
Affiliation(s)
- Cristina R Ventura
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States of America.
| | - Gregory R Wiedman
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States of America.
| |
Collapse
|
6
|
Yazdian-Robati R, Arab A, Ramezani M, Rafatpanah H, Bahreyni A, Nabavinia MS, Abnous K, Taghdisi SM. Smart aptamer-modified calcium carbonate nanoparticles for controlled release and targeted delivery of epirubicin and melittin into cancer cells in vitro and in vivo. Drug Dev Ind Pharm 2019; 45:603-610. [PMID: 30633594 DOI: 10.1080/03639045.2019.1569029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To explore the effect of combination therapy of epirubicin (Epi) and melittin (Mel) to cancer cells, calcium carbonate nanoparticles (CCN), as carriers, were developed which were modified with MUC1-Dimer aptamers as targeting agents. Both Epi and Mel were delivered at the same time to cancer cells overexpressing the target of MUC1 aptamer, mucin 1 glycoproteins (MCF7 and C26 cells). CCN were prepared with a water-in-oil emulsion method. Epi and Mel were separately encapsulated in CCN and the nanoparticles were modified with MUC1-Dimer aptamers. In vitro studies, including MTT assay, flow cytometry analysis and fluorescence imaging were applied to investigate the targeting and cell proliferation inhibition capabilities of MUC1-Dimer aptamer-CCN-Mel complex and MUC1-Dimer aptamer-CCN-Epi complex in the target (MCF-7 and C26 cells) and nontarget (HepG2) cells. Also, the function of the developed complexes was analyzed using in vivo tumor growth inhibition. The release of Epi from MUC1-Dimer aptamer-CCN-Epi complex was pH-sensitive. Cellular uptake studies showed more internalization of the MUC1-Dimer aptamer-CCN-Epi complex into MCF-7 and C26 cells (target) compared to HepG2 cells (nontarget). Interestingly, the MUC1-Dimer aptamer-CCN-Mel complex and MUC1-Dimer aptamer-CCN-Epi complex indicated very low toxicity as compared to target cells. Moreover, co-delivery of Epi and Mel using the mixture of MUC1-Dimer aptamer-CCN-Mel complex and MUC1-Dimer aptamer-CCN-Epi complex exhibited strong synergistic cytotoxicity in MCF-7 and C26 cells. Furthermore, the presented complexes had a better function to control tumor growth in vivo compared to free Epi.
Collapse
Affiliation(s)
- Rezvan Yazdian-Robati
- a Molecular and Cell biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences , Sari , Iran
| | - Atefeh Arab
- b Department of Pharmaceutical Biotechnology , School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Ramezani
- c Pharmaceutical Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Houshang Rafatpanah
- d Faculty of Medicine, Department of Immunology , Immunology Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amirhossein Bahreyni
- c Pharmaceutical Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Maryam Sadat Nabavinia
- e Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Department of Pharmacognosy , Shahid Sadoughi University of Medical Sciences , Yazd , Iran
| | - Khalil Abnous
- c Pharmaceutical Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Seyed Mohammad Taghdisi
- f Targeted Drug Delivery Research Center , Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
7
|
Abd El-Wahed AA, Khalifa SA, Sheikh BY, Farag MA, Saeed A, Larik FA, Koca-Caliskan U, AlAjmi MF, Hassan M, Wahabi HA, Hegazy MEF, Algethami AF, Büttner S, El-Seedi HR. Bee Venom Composition: From Chemistry to Biological Activity. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019:459-484. [DOI: 10.1016/b978-0-444-64181-6.00013-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
8
|
The Effect of Whole Honey Bee Venom (Apismellifera) on Reducing Skin Infection of Rabbits Caused by Methicillin Resistant Staphylococcus aureus: An In vivo Study. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Effect of dimerized melittin on gastric cancer cells and antibacterial activity. Amino Acids 2018; 50:1101-1110. [PMID: 29770868 DOI: 10.1007/s00726-018-2587-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/11/2018] [Indexed: 01/10/2023]
Abstract
Melittin is the peptide toxin found in bee venom and is effective against cancer cells. To enhance its activity, a branched dimeric form of melittin was designed. The monomeric form of the peptide was more cytotoxic against gastric cancer cells at low concentrations (1-5 μM) than the dimer form, while the cytotoxic effect was comparable at higher concentrations (10 μM). Confocal microscopy showed that both the monomer and dimer forms of melittin with fluorescent label at the C terminus penetrated the cytoplasm and localized at the cell nucleus and disrupted the cell membrane. The results indicated that both peptides localized in the nucleus and no significant difference in penetration was observed between monomer and dimer of melittin. Although the C and N termini are important for melittin activity, using C terminus for dimerization of the peptide resulted in similar activity for the monomer and dimer against bacteria and gastric cancer cells.
Collapse
|
10
|
Ramirez L, Shekhtman A, Pande J. Nuclear Magnetic Resonance-Based Structural Characterization and Backbone Dynamics of Recombinant Bee Venom Melittin. Biochemistry 2018; 57:2775-2785. [PMID: 29668274 DOI: 10.1021/acs.biochem.8b00156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, there has been a resurgence of interest in melittin and its variants as their therapeutic potential has become increasingly evident. Melittin is a 26-residue peptide and a toxic component of honey bee venom. The versatility of melittin in interacting with various biological substrates, such as membranes, glycosaminoglycans, and a variety of proteins, has inspired a slew of studies that aim to improve our understanding of the structural basis of such interactions. However, these studies have largely focused on melittin solutions at high concentrations (>1 mM), even though melittin is generally effective at lower (micromolar) concentrations. Here we present high-resolution nuclear magnetic resonance studies in the lower-concentration regime using a novel method to produce isotope-labeled (15N and 13C) recombinant melittin. We provide residue-specific structural characterization of melittin in dilute aqueous solution and in 2,2,2-trifluoroethanol/water mixtures, which mimic melittin structure-function and interactions in aqueous and membrane-like environments, respectively. We find that the cis-trans isomerization of Pro14 is key to changes in the secondary structure of melittin. Thus, this study provides residue-specific structural information about melittin in the free state and in a model of the substrate-bound state. These results, taken together with published work from other laboratories, reveal the peptide's structural versatility that resembles that of intrinsically disordered proteins and peptides.
Collapse
Affiliation(s)
- Lisa Ramirez
- Department of Chemistry , University at Albany, State University of New York , Albany , New York 12222 , United States
| | - Alexander Shekhtman
- Department of Chemistry , University at Albany, State University of New York , Albany , New York 12222 , United States
| | - Jayanti Pande
- Department of Chemistry , University at Albany, State University of New York , Albany , New York 12222 , United States
| |
Collapse
|
11
|
Zhao H, Peng Z, Du Y, Xu K, Guo L, Yang S, Ma W, Jiang Y. Comparative antennal transcriptome of Apis cerana cerana from four developmental stages. Gene 2018; 660:102-108. [PMID: 29574189 DOI: 10.1016/j.gene.2018.03.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/08/2018] [Accepted: 03/20/2018] [Indexed: 01/23/2023]
Abstract
Apis cerana cerana, an important endemic honey bee species in China, possesses valuable characteristics such as a sensitive olfactory system, good foraging ability, and strong resistance to parasitic mites. Here, we performed transcriptome sequencing of the antenna, the major chemosensory organ of the bee, using an Illumina sequencer, to identify typical differentially expressed genes (DEGs) in adult worker bees of different ages, namely, T1 (1 day); T2 (10 days); T3 (15 days); and T4 (25 days). Surprisingly, the expression levels of DEGs changed significantly between the T1 period and the other three periods. All the DEGs were classified into 26 expression profiles by trend analysis. Selected trend clusters were analyzed, and valuable information on gene expression patterns was obtained. We found that the expression levels of genes encoding cuticle proteins declined after eclosion, while those of immunity-related genes increased. In addition, genes encoding venom proteins and major royal jelly proteins were enriched at the T2 stage; small heat shock proteins showed significantly higher expression at the T3 stage; and some metabolism-related genes were more highly expressed at the T4 stage. The DEGs identified in this study may serve as a valuable resource for the characterization of expression patterns of antennal genes in A. cerana cerana. Furthermore, this study provides insights into the relationship between labor division in social bees and gene function.
Collapse
Affiliation(s)
- Huiting Zhao
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhu Peng
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yali Du
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Kai Xu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Lina Guo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shuang Yang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Weihua Ma
- Institute of Horticulture, Shanxi Academy of Agricultural Science, Taiyuan, Shanxi 030031, China
| | - Yusuo Jiang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China.
| |
Collapse
|
12
|
Zsila F, Juhász T, Bősze S, Horváti K, Beke-Somfai T. Hemin and bile pigments are the secondary structure regulators of intrinsically disordered antimicrobial peptides. Chirality 2017; 30:195-205. [PMID: 29110341 DOI: 10.1002/chir.22784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 01/10/2023]
Abstract
The interaction of protoporphyrin compounds of human origin with the major bee venom component melittin (26 a.a., Z +6) and its hybrid derivative (CM15, 15 a.a., Z +6) were studied by a combination of various spectroscopic methods. Throughout a two-state, concentration-dependent process, hemin and its metabolites (biliverdin, bilirubin, bilirubin ditaurate) increase the parallel β-sheet content of the natively unfolded melittin, suggesting the oligomerization of the peptide chains. In contrast, α-helix promoting effect was observed with the also disordered but more cationic CM15. According to fluorescence quenching experiments, the sole Trp residue of melittin is the key player during the binding, in the vicinity of which the first pigment molecule is accommodated presumably making indole-porphyrin π-π stacking interaction. As circular dichroism titration data suggest, cooperative association of additional ligands subsequently occurs, resulting in multimeric complexes with an apparent dissociation constant ranged from 20 to 65 μM. Spectroscopic measurements conducted with the bilirubin catabolite urobilin and stercobilin refer to the requirement of intact dipyrrinone moieties for inducing secondary structure transformations. The binding topography of porphyrin rings on a model parallel β-sheet motif was evaluated by absorption spectroscopy and computational modeling showing a slipped-cofacial binding mode responsible for the red shift and hypochromism of the Soret band. Our results may aid to recognize porphyrin-responsive binding motifs of biologically relevant, intrinsically disordered peptides and proteins, where transient conformations play a vital role in their functions.
Collapse
Affiliation(s)
- Ferenc Zsila
- Biomolecular Self-Assembly Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tünde Juhász
- Biomolecular Self-Assembly Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Kata Horváti
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Beke-Somfai
- Biomolecular Self-Assembly Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
13
|
Burton MG, Huang QM, Hossain MA, Wade JD, Palombo EA, Gee ML, Clayton AHA. Direct Measurement of Pore Dynamics and Leakage Induced by a Model Antimicrobial Peptide in Single Vesicles and Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6496-6505. [PMID: 27281288 DOI: 10.1021/acs.langmuir.6b00596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antimicrobial peptides are promising therapeutic alternatives to counter growing antimicrobial resistance. Their precise mechanism of action remains elusive, however, particularly with respect to live bacterial cells. We investigated the interaction of a fluorescent melittin analogue with single giant unilamellar vesicles, giant multilamellar vesicles, and bilamellar Gram-negative Escherichia coli (E. coli) bacteria. Time-lapse fluorescence lifetime imaging microscopy was employed to determine the population distribution of the fluorescent melittin analogue between pore state and membrane surface state, and simultaneously measure the leakage of entrapped fluorescent species from the vesicle (or bacterium) interior. In giant unilamellar vesicles, leakage from vesicle interior was correlated with an increase in level of pore states, consistent with a stable pore formation mechanism. In giant multilamellar vesicles, vesicle leakage occurred more gradually and did not appear to correlate with increased pore states. Instead pore levels remained at a low steady-state level, which is more in line with coupled equilibria. Finally, in single bacterial cells, significant increases in pore levels were observed over time, which were correlated with only partial loss of cytosolic contents. These observations suggested that pore formation, as opposed to complete dissolution of membrane, was responsible for the leakage of contents in these systems, and that the bacterial membrane has an adaptive capacity that resists peptide attack. We interpret the three distinct pore dynamics regimes in the context of the increasing physical and biological complexity of the membranes.
Collapse
Affiliation(s)
| | | | | | | | - Enzo A Palombo
- Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Victoria 3122, Australia
| | | | - Andrew H A Clayton
- Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Victoria 3122, Australia
| |
Collapse
|
14
|
The protective effect of bee venom on fibrosis causing inflammatory diseases. Toxins (Basel) 2015; 7:4758-72. [PMID: 26580653 PMCID: PMC4663532 DOI: 10.3390/toxins7114758] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/24/2015] [Accepted: 11/05/2015] [Indexed: 02/06/2023] Open
Abstract
Bee venom therapy is a treatment modality that may be thousands of years old and involves the application of live bee stings to the patient’s skin or, in more recent years, the injection of bee venom into the skin with a hypodermic needle. Studies have proven the effectiveness of bee venom in treating pathological conditions such as arthritis, pain and cancerous tumors. However, there has not been sufficient review to fully elucidate the cellular mechanisms of the anti-inflammatory effects of bee venom and its components. In this respect, the present study reviews current understanding of the mechanisms of the anti-inflammatory properties of bee venom and its components in the treatment of liver fibrosis, atherosclerosis and skin disease.
Collapse
|
15
|
May JC, McLean JA. A uniform field ion mobility study of melittin and implications of low-field mobility for resolving fine cross-sectional detail in peptide and protein experiments. Proteomics 2015; 15:2862-71. [DOI: 10.1002/pmic.201400551] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/04/2015] [Accepted: 04/14/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Jody C. May
- Department of Chemistry, Center for Innovative Technology; Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt Institute of Chemical Biology; Vanderbilt University; Nashville TN USA
| | - John A. McLean
- Department of Chemistry, Center for Innovative Technology; Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt Institute of Chemical Biology; Vanderbilt University; Nashville TN USA
| |
Collapse
|
16
|
Fauth EVF, Cilli EM, Ligabue-Braun R, Verli H. Differential effect of solution conditions on the conformation of the actinoporins Sticholysin II and Equinatoxin II. AN ACAD BRAS CIENC 2015; 86:1949-62. [PMID: 25590731 DOI: 10.1590/0001-3765201420140270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/11/2014] [Indexed: 11/22/2022] Open
Abstract
Actinoporins are a family of pore-forming proteins with hemolytic activity. The structural basis for such activity appears to depend on their correct folding. Such folding encompasses a phosphocholine binding site, a tryptophan-rich region and the activity-related N-terminus segment. Additionally, different solution conditions are known to be able to influence the pore formation by actinoporins, as for Sticholysin II (StnII) and Equinatoxin II (EqtxII). In this context, the current work intends to characterize the influence of distinct solution conditions in the conformational behavior of these proteins through molecular dynamics (MD) simulations. The obtained data offer structural insights into actinoporins dynamics in solution, characterizing its conformational behavior at the atomic level, in accordance with previous experimental data on StnII and EqtxII hemolytic activities.
Collapse
Affiliation(s)
| | - Eduardo M Cilli
- Departamento de Bioquímica e Tecnologia Química, UNESP, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | | | - Hugo Verli
- Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brasil
| |
Collapse
|
17
|
Abstract
Melittin is a major active component of bee venom, and it exhibits strong biological activity. Recent reports have demonstrated that melittin has anti-tumor effects on many kinds of tumor cells through direct interaction with cell transduction mediators and influencing cellular signaling pathways, induction of apoptotic or necrotic cell death, and inhibition of growth and proliferationin vivo or in vitro. Nanotechnology and genetic engineering provide technical support to the safe and targeted delivery of melittin to the body. This review summarizes recent findings on the anti-tumor potential of melittin in tumors of different types.
Collapse
|
18
|
Zhang L, Yang Y, Tang Y, Zhao Y, Cao Y, Su B, Fu P. Recovery from AKI following multiple wasp stings: a case series. Clin J Am Soc Nephrol 2013; 8:1850-6. [PMID: 24009218 DOI: 10.2215/cjn.12081112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE To observe the outcomes of AKI following multiple wasp stings. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Eighty-one patients (mean age ± SD, 45.5 ± 14.7 years; 55 men and 26 women; mean Acute Physiology and Chronic Health Evaluation II score, 16.85 ± 2.78) with AKI following multiple wasp stings between 1997 and 2011 were retrospectively analyzed. Data on their demographic characteristics, initial modalities of renal replacement therapy (RRT), urine output, serum creatinine, bilirubin, myoglobin, and other variables were collected. Renal outcomes included complete recovery of kidney function, CKD, and death. Subgroup analysis was performed according to initial modality of RRT in the first 48 hours, including continuous veno-venous hemofiltration (CVVH), intermittent hemodialysis (IHD), and CVVH plus plasma exchange (PE). RESULTS Of the 75 patients available for follow-up, 7 (9.3%) died, and 8 (10.7%, all in the IHD group) developed CKD. The average RRT time was 18.2 ± 8.4 days, and the average kidney function recovery time was 36.0 (29.0, 41.0) days. Subgroup analysis showed no difference in the mortality rates between the CVVH, CVVH + PE, and IHD groups (8.0%, 7.1%, and 11.1%, respectively; P>0.99). The recovery time for kidney function was significantly shorter in the CVVH and CVVH + PE groups than in the IHD group (31.9 ± 8.5 days, 28.6 ± 9.4 days, and 41.6 ± 8.1 days, respectively; P<0.001). CONCLUSIONS This is a large case series report on the outcomes of patients with AKI following multiple wasp stings. Most patients survived with complete recovery of their kidney function. Despite the lack of difference in mortality rates, the patients who began RRT with CVVH and CVVH + PE experienced a better and more rapid recovery of kidney function than those initiated with IHD.
Collapse
Affiliation(s)
- Ling Zhang
- Division of Nephrology and , †Division of Emergency, West China Hospital of Sichuan University, Sichuan, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Gajski G, Garaj-Vrhovac V. Melittin: a lytic peptide with anticancer properties. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:697-705. [PMID: 23892471 DOI: 10.1016/j.etap.2013.06.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/12/2013] [Accepted: 06/20/2013] [Indexed: 05/28/2023]
Abstract
Melittin (MEL) is a major peptide constituent of bee venom that has been proposed as one of the upcoming possibilities for anticancer therapy. Recent reports point to several mechanisms of MEL cytotoxicity in different types of cancer cells such as cell cycle alterations, effect on proliferation and/or growth inhibition, and induction of apoptotic and necrotic cell death trough several cancer cell death mechanisms, including the activation of caspases and matrix metalloproteinases. Although cytotoxic to a broad spectrum of tumour cells, the peptide is also toxic to normal cells. Therefore its therapeutic potential cannot be achieved without a proper delivery vehicle which could be overcome by MEL nanoparticles that possess the ability to safely deliver significant amount of MEL intravenously, and to target and kill tumours. This review paper summarizes the current knowledge and brings latest research findings on the anticancer potential of this lytic peptide with diverse functions.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia.
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
Chiodi CG, Verli H. Structural characterization of NETNES glycopeptide from Trypanosoma cruzi. Carbohydr Res 2013; 373:28-34. [PMID: 23578542 DOI: 10.1016/j.carres.2013.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 11/26/2022]
Abstract
Trypanosoma cruzi is a protozoan, responsible for Chagas disease, that parasites triatomines and some vertebrates, mainly Homo sapiens. In 2010, nearly 10 million people in whole world, most from Latin America, had Chagas disease, which is an illness of high morbidity, low mortality, and serious problems of quality of life. The available treatment has high toxicity and low efficacy at chronic phase. Some of the protozoan antigenic or virulence factors include complex carbohydrate structures that, due to their uniqueness, may constitute potential selective targets for the development of new treatments. One example of such structures is NETNES, a low abundance T. cruzi glycopeptide, comprising 13 amino acid residues, one or two N-glycosylation chains, a GPI anchor and two P-glycosylations. In this context, the current work aims to obtain an atomic model for NETNES, including its glycan chains and membrane attachment, in order to contribute in the characterization of its structure and dynamics. Based on POPC and GPI models built in agreement with experimental data, our results indicate that, in the first third of the simulation, NETNES peptide is very flexible in solution, bending itself between asparagine residues and lying down on some carbohydrates and membrane, exposing amino acid residues and some other glycans, mainly terminal mannoses, to the extracellular medium, remaining in this position until the end of simulations.
Collapse
Affiliation(s)
- Carla G Chiodi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91500-970, RS, Brazil.
| | | |
Collapse
|
21
|
Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev 2013; 65:121-38. [PMID: 23026636 PMCID: PMC3565049 DOI: 10.1016/j.addr.2012.09.041] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/13/2012] [Accepted: 09/20/2012] [Indexed: 12/22/2022]
Abstract
Targeting of drugs and their carrier systems by using receptor-mediated endocytotic pathways was in its nascent stages 25 years ago. In the intervening years, an explosion of knowledge focused on design and synthesis of nanoparticulate delivery systems as well as elucidation of the cellular complexity of what was previously-termed receptor-mediated endocytosis has now created a situation when it has become possible to design and test the feasibility of delivery of highly specific nanoparticle drug carriers to specific cells and tissue. This review outlines the mechanisms governing the major modes of receptor-mediated endocytosis used in drug delivery and highlights recent approaches using these as targets for in vivo drug delivery of nanoparticles. The review also discusses some of the inherent complexity associated with the simple shift from a ligand-drug conjugate versus a ligand-nanoparticle conjugate, in terms of ligand valency and its relationship to the mode of receptor-mediated internalization.
Collapse
Affiliation(s)
- Shi Xu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Bogdan Z. Olenyuk
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Curtis T. Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| |
Collapse
|
22
|
Cho BJ, Kwon KR. Experimental study of antigenicity test of Sweet Bee Venom in Guinea Pigs. J Pharmacopuncture 2011. [DOI: 10.3831/kpi.2011.14.4.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
23
|
An JC, Kwon KR. Effects of Sweet Bee Venom on the Central Nervous System in Rats -using the Functional Observational Battery-. J Pharmacopuncture 2011. [DOI: 10.3831/kpi.2011.14.3.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
24
|
Lee JY, Kwon KR. Effects of Sweet Bee Venom on the respiratory system in Rats. J Pharmacopuncture 2011. [DOI: 10.3831/kpi.2011.14.3.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
25
|
Irudayam SJ, Berkowitz ML. Influence of the arrangement and secondary structure of melittin peptides on the formation and stability of toroidal pores. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2258-66. [DOI: 10.1016/j.bbamem.2011.04.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/21/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
|
26
|
Kwon HY, Kwon KR. Study of four weeks repeated-dose toxic test of Sweet Bee Venom in rats Original Articles. J Pharmacopuncture 2011. [DOI: 10.3831/kpi.2011.14.1.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
27
|
Nishikawa H, Kitani S. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A(2)-induced degranulation in mast cells. Toxicol Appl Pharmacol 2011; 252:228-36. [PMID: 21334356 DOI: 10.1016/j.taap.2011.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 12/25/2022]
Abstract
Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of β-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation and cytotoxicity, which were strongly inhibited by mono-sialoganglioside (G(M1)), di-sialoganglioside (G(D1a)) and tri-sialoganglioside (G(T1b)). In contrast, honeybee venom-derived phospholipase A(2) induced the net degranulation directly without cytotoxicity, which was not inhibited by G(M1), G(D1a) and G(T1b). For analysis of distribution of Gα(q) and Gα(i) protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of Gα(q) and Gα(i) at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A(2)-induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A(2)-induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting.
Collapse
Affiliation(s)
- Hirofumi Nishikawa
- Health Service Center, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | | |
Collapse
|
28
|
Park JS, Lee KH, Kwon KR. Study of four week repeated dose toxic test of Sweet Bee Venom in Beagle Dogs. J Pharmacopuncture 2010. [DOI: 10.3831/kpi.2010.13.4.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
29
|
Yoon HC, Lee KH, Kwon KR. Study of single dose toxic test of Sweet Bee Venom in Beagle Dogs. J Pharmacopuncture 2010. [DOI: 10.3831/kpi.2010.13.4.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
30
|
Lim CS, Lee KH, Kwon KR. Effects of Sweet Bee Venom on cardiovascular system in the conscious telemetered Beagle Dogs. J Pharmacopuncture 2010. [DOI: 10.3831/kpi.2010.13.3.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
31
|
Černe K, Kristan KČ, Budihna MV, Stanovnik L. Mechanisms of changes in coronary arterial tone induced by bee venom toxins. Toxicon 2010; 56:305-12. [DOI: 10.1016/j.toxicon.2010.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 03/05/2010] [Accepted: 03/10/2010] [Indexed: 11/26/2022]
|
32
|
Peng HT, Huang Huang, Shek PN, Charbonneau S, Blostein MD. PEGylation of Melittin: Structural Characterization and Hemostatic Effects. J BIOACT COMPAT POL 2010. [DOI: 10.1177/0883911509354230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To promote and understand the structure—property relationship for hemostasis, we modified melittin (MLT) using a four-arm poly(ethylene glycol) (PEG) with N-hydroxysuccinimide ester. The PEGylation was characterized by FTIR, MALDI-MS, NMR, a bicinchoninic acid assay, circular dichroism, hemolysis assay, and thromboelastography. Changes in the reaction conditions affected the extent of the modification, the numbers of MLT conjugated to PEG arms, and possible PEGylation sites. The reaction at pH 9.2 with a high MLT/PEG ratio, resulted in the highest modification. Reactions in dimethylsulfoxide (DMSO) resulted in more multi-arm coupled MLT, reaching a maximum of four MLT per PEG. The helicity of the modified peptide, relative to the native peptide, was essentially maintained in DMSO, but substantially lost at pH 9.2. PEGylation reduced the hemolytic effects of MLT and subsequently changed its coagulation profiles. The overall hemostatic effects of MLT modified in DMSO indicate that this may be a convenient approach to the PEGylation of biomolecules for biomedical applications.
Collapse
Affiliation(s)
- Henry T. Peng
- Defence Research and Development Canada - Toronto, 1133 Sheppard Avenue West, P.O. Box 2000, Toronto, Ontario, Canada,
| | - Huang Huang
- Defence Research and Development Canada - Toronto, 1133 Sheppard Avenue West, P.O. Box 2000, Toronto, Ontario, Canada
| | - Pang N. Shek
- Defence Research and Development Canada - Toronto, 1133 Sheppard Avenue West, P.O. Box 2000, Toronto, Ontario, Canada
| | - Sophie Charbonneau
- Lady Davis Institute of Medical Research, Jewish General Hospital McGill University, Montreal, Quebec, Canada
| | - Mark D. Blostein
- Lady Davis Institute of Medical Research, Jewish General Hospital McGill University, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Kang KS, Kwon KR. Experimental studies of validation and stability of Sweet Bee Venom using HPLC. J Pharmacopuncture 2009. [DOI: 10.3831/kpi.2009.12.4.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
34
|
|
35
|
Lima LMTR, Becker CF, Giesel GM, Marques AF, Cargnelutti MT, de Oliveira Neto M, Monteiro RQ, Verli H, Polikarpov I. Structural and thermodynamic analysis of thrombin:suramin interaction in solution and crystal phases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:873-81. [PMID: 19332154 DOI: 10.1016/j.bbapap.2009.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 02/24/2009] [Accepted: 03/09/2009] [Indexed: 11/15/2022]
Abstract
Suramin is a hexasulfonated naphthylurea which has been recently characterized as a non-competitive inhibitor of human alpha-thrombin activity over fibrinogen, although its binding site and mode of interaction with the enzyme remain elusive. Here, we determined two X-ray structure of the thrombin:suramin complex, refined at 2.4 A resolution. While a single thrombin:suramin complex was found in the asymmetric unit cell of the crystal, some of the crystallographic contacts with symmetrically related molecules are mediated by both the enzyme and the ligand. Molecular dynamics simulations with the 1:1 complex demonstrate a large rearrangement of suramin in the complex, but with the protein scaffold and the more extensive protein-ligand regions keep unchanged. Small-angle X-ray scattering measurements at high micromolar concentration demonstrate a suramin-induced dimerization of the enzyme. These data indicating a dissimilar binding mode in the monomeric and oligomeric states, with a monomeric, 1:1 complex to be more likely to exist at the thrombin physiological, nanomolar concentration range. Collectively, close understanding on the structural basis for interaction is given which might establish a basis for design of suramin analogues targeting thrombin.
Collapse
Affiliation(s)
- Luis Maurício T R Lima
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Riboldi GP, Verli H, Frazzon J. Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein. BMC BIOCHEMISTRY 2009; 10:3. [PMID: 19187533 PMCID: PMC2644719 DOI: 10.1186/1471-2091-10-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 02/02/2009] [Indexed: 11/10/2022]
Abstract
Background Iron-sulfur clusters are ubiquitous and evolutionarily ancient inorganic prosthetic groups, the biosynthesis of which depends on complex protein machineries. Three distinct assembly systems involved in the maturation of cellular Fe-S proteins have been determined, designated the NIF, ISC and SUF systems. Although well described in several organisms, these machineries are poorly understood in Gram-positive bacteria. Within the Firmicutes phylum, the Enterococcus spp. genus have recently assumed importance in clinical microbiology being considered as emerging pathogens for humans, wherein Enterococcus faecalis represents the major species associated with nosocomial infections. The aim of this study was to carry out a phylogenetic analysis in Enterococcus faecalis V583 and a structural and conformational characterisation of it SufU protein. Results BLAST searches of the Enterococcus genome revealed a series of genes with sequence similarity to the Escherichia coli SUF machinery of [Fe-S] cluster biosynthesis, namely sufB, sufC, sufD and SufS. In addition, the E. coli IscU ortholog SufU was found to be the scaffold protein of Enterococcus spp., containing all features considered essential for its biological activity, including conserved amino acid residues involved in substrate and/or co-factor binding (Cys50,76,138 and Asp52) and, phylogenetic analyses showed a close relationship with orthologues from other Gram-positive bacteria. Molecular dynamics for structural determinations and molecular modeling using E. faecalis SufU primary sequence protein over the PDB:1su0 crystallographic model from Streptococcus pyogenes were carried out with a subsequent 50 ns molecular dynamic trajectory. This presented a stable model, showing secondary structure modifications near the active site and conserved cysteine residues. Molecular modeling using Haemophilus influenzae IscU primary sequence over the PDB:1su0 crystal followed by a MD trajectory was performed to analyse differences in the C-terminus region of Gram-positive SufU and Gram-negative orthologous proteins, in which several modifications in secondary structure were observed. Conclusion The data describe the identification of the SUF machinery for [Fe-S] cluster biosynthesis present in the Firmicutes genome, showing conserved sufB, sufC, sufD and sufS genes and the presence of the sufU gene coding for scaffold protein, instead of sufA; neither sufE nor sufR are present. Primary sequences and structural analysis of the SufU protein demonstrated its structural-like pattern to the scaffold protein IscU nearby on the ISC machinery. E. faecalis SufU molecular modeling showed high flexibility over the active site regions, and demonstrated the existence of a specific region in Firmicutes denoting the Gram positive region (GPR), suggested as a possible candidate for interaction with other factors and/or regulators.
Collapse
Affiliation(s)
- Gustavo P Riboldi
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | |
Collapse
|
37
|
Liu S, Yu M, He Y, Xiao L, Wang F, Song C, Sun S, Ling C, Xu Z. Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology 2008; 47:1964-73. [PMID: 18506888 DOI: 10.1002/hep.22240] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED Melittin, a water-soluble toxic peptide derived from bee venom of Apis mellifera was reported to have inhibitory effects on hepatocellular carcinoma (HCC). However, its role in antimetastasis and the underlying mechanism remains elusive. By utilizing both HCC cell lines and an animal model based assay system, we found that Rac1, which has been shown to be involved in cancer cell metastasis, is highly expressed in aggressive HCC cell lines and its activity correlated with cell motility and cytoskeleton polymerization. In addition, Rac1-dependent activity and metastatic potential of aggressive HCC cells are remarkably high in both cellular and nude mouse models. We provide evidence here that melittin inhibits the viability and motility of HCC cells in vitro, which correlates with its suppression of Rac1-dependent activity, cell motility, and microfilament depolymerization. Furthermore, melittin suppresses both HCC metastasis and Rac1-dependent activity in nude mouse models. The specificity of the effect of melittin on Rac1 was confirmed in HCC cells both in vitro and in vivo. CONCLUSION Melittin inhibits tumor cell metastasis by reducing cell motility and migration via the suppression of Rac1-dependent pathway, suggesting that melittin is a potential therapeutic agent for HCC.
Collapse
Affiliation(s)
- Shujing Liu
- Department of Traditional Chinese Medicine, Changhai Hospital, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|