1
|
Han Q, Zhou Y, Zi Y, Zhang R, Feng T, Zou R, Zhu W, Wang Y, Duan H. Discovery of piperonyl-tethered sulfoximines as novel low bee-toxicity aphicides targeting Amelα1/ratβ2 complex. Int J Biol Macromol 2023; 253:126719. [PMID: 37678680 DOI: 10.1016/j.ijbiomac.2023.126719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Nicotinic acetylcholine receptor (nAChR) is recognized as a significant insecticide target for neonicotinoids and some agonists. In this study, the nAChR α1 subunit from Apis mellifera was first found to be narrowly tuned to different bee toxicity insecticides, namely, sulfoxaflor (SFX) and flupyradifurone (FPF). Hence, novel sulfoximine derivatives 7a-h were rationally designed and synthesized by introducing a benzo[d][1,3]dioxole moiety into a unique sulfoximine skeleton based on the binding cavity characteristics of Amelα1/ratβ2. The two electrode voltage clamp responses of 7a-h were obviously lower than that of SFX, indicating their potentially low bee toxicity. Besides, representative compounds 7b and 7g exhibited low bee toxicity (LD50 > 11.0 μg/bee at 48 h) revealed by acute contact toxicity bioassays. Molecular modelling results indicated that Ile152, Ala151, and Val160 from honeybee subunit Amelα1 and Lys144 and Trp80 from aphid subunit Mpα1 may be crucial for bee toxicity and aphicidal activity, respectively. These results clarify the toxic mechanism of agonist insecticides on nontargeted pollinators and reveal novel scaffold sulfoximine aphicidal candidates with low bee toxicity. These results will provide a new perspective on the rational design and highly effective development of novel eco-friendly insecticides based on the structure of the nAChR subunit.
Collapse
Affiliation(s)
- Qing Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Yuxin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China
| | - Yunjiang Zi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Rulei Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Tianyu Feng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Renxuan Zou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Wenya Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China.
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China.
| |
Collapse
|
2
|
Grillberger K, Cöllen E, Trivisani CI, Blum J, Leist M, Ecker GF. Structural Insights into Neonicotinoids and N-Unsubstituted Metabolites on Human nAChRs by Molecular Docking, Dynamics Simulations, and Calcium Imaging. Int J Mol Sci 2023; 24:13170. [PMID: 37685977 PMCID: PMC10487998 DOI: 10.3390/ijms241713170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 09/10/2023] Open
Abstract
Neonicotinoid pesticides were initially designed in order to achieve species selectivity on insect nicotinic acetylcholine receptors (nAChRs). However, concerns arose when agonistic effects were also detected in human cells expressing nAChRs. In the context of next-generation risk assessments (NGRAs), new approach methods (NAMs) should replace animal testing where appropriate. Herein, we present a combination of in silico and in vitro methodologies that are used to investigate the potentially toxic effects of neonicotinoids and nicotinoid metabolites on human neurons. First, an ensemble docking study was conducted on the nAChR isoforms α7 and α3β4 to assess potential crucial molecular initiating event (MIE) interactions. Representative docking poses were further refined using molecular dynamics (MD) simulations and binding energy calculations using implicit solvent models. Finally, calcium imaging on LUHMES neurons confirmed a key event (KE) downstream of the MIE. This method was also used to confirm the predicted agonistic effect of the metabolite descyano-thiacloprid (DCNT).
Collapse
Affiliation(s)
- Karin Grillberger
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Eike Cöllen
- In Vitro Toxicology and Biomedicine, University of Konstanz, 78457 Konstanz, Germany
| | | | - Jonathan Blum
- In Vitro Toxicology and Biomedicine, University of Konstanz, 78457 Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, University of Konstanz, 78457 Konstanz, Germany
| | - Gerhard F. Ecker
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Wei N, Chu Y, Liu H, Xu Q, Jiang T, Yu R. Antagonistic Mechanism of α-Conotoxin BuIA toward the Human α3β2 Nicotinic Acetylcholine Receptor. ACS Chem Neurosci 2021; 12:4535-4545. [PMID: 34738810 DOI: 10.1021/acschemneuro.1c00568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that are abundantly expressed in the central and peripheral nervous systems, playing an important role in mediating neurotransmitter release and inter-synaptic signaling. Dysfunctional nAChRs are associated with neurological disorders, and studying the structure and function of nAChRs is essential for development of drugs or strategies for treatment of related diseases. α-Conotoxins are selective antagonists of the nAChR and are an important class of drug leads. So far, the antagonistic mechanism of α-conotoxins toward the nAChRs is still unclear. In this study, we built an α3β2 nAChR homology model and investigated its conformational transition mechanism upon binding with a highly potent inhibitor, α-conotoxin BuIA, through μs molecular dynamic simulations and site-directed mutagenesis studies. The results suggested that the α3β2 nAChR underwent global conformational transitions and was stabilized into a closed state with three hydrophobic gates present in the transmembrane domain by BuIA. Finally, the probable antagonistic mechanism of BuIA was proposed. Overall, the closed-state model of the α3β2 nAChR bound with BuIA is not only essential for understanding the antagonistic mechanism of α-conotoxins but also particularly valuable for development of therapeutic inhibitors in future.
Collapse
Affiliation(s)
- Ningning Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yanyan Chu
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266100, China
| | - Huijie Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Qingliang Xu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Tao Jiang
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Rilei Yu
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266100, China
| |
Collapse
|
4
|
Hamouda AK, Bautista MR, Akinola LS, Alkhlaif Y, Jackson A, Carper M, Toma WB, Garai S, Chen YC, Thakur GA, Fowler CD, Damaj MI. Potentiation of (α4)2(β2)3, but not (α4)3(β2)2, nicotinic acetylcholine receptors reduces nicotine self-administration and withdrawal symptoms. Neuropharmacology 2021; 190:108568. [PMID: 33878302 PMCID: PMC8169606 DOI: 10.1016/j.neuropharm.2021.108568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/28/2021] [Accepted: 04/10/2021] [Indexed: 11/26/2022]
Abstract
The low sensitivity (α4)3(β2)2 (LS) and high sensitivity (α4)2(β2)3 (HS) nAChR isoforms may contribute to a variety of brain functions, pathophysiological processes, and pharmacological effects associated with nicotine use. In this study, we examined the contributions of the LS and HS α4β2 nAChR isoforms in nicotine self-administration, withdrawal symptoms, antinociceptive and hypothermic effects. We utilized two nAChR positive allosteric modulators (PAMs): desformylflustrabromine (dFBr), a PAM of both the LS and HS α4β2 nAChRs, and CMPI, a PAM selective for the LS nAChR. We found that dFBr, but not CMPI, decreased intravenous nicotine self-administration in male mice in a dose-dependent manner. Unlike dFBr, which fully reverses somatic and affective symptoms of nicotine withdrawal, CMPI at doses up to 15 mg/kg in male mice only partially reduced nicotine withdrawal-induced somatic signs, anxiety-like behavior and sucrose preference, but had no effects on nicotine withdrawal-induced hyperalgesia. These results indicate that potentiation of HS α4β2 nAChRs is necessary to modulate nicotine's reinforcing properties that underlie nicotine intake and to reverse nicotine withdrawal symptoms that influence nicotine abstinence. In contrast, both dFBr and CMPI enhanced nicotine's hypothermic effect and reduced nicotine's antinociceptive effects in male mice. Therefore, these results indicate a more prevalent role of HS α4β2 nAChR isoforms in mediating various behavioral effects associated with nicotine, whereas the LS α4β2 nAChR isoform has a limited role in mediating body temperature and nociceptive responses. These findings will facilitate the development of more selective, efficacious, and safe nAChR-based therapeutics for nicotine addiction treatment.
Collapse
Affiliation(s)
- Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Texas at Tyler, Tyler, TX, USA.
| | - Malia R Bautista
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Asti Jackson
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Moriah Carper
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Wisam B Toma
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
5
|
Park J, Taly A, Bourreau J, De Nardi F, Legendre C, Henrion D, Guérineau NC, Legros C, Mattei C, Tricoire-Leignel H. Partial Agonist Activity of Neonicotinoids on Rat Nicotinic Receptors: Consequences over Epinephrine Secretion and In Vivo Blood Pressure. Int J Mol Sci 2021; 22:ijms22105106. [PMID: 34065933 PMCID: PMC8151892 DOI: 10.3390/ijms22105106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neonicotinoid insecticides are nicotine-derived molecules which exert acute neurotoxic effects over the insect central nervous system by activating nicotinic acetylcholine receptors (nAChRs). However, these receptors are also present in the mammalian central and peripheral nervous system, where the effects of neonicotinoids are faintly known. In mammals, cholinergic synapses are crucial for the control of vascular tone, blood pressure and skeletal muscle contraction. We therefore hypothesized that neonicotinoids could affect cholinergic networks in mammals and sought to highlight functional consequences of acute intoxication in rats with sub-lethal concentrations of the highly used acetamiprid (ACE) and clothianidin (CLO). In this view, we characterized their electrophysiological effects on rat α3β4 nAChRs, knowing that it is predominantly expressed in ganglia of the vegetative nervous system and the adrenal medulla, which initiates catecholamine secretion. Both molecules exhibited a weak agonist effect on α3β4 receptors. Accordingly, their influence on epinephrine secretion from rat adrenal glands was also weak at 100 μM, but it was stronger at 500 μM. Challenging ACE or CLO together with nicotine (NIC) ended up with paradoxical effects on secretion. In addition, we measured the rat arterial blood pressure (ABP) in vivo by arterial catheterization. As expected, NIC induced a significant increase in ABP. ACE and CLO did not affect the ABP in the same conditions. However, simultaneous exposure of rats to both NIC and ACE/CLO promoted an increase of ABP and induced a biphasic response. Modeling the interaction of ACE or CLO on α3β4 nAChR is consistent with a binding site located in the agonist pocket of the receptor. We present a transversal experimental approach of mammal intoxication with neonicotinoids at different scales, including in vitro, ex vivo, in vivo and in silico. It paves the way of the acute and chronic toxicity for this class of insecticides on mammalian organisms.
Collapse
Affiliation(s)
- Joohee Park
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Antoine Taly
- Theoretical Biochemistry Laboratory, Institute of Physico-Chemical Biology, CNRS UPR 9080, University of Paris Diderot Sorbonne Paris Cité, 75005 Paris, France;
| | - Jennifer Bourreau
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Frédéric De Nardi
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Claire Legendre
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Daniel Henrion
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Nathalie C. Guérineau
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
- IGF, University of Montpellier, CNRS, INSERM, 34000 Montpellier, France
| | - Christian Legros
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - César Mattei
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
- Correspondence: (C.M.); (H.T.-L.)
| | - Hélène Tricoire-Leignel
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
- Correspondence: (C.M.); (H.T.-L.)
| |
Collapse
|
6
|
Epstein M, Bali K, Piggot TJ, Green AC, Timperley CM, Bird M, Tattersall JEH, Bermudez I, Biggin PC. Molecular determinants of binding of non-oxime bispyridinium nerve agent antidote compounds to the adult muscle nAChR. Toxicol Lett 2021; 340:114-122. [PMID: 33482275 DOI: 10.1016/j.toxlet.2021.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 11/27/2022]
Abstract
Organophosphorus nerve agents (NAs) are the most lethal chemical warfare agents and have been used by state and non-state actors since their discovery in the 1930s. They covalently modify acetylcholinesterase, preventing the breakdown of acetylcholine (ACh) with subsequent loss of synaptic transmission, which can result in death. Despite the availability of several antidotes for OPNA exposure, none directly targets the nicotinic acetylcholine receptor (nAChR) mediated component of toxicity. Non-oxime bispyridinium compounds (BPDs) have been shown previously to partially counteract the effects of NAs at skeletal muscle tissue, and this has been attributed to inhibition of the muscle nAChR. Functional data indicate that, by increasing the length of the alkyl linker between the pyridinium moieties of BPDs, the antagonistic activity at nAChRs can be improved. Molecular dynamics simulations of the adult muscle nAChR in the presence of BPDs identified key residues likely to be involved in binding. Subsequent two-electrode voltage clamp recordings showed that one of the residues, εY131, acts as an allosteric determinant of BPD binding, and that longer BPDs have a greater stabilizing effect on the orthosteric loop C than shorter ones. The work reported will inform future design work on novel antidotes for treating NA exposure.
Collapse
Affiliation(s)
- Max Epstein
- Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, Oxford, UK
| | - Karan Bali
- Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, Oxford, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, UK
| | - Thomas J Piggot
- Chemical, Biological and Radiological Sciences Division, Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, Wiltshire, UK
| | - A Christopher Green
- Chemical, Biological and Radiological Sciences Division, Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, Wiltshire, UK
| | - Christopher M Timperley
- Chemical, Biological and Radiological Sciences Division, Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, Wiltshire, UK
| | - Mike Bird
- Chemical, Biological and Radiological Sciences Division, Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, Wiltshire, UK
| | - John E H Tattersall
- Chemical, Biological and Radiological Sciences Division, Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, Wiltshire, UK
| | - Isabel Bermudez
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Philip C Biggin
- Department of Biochemistry, Structural Bioinformatics and Computational Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Amaral PDA, Autheman D, de Melo GD, Gouault N, Cupif JF, Goyard S, Dutra P, Coatnoan N, Cosson A, Monet D, Saul F, Haouz A, Uriac P, Blondel A, Minoprio P. Designed mono- and di-covalent inhibitors trap modeled functional motions for Trypanosoma cruzi proline racemase in crystallography. PLoS Negl Trop Dis 2018; 12:e0006853. [PMID: 30372428 PMCID: PMC6224121 DOI: 10.1371/journal.pntd.0006853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/08/2018] [Accepted: 09/18/2018] [Indexed: 11/19/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, affects millions of people in South America and no satisfactory therapy exists, especially for its life threatening chronic phase. We targeted the Proline Racemase of T. cruzi, which is present in all stages of the parasite life cycle, to discover new inhibitors against this disease. The first published crystal structures of the enzyme revealed that the catalytic site is too small to allow any relevant drug design. In previous work, to break through the chemical space afforded to virtual screening and drug design, we generated intermediate models between the open (ligand free) and closed (ligand bound) forms of the enzyme. In the present work, we co-crystallized the enzyme with the selected inhibitors and found that they were covalently bound to the catalytic cysteine residues in the active site, thus explaining why these compounds act as irreversible inhibitors. These results led us to the design of a novel, more potent specific inhibitor, NG-P27. Co-crystallization of this new inhibitor with the enzyme allowed us to confirm the predicted protein functional motions and further characterize the chemical mechanism. Hence, the catalytic Cys300 sulfur atom of the enzyme attacks the C2 carbon of the inhibitor in a coupled, regiospecific—stereospecific Michael reaction with trans-addition of a proton on the C3 carbon. Strikingly, the six different conformations of the catalytic site in the crystal structures reported in this work had key similarities to our intermediate models previously generated by inference of the protein functional motions. These crystal structures span a conformational interval covering roughly the first quarter of the opening mechanism, demonstrating the relevance of modeling approaches to break through chemical space in drug design. There is an urgent need to develop innovative medicines addressing neglected diseases, multi-drug resistance and other unmet therapeutic needs. To create new drug design opportunities, we attempted to exploit protein functional motions by using a rational approach to model structural intermediates of a therapeutic target. After successfully designing inhibitors based on modeled intermediates of T. Cruzi proline racemase, the determination of crystal structures of the target protein in complex with the inhibitors revealed conformations that were strikingly close to the predicted models. Thus, beyond the discovery of compounds establishing a novel mode of action that can lead to innovative treatments of Chagas disease, we illustrate how modeling protein functional motions can be exploited in a rational approach to create opportunities in drug design.
Collapse
Affiliation(s)
- Patricia de Aguiar Amaral
- Université de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France
| | - Delphine Autheman
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Guilherme Dias de Melo
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Nicolas Gouault
- Université de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France
| | - Jean-François Cupif
- Université de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France
| | - Sophie Goyard
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Patricia Dutra
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Nicolas Coatnoan
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Alain Cosson
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
| | - Damien Monet
- Institut Pasteur, Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France
| | - Frederick Saul
- Institut Pasteur, Plateforme de Cristallographie, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Plateforme de Cristallographie, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France
| | - Philippe Uriac
- Université de Rennes 1, Equipe Chimie organique et interfaces (CORINT), UMR 6226 Sciences Chimiques de Rennes, Rennes, France
- * E-mail: (PU); (AB); (PM)
| | - Arnaud Blondel
- Institut Pasteur, Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, Paris, France
- * E-mail: (PU); (AB); (PM)
| | - Paola Minoprio
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Paris, France
- * E-mail: (PU); (AB); (PM)
| |
Collapse
|
8
|
Yang F, Zhao H, Carroll AR. Tropane alkaloids from the Australian plant Triunia montana (Proteaceae). Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Alamiddine Z, Selvam B, Cerón-Carrasco JP, Mathé-Allainmat M, Lebreton J, Thany SH, Laurent AD, Graton J, Le Questel JY. Molecular recognition of thiaclopride by Aplysia californica AChBP: new insights from a computational investigation. J Comput Aided Mol Des 2015; 29:1151-67. [PMID: 26589615 DOI: 10.1007/s10822-015-9884-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/16/2015] [Indexed: 11/29/2022]
Abstract
The binding of thiaclopride (THI), a neonicotinoid insecticide, with Aplysia californica acetylcholine binding protein (Ac-AChBP), the surrogate of the extracellular domain of insects nicotinic acetylcholine receptors, has been studied with a QM/QM' hybrid methodology using the ONIOM approach (M06-2X/6-311G(d):PM6). The contributions of Ac-AChBP key residues for THI binding are accurately quantified from a structural and energetic point of view. The importance of water mediated hydrogen-bond (H-bond) interactions involving two water molecules and Tyr55 and Ser189 residues in the vicinity of the THI nitrile group, is specially highlighted. A larger stabilization energy is obtained with the THI-Ac-AChBP complex compared to imidacloprid (IMI), the forerunner of neonicotinoid insecticides. Pairwise interaction energy calculations rationalize this result with, in particular, a significantly more important contribution of the pivotal aromatic residues Trp147 and Tyr188 with THI through CH···π/CH···O and π-π stacking interactions, respectively. These trends are confirmed through a complementary non-covalent interaction (NCI) analysis of selected THI-Ac-AChBP amino acid pairs.
Collapse
Affiliation(s)
- Zakaria Alamiddine
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France
| | - Balaji Selvam
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France.,Roger Adams Laboratory, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL, 61801, USA
| | - José P Cerón-Carrasco
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France.,Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Science Department, Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, 30107, Murcia, Spain
| | - Monique Mathé-Allainmat
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France
| | - Jacques Lebreton
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France
| | - Steeve H Thany
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d'Orléans, UPRES EA 1207. Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Adèle D Laurent
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France
| | - Jérôme Graton
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France
| | - Jean-Yves Le Questel
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France.
| |
Collapse
|
10
|
Mohammad Hosseini Naveh Z, Malliavin TE, Maragliano L, Cottone G, Ciccotti G. Conformational changes in acetylcholine binding protein investigated by temperature accelerated molecular dynamics. PLoS One 2014; 9:e88555. [PMID: 24551117 PMCID: PMC3923797 DOI: 10.1371/journal.pone.0088555] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/07/2014] [Indexed: 11/19/2022] Open
Abstract
Despite the large number of studies available on nicotinic acetylcholine receptors, a complete account of the mechanistic aspects of their gating transition in response to ligand binding still remains elusive. As a first step toward dissecting the transition mechanism by accelerated sampling techniques, we study the ligand-induced conformational changes of the acetylcholine binding protein (AChBP), a widely accepted model for the full receptor extracellular domain. Using unbiased Molecular Dynamics (MD) and Temperature Accelerated Molecular Dynamics (TAMD) simulations we investigate the AChBP transition between the apo and the agonist-bound state. In long standard MD simulations, both conformations of the native protein are stable, while the agonist-bound structure evolves toward the apo one if the orientation of few key sidechains in the orthosteric cavity is modified. Conversely, TAMD simulations initiated from the native conformations are able to produce the spontaneous transition. With respect to the modified conformations, TAMD accelerates the transition by at least a factor 10. The analysis of some specific residue-residue interactions points out that the transition mechanism is based on the disruption/formation of few key hydrogen bonds. Finally, while early events of ligand dissociation are observed already in standard MD, TAMD accelerates the ligand detachment and, at the highest TAMD effective temperature, it is able to produce a complete dissociation path in one AChBP subunit.
Collapse
Affiliation(s)
| | - Therese E. Malliavin
- Institut Pasteur and CNRS UMR 3528, Unité de Bioinformatique Structurale, Paris, France
| | - Luca Maragliano
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Grazia Cottone
- School of Physics, University College Dublin, Dublin, Ireland
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
- * E-mail:
| | - Giovanni Ciccotti
- School of Physics, University College Dublin, Dublin, Ireland
- Department of Physics, University of Roma “La Sapienza”, Rome, Italy
| |
Collapse
|
11
|
Amara Z, Bernadat G, Venot PE, Retailleau P, Troufflard C, Drège E, Le Bideau F, Joseph D. Thermodynamic epimeric equilibration and crystallisation-induced dynamic resolution of lobelanine, norlobelanine and related analogues. Org Biomol Chem 2014; 12:9797-810. [DOI: 10.1039/c4ob01787k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The step-economical synthesis of lobelanine involving a ring closing double aza-Michael (RCDAM) reaction is revisited and successfully extended to the synthesis of various configurationally more stable analogues.
Collapse
Affiliation(s)
- Z. Amara
- Université Paris-Sud
- UMR CNRS 8076 BioCIS
- LabEx Lermit
- Equipe de Chimie des Substances Naturelles
- F-92296 Châtenay-Malabry, France
| | - G. Bernadat
- Université Paris-Sud
- UMR CNRS 8076 BioCIS
- LabEx Lermit
- Molécules Fluorées et Chimie Médicinale
- F-92296 Châtenay-Malabry, France
| | - P.-E. Venot
- Université Paris-Sud
- UMR CNRS 8076 BioCIS
- LabEx Lermit
- Equipe de Chimie des Substances Naturelles
- F-92296 Châtenay-Malabry, France
| | - P. Retailleau
- Institut de Chimie des Substances Naturelles
- UPR CNRS 2301
- F-91198 Gif-sur-Yvette, France
| | - C. Troufflard
- Université Paris-Sud
- UMR CNRS 8076 BioCIS
- Service commun d'analyses
- F-92296 Châtenay-Malabry, France
| | - E. Drège
- Université Paris-Sud
- UMR CNRS 8076 BioCIS
- LabEx Lermit
- Equipe de Chimie des Substances Naturelles
- F-92296 Châtenay-Malabry, France
| | - F. Le Bideau
- Université Paris-Sud
- UMR CNRS 8076 BioCIS
- LabEx Lermit
- Equipe de Chimie des Substances Naturelles
- F-92296 Châtenay-Malabry, France
| | - D. Joseph
- Université Paris-Sud
- UMR CNRS 8076 BioCIS
- LabEx Lermit
- Equipe de Chimie des Substances Naturelles
- F-92296 Châtenay-Malabry, France
| |
Collapse
|
12
|
Molgó J, Aráoz R, Benoit E, Iorga BI. Physical and virtual screening methods for marine toxins and drug discovery targeting nicotinic acetylcholine receptors. Expert Opin Drug Discov 2013; 8:1203-23. [DOI: 10.1517/17460441.2013.822365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Abstract
INTRODUCTION Schizophrenia is an important health issue affecting almost 1% of the population with significant unmet medical needs. The classical drug targets for the treatment of schizophrenia are dopamine D2 receptors. Second-generation ('atypical') drugs block more receptors of the G-protein-coupled receptor (GPCR) class 1 (e.g., clozapine is a D(2)-5HT(2) antagonist). AREAS COVERED In this article, the author presents the new targets for GPCR as well as ligand-gated ion. Furthermore, the author reviews the opportunities for drug design offered by the structures solved recently. EXPERT OPINION For drug design, the availability of these protein structures, or the possibility to build high quality models, allows to shift the paradigm from ligand-based to target-based drug design. The analysis of the drugs, both on the market and in development, shows that numerous targets are being considered which may reveal an ambiguity on the ideal drug target. This situation may be simplified, in the future, owing to recent integrative projects: the 'Human Brain Project' and the 'Brain Activity Map' that aim at modeling the brain as well as the Allen Atlas.
Collapse
Affiliation(s)
- Antoine Taly
- Institut de Biologie Physico-Chimique, Laboratoire de Biochimie Théorique - UPR 9080 , 13 rue Pierre et Marie Curie, 75005 Paris , France +33 0 1 58 41 51 66 ;
| |
Collapse
|
14
|
Berneman A, Montout L, Goyard S, Chamond N, Cosson A, d’Archivio S, Gouault N, Uriac P, Blondel A, Minoprio P. Combined approaches for drug design points the way to novel proline racemase inhibitor candidates to fight Chagas' disease. PLoS One 2013; 8:e60955. [PMID: 23613764 PMCID: PMC3628851 DOI: 10.1371/journal.pone.0060955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/04/2013] [Indexed: 11/18/2022] Open
Abstract
Chagas' disease is caused by Trypanosoma cruzi, a protozoan transmitted to humans by blood-feeding insects, blood transfusion or congenitally. Previous research led us to discover a parasite proline racemase (TcPRAC) and to establish its validity as a target for the design of new chemotherapies against the disease, including its chronic form. A known inhibitor of proline racemases, 2-pyrrolecarboxylic acid (PYC), is water-insoluble. We synthesized soluble pyrazole derivatives, but they proved weak or inactive TcPRAC inhibitors. TcPRAC catalytic site is too small and constrained when bound to PYC to allow efficient search for new inhibitors by virtual screening. Forty-nine intermediate conformations between the opened enzyme structure and the closed liganded one were built by calculating a transition path with a method we developed. A wider range of chemical compounds could dock in the partially opened intermediate active site models in silico. Four models were selected for known substrates and weak inhibitors could dock in them and were used to screen chemical libraries. Two identified soluble compounds, (E)-4-oxopent-2-enoic acid (OxoPA) and its derivative (E)-5-bromo-4-oxopent-2-enoic acid (Br-OxoPA), are irreversible competitive inhibitors that presented stronger activity than PYC on TcPRAC. We show here that increasing doses of OxoPA and Br-OxoPA hamper T. cruzi intracellular differentiation and fate in mammalian host cells. Our data confirm that through to their binding mode, these molecules are interesting and promising as lead compounds for the development of chemotherapies against diseases where active proline racemases play essential roles.
Collapse
Affiliation(s)
- Armand Berneman
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Lory Montout
- Unité de Bioinformatique Structurale, CNRS-UMR 3528, Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Sophie Goyard
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Nathalie Chamond
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Alain Cosson
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Simon d’Archivio
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Nicolas Gouault
- Equipe Produits Naturels, Synthèses et Chimie Médicinale, UMR 6226 Sciences Chimiques de Rennes, Université de Rennes 1, Rennes, France
| | - Philippe Uriac
- Equipe Produits Naturels, Synthèses et Chimie Médicinale, UMR 6226 Sciences Chimiques de Rennes, Université de Rennes 1, Rennes, France
| | - Arnaud Blondel
- Unité de Bioinformatique Structurale, CNRS-UMR 3528, Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Paola Minoprio
- Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| |
Collapse
|
15
|
New Insights on the Molecular Recognition of Imidacloprid with Aplysia californica AChBP: A Computational Study. J Phys Chem B 2013; 117:3944-53. [DOI: 10.1021/jp310242n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Vetrivel U, Ravichandran SB, Kuppan K, Mohanlal J, Das UN, Narayanasamy A. Agonistic effect of polyunsaturated fatty acids (PUFAs) and its metabolites on brain-derived neurotrophic factor (BDNF) through molecular docking simulation. Lipids Health Dis 2012; 11:109. [PMID: 22943296 PMCID: PMC3477081 DOI: 10.1186/1476-511x-11-109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/27/2012] [Indexed: 01/19/2023] Open
Abstract
Background Brain-derived neurotrophic factor (BDNF) is a potent neurotrophic factor that is implicated in the regulation of food intake and body weight. Polyunsaturated fatty acids (PUFAs) localised in cell membranes have been shown to alter the levels of BDNF in the brain, suggesting that PUFAs and BDNF could have physical interaction with each other. To decipher the molecular mechanism through which PUFAs modulates BDNF’s activity, molecular docking was performed for BDNF with PUFAs and its metabolites, with 4-Methyl Catechol as a control. Results Inferring from molecular docking studies, lipoxin A4 (LXA4), and a known anti-inflammatory bioactive metabolite derived from PUFAs, with a binding energy of −3.98 Kcal/mol and dissociation constant of 1.2mM showed highest binding affinity for BDNF in comparison to other PUFAs and metabolites considered in the study. Further, the residues Lys 18, Thr 20, Ala 21, Val 22, Phe 46, Glu 48, Lys 50, Lys 58, Thr 75, Gln 77, Arg 97 and Ile 98 form hot point motif, which on interaction enhances BDNF’s function. Conclusion These results suggest that PUFAs and their metabolites especially, LXA4, modulate insulin resistance by establishing a physical interaction with BDNF. Similar interaction(s) was noted between BDNF and resolvins and protectins but were of lesser intensity compared to LXA4.
Collapse
Affiliation(s)
- Umashankar Vetrivel
- Department of Bioinformatics, Vision Research Foundation, Chennai 600006, India
| | | | | | | | | | | |
Collapse
|