1
|
Mohammed DM, Abdelgawad MA, Ghoneim MM, Alhossan A, Al-Serwi RH, Farouk A. Impact of Some Natural and Artificial Sweeteners Consumption on Different Hormonal Levels and Inflammatory Cytokines in Male Rats: In Vivo and In Silico Studies. ACS OMEGA 2024; 9:30364-30380. [PMID: 39035958 PMCID: PMC11256323 DOI: 10.1021/acsomega.4c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Substituting sugar with noncaloric sweeteners prevents overweight and diabetes development. They come in two types: artificial, like aspartame and sucralose, and natural, such as sorbitol. This research aimed to assess the effects of sucrose and these sweeteners on nutritional parameters, hematological parameters, hormones, and anti- and pro-inflammatory cytokines in male rats. Thirty rats had been separated into five groups. The results showed the highest significant increase in body weight gain, total food intake, and feed efficiency noticed in the aspartame group followed by sucralose, sucrose, and sorbitol, respectively. In contrast to RBCs and platelets, all sweeteners significantly reduced the hemoglobin level, Hct %, and WBC count. The aspartame group showed the highest decline in glycoproteins, steroids, and T3, and T4 hormones and a dramatic elevation in thyroid stimulating hormone, eicosanoid, and amine hormones compared with the control group. A vigorous elevation in anti- and proinflammatory cytokine levels was observed in the aspartame group, followed by sucralose, sucrose, and sorbitol groups. Aspartame has the highest docking scores when studying the interactions of sweeteners and a target protein associated with hormones or cytokines using in silico molecular docking, with the best absorption, distribution, metabolism, elimination, and toxicity properties compared to the remaining sweeteners.
Collapse
Affiliation(s)
- Dina Mostafa Mohammed
- Nutrition
and Food Sciences Department, National Research
Centre, Dokki, Giza 12622, Egypt
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department
of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia
| | - Abdulaziz Alhossan
- Department
of Clinical Pharmacy—College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rasha Hamed Al-Serwi
- Department
of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amr Farouk
- Flavour
and
Aroma Chemistry Department, National Research
Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
2
|
Munikumar M, Pradeepkiran JA, Kumar MK, Banapuram S, Bhat Edurkala A. Comprehensive structural and functional analysis of hVEGFR1: Insights into phosphorylation, molecular interactions, and potential inhibitors through docking and dynamics simulations. Cancer Treat Res Commun 2024; 39:100795. [PMID: 38428067 DOI: 10.1016/j.ctarc.2024.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/25/2023] [Indexed: 03/03/2024]
Abstract
Vascular Endothelial Growth Factor Receptor 1 (VEGFR1), is an enzyme with tyrosine kinase activity that plays a pivotal role in angiogenesis, the process of new blood vessel formation. This receptor is of significant clinical importance as it is implicated in various cancers, particularly non-small cell lung cancer (NSCLC), where its dysregulation leads to uncontrolled cell growth through ligand-induced phosphorylation. While commercially available drugs target VEGFR1, their prolonged use often leads to drug resistance and the emergence of mutations in cancer patients. To address these challenges, researchers have identified the human tyrosine kinase (hTK) domain of VEGFR1 as a potential therapeutic marker for lung malignancies. The 3D crystal structure of the hTK domain, obtained from Protein Data Bank (PDB ID: 3HNG), has provided vital structural insights of hVEGFR1. This study has revealed variations within the hVEGFR1 tyrosine kinase domain, distinguishing between regions associated with phosphorylase kinase and transferase activities. We identified numerous potential phosphorylation sites within the TK domain, shedding light on the protein's regulation and signaling possible. Detailed molecular interaction analyses have elucidated the binding forces between lead molecules and hVEGFR1, including hydrogen bonds, electrostatic, hydrophobic, and π-sigma interactions. The stability observed during molecular dynamics simulations further underscores the biological relevance of these interactions. Furthermore, docked complexes has highlighted localized structural fluctuations, offering insight into potential allosteric effects and dynamic conformational changes induced by lead molecules. These findings not only provide a comprehensive characterization of hVEGFR1 but also pave the way for the development of targeted therapies. Eventually, this study has the potential in identifying drug to combat diseases associated with hVEGFR1 dysregulation, including cancer and angiogenesis-related disorders, contributing to effective treatment strategies.
Collapse
Affiliation(s)
- Manne Munikumar
- Clinical Division, ICMR-National Institute of Nutrition, Jamai-Osmania (Post), Hyderabad, 500007, Telangana, India
| | | | | | - Swathi Banapuram
- Clinical Division & Animal Facility, ICMR-National Institute of Nutrition, Hyderabad, 500007, India
| | - Akshatha Bhat Edurkala
- Clinical Division & Animal Facility, ICMR-National Institute of Nutrition, Hyderabad, 500007, India
| |
Collapse
|
3
|
Caruso A, Gelsomino L, Panza S, Accattatis FM, Naimo GD, Barone I, Giordano C, Catalano S, Andò S. Leptin: A Heavyweight Player in Obesity-Related Cancers. Biomolecules 2023; 13:1084. [PMID: 37509120 PMCID: PMC10377641 DOI: 10.3390/biom13071084] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity, defined as the abnormal or excessive expansion of white adipose tissue, has reached pandemic proportions and is recognized as an important health concern since it is a common root for several comorbidities, including malignancies. Indeed, the current knowledge of the white adipose tissue, which shifts its role from an energy storage tissue to an important endocrine and metabolic organ, has opened up new avenues for the discovery of obesity's effects on tumor biology. In this review, we will report the epidemiological studies concerning the strong impact of obesity in several types of cancer and describe the mechanisms underlying the heterotypic signals between cancer cell lines and adipocytes, with particular emphasis on inflammation, the insulin/IGF-1 axis, and adipokines. Among the adipokines, we will further describe the in vitro, in vivo, and clinical data concerning the role of leptin, recognized as one of the most important mediators of obesity-associated cancers. In fact, leptin physiologically regulates energy metabolism, appetite, and reproduction, and several studies have also described the role of leptin in affecting cancer development and progression. Finally, we will summarize the newest pharmacological strategies aimed at mitigating the protumorigenic effects of leptin, underlining their mechanisms of action.
Collapse
Affiliation(s)
- Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| |
Collapse
|
4
|
Celik I, Erol M, Duzgun Z. In silico evaluation of potential inhibitory activity of remdesivir, favipiravir, ribavirin and galidesivir active forms on SARS-CoV-2 RNA polymerase. Mol Divers 2022; 26:279-292. [PMID: 33765239 PMCID: PMC7992164 DOI: 10.1007/s11030-021-10215-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/21/2021] [Indexed: 02/07/2023]
Abstract
Since the outbreak emerged in November 2019, no effective drug has yet been found against SARS-CoV-2. Repositioning studies of existing drug molecules or candidates are gaining in overcoming COVID-19. Antiviral drugs such as remdesivir, favipiravir, ribavirin, and galidesivir act by inhibiting the vital RNA polymerase of SARS-CoV-2. The importance of in silico studies in repurposing drug research is gradually increasing during the COVID-19 process. The present study found that especially ribavirin triphosphate and galidesivir triphosphate active metabolites had a higher affinity for SARS-CoV-2 RNA polymerase than ATP by molecular docking. With the Molecular Dynamics simulation, we have observed that these compounds increase the complex's stability and validate the molecular docking results. We also explained that the interaction of RNA polymerase inhibitors with Mg++, which is in the structure of NSP12, is essential and necessary to interact with the RNA strand. In vitro and clinical studies on these two molecules need to be increased.
Collapse
Affiliation(s)
- Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.
| | - Meryem Erol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Zekeriya Duzgun
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun, 28100, Turkey
| |
Collapse
|
5
|
Ungarala R, Munikumar M, Sinha SN, Kumar D, Sunder RS, Challa S. Assessment of Antioxidant, Immunomodulatory Activity of Oxidised Epigallocatechin-3-Gallate (Green Tea Polyphenol) and Its Action on the Main Protease of SARS-CoV-2—An In Vitro and In Silico Approach. Antioxidants (Basel) 2022; 11:antiox11020294. [PMID: 35204178 PMCID: PMC8868081 DOI: 10.3390/antiox11020294] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Owing to the instability of Epigallocatechin Gallate (EGCG), it may undergo auto-oxidation and form oxidised products or dimers. In the present study, we aimed to evaluate the therapeutic effects, including antioxidation and immunomodulatory action, of the Oxidised Epigallocatechin Gallate (O-EGCG) as compared to native EGCG and the action of these compounds on main protease (Mpro) docking against SARS-CoV-2. HCT-116 (Human Colon Cancer) cell lines were used to estimate the total antioxidant capacity and lipid peroxidation levels and pro-inflammatory markers (human IL-6, IL-1β, TNF-α). Further, molecular docking analysis was performed by AutoDock and visualised in Discovery studio. Improved antioxidant capacity of O-EGCG was observed, and there was a significant decrease in the inflammatory markers (IL-1β, IL-6, and TNF-α) when O-EGCG was applied as compared to EGCG. The O-EGCG was shown to be strongly associated with the highest docking score and active site residues of IL-1, IL-6, and TNF- α, as well as the Mpro of SARS-CoV-2, according to in silico approach. The in vitro and in silico analyses indicate an improved therapeutic action of the oxidised form of EGCG. The effective inhibitory action of O-EGCG against SARS-CoV-2 suggests further exploration of the compound against COVID-19 and its efficacy. However, in vivo studies and understanding of the mechanism of action of O-EGCG may yield a better opinion on the use of O-EGCG and future human clinical trials.
Collapse
Affiliation(s)
- Ramakrishna Ungarala
- Food Safety Division, ICMR- National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India; (R.U.); (D.K.)
| | - Manne Munikumar
- Clinical Division, ICMR- National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India;
| | - Sukesh Narayan Sinha
- Food Safety Division, ICMR- National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India; (R.U.); (D.K.)
- Correspondence: ; Tel.: +91-7032426802
| | - Dileshwar Kumar
- Food Safety Division, ICMR- National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India; (R.U.); (D.K.)
| | - R. Shyam Sunder
- University College of Technology, Osmania University, Tarnaka, Hyderabad, Telangana 500007, India;
| | - Suresh Challa
- Cell Biology Division, ICMR- National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India;
| |
Collapse
|
6
|
Pradeepkiran JA, Munikumar M, Reddy AP, Reddy PH. Protective effects of a small molecule inhibitor ligand against hyperphosphorylated tau-induced mitochondrial and synaptic toxicities in Alzheimer disease. Hum Mol Genet 2021; 31:244-261. [PMID: 34432046 DOI: 10.1093/hmg/ddab244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
The purpose of our study is to understand the protective effects of small molecule ligands for phosphorylated tau (p-tau) in Alzheimer's disease (ad) progression. Many reports show evidence that p-tau is reported to be an important contributor to the formation of paired helical filaments (PHFs) and neurofibrillary tangles (NFTs) in ad neurons. In ad, glycogen synthase kinase-3 beta (GSK3β), cyclin-dependent kinase- 5 (CDK5) and dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), are the three important kinases responsible for tau hyperphosphorylation. Currently, there are no drugs and/or small molecules that reduce the toxicity of p-tau in ad. In the present study, we rationally selected and validated small molecule ligands that binds to the phosphorylated tau at SER23 (Ser 285). We also assessed the molecular dynamics and validated molecular docking sites for the three best ligands. Based on the best docking scores -8.09, -7.9 and - 7.8 kcal/mol, we found that ligand 1 binds to key hyperphosphorylation residues of p-tau that inhibit abnormal PHF-tau, DYRK1A, and GKS3β that reduce p-tau levels in ad. Using biochemical, molecular, immunoblotting, immunofluorescence, and transmission electron microscopy analyses, we studied the ligand 1 inhibition as well as mitochondrial and synaptic protective effects in immortalized primary hippocampal neuronal (HT22) cells. We found interactions between NAT10-262501 (ligand 1) and p-tau at key phosphorylation sites and these ligand-based inhibitions decreased PHF-tau, DYRK1A and GSK3β levels. We also found increased mitochondrial biogenesis, mitochondrial fusion and synaptic activities and reduced mitochondrial fission in ligand 1-treated mutant tau HT22 cells. Based on these results, we cautiously conclude that p-tau NAT10-262501 (ligand 1) reduces hyperphosphorylation of tau based GKS3β and CDK5 kinase regulation in ad, and aids in the maintenance of neuronal structure, mitochondrial dynamics, and biogenesis with a possible therapeutic drug target for ad.
Collapse
Affiliation(s)
| | - Manne Munikumar
- Clinical Division, ICMR-National Institute of Nutrition, Hyderabad, Telangana-500007, India
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.,Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.,Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
7
|
Leptin-Activity Modulators and Their Potential Pharmaceutical Applications. Biomolecules 2021; 11:biom11071045. [PMID: 34356668 PMCID: PMC8301849 DOI: 10.3390/biom11071045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Leptin, a multifunctional hormone primarily, but not exclusively, secreted in adipose tissue, is implicated in a wide range of biological functions that control different processes, such as the regulation of body weight and energy expenditure, reproductive function, immune response, and bone metabolism. In addition, leptin can exert angiogenic and mitogenic actions in peripheral organs. Leptin biological activities are greatly related to its interaction with the leptin receptor. Both leptin excess and leptin deficiency, as well as leptin resistance, are correlated with different human pathologies, such as autoimmune diseases and cancers, making leptin and leptin receptor important drug targets. The development of leptin signaling modulators represents a promising strategy for the treatment of cancers and other leptin-related diseases. In the present manuscript, we provide an update review about leptin-activity modulators, comprising leptin mutants, peptide-based leptin modulators, as well as leptin and leptin receptor specific monoclonal antibodies and nanobodies.
Collapse
|
8
|
Hassan A, Arafa RK. On the search for COVID-19 therapeutics: identification of potential SARS-CoV-2 main protease inhibitors by virtual screening, pharmacophore modeling and molecular dynamics. J Biomol Struct Dyn 2021; 40:7815-7828. [PMID: 33749545 DOI: 10.1080/07391102.2021.1902399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
COVID-19 also known as SARS-CoV-2 outbreak in late 2019 and its worldwide pandemic spread has taken the world by surprise. The minute-to-minute increasing coronavirus cases (>85 M) and progressive deaths (≈1.8 M) calls for finding a cure to this devastating pandemic. While there have been many attempts to find biologically active molecules targeting SARS-CoV-2 for treatment of this viral infection, none has found a way to the clinic yet. In this study, a 3-feature structure-based pharmacophore model was designed for SARS-CoV-2 main protease (MPro) that plays a vital role in the viral cellular penetration. High throughput virtual screening of the lead-like ZINC library was then performed to find a potent inhibitor employing the predesigned pharmacophore. In-silico pharmacokinetics/toxicity prediction study was subsequently applied towards the best hits. Finally, a 50 ns molecular dynamics simulation was carried out for the best hit and compared to the co-crystallized ligand where the hit compound displayed high binding and comparable interactions. The results identified new hits for SARS-CoV-2 MPro inhibition showing good docking score, pharmacokinetics and toxicity profile, drug-likeness, high binding energy in addition to a promising synthetic accessibility. Identifying new small compounds as potential leads for inhibiting SARS-CoV-2 is a very important step towards designing a synthesizing of promising drug candidates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Afnan Hassan
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, Egypt.,Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, Egypt.,Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
9
|
Manne M, Goudar G, Varikasuvu SR, Khetagoudar MC, Kanipakam H, Natarajan P, Ummiti MD, Yenagi VA, Chinthakindi S, Dharani P, Thota DSS, Patil S, Patil V. Cordifolioside: potent inhibitor against M pro of SARS-CoV-2 and immunomodulatory through human TGF-β and TNF-α. 3 Biotech 2021; 11:136. [PMID: 33643762 PMCID: PMC7898013 DOI: 10.1007/s13205-021-02685-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 12/23/2022] Open
Abstract
Therapeutic options for SARS-CoV-2 are limited merely to the symptoms or repurposed drugs and non-specific interventions to promote the human immune system. In the present study, chromatographic and in silico approaches were implemented to identify bioactive compounds which might play pivotal role as inhibitor for SARS-CoV-2 and human immunomodulator (TGF-β and TNF-α). Tinospora cordifolia (Willd.) Miers was evaluated for phenolic composition and explored for bioactive compounds by high-performance thin layer chromatography (HPTLC). Furthermore, the bioactive compounds such as cordifolioside, berberine, and magnoflorine were appraised as human immunomodulatory and potent inhibitor against Main Protease (Mpro) of SARS-CoV-2 through multiple docking strategies. Cordifolioside formed six stable H-bonds with His41, Ser144, Cys145, His163, His164, and Glu166 of Mpro of SARS-CoV-2, which displayed a significant role in the viral replication/transcription during infection acting towards the common conserved binding cleft among all strains of coronavirus. Overall, the study emphasized that the proposed cordifolioside might use for future investigations, which hold as a promising scaffold for developing anti-COVID-19 drug and reduce human cytokine storm.
Collapse
|
10
|
Ram TS, Munikumar M, Raju VN, Devaraj P, Boiroju NK, Hemalatha R, Prasad PVV, Gundeti M, Sisodia BS, Pawar S, Prasad GP, Chincholikar M, Goel S, Mangal A, Gaidhani S, Srikanth N, Dhiman KS. In silico evaluation of the compounds of the ayurvedic drug, AYUSH-64, for the action against the SARS-CoV-2 main protease. J Ayurveda Integr Med 2021; 13:100413. [PMID: 33654345 PMCID: PMC7906523 DOI: 10.1016/j.jaim.2021.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
Background Outbreak of Corona Virus Disease in late 2019 (COVID-19) has become a pandemic global Public health emergency. Since there is no approved anti-viral drug or vaccine declared for the disease and investigating existing drugs against the COVID-19. Objective AYUSH-64 is an Ayurvedic formulation, developed and patented by Central Council of Research in Ayurvedic Sciences, India, has been in clinical use as anti-malarial, anti-inflammatory, anti-pyretic drug for few decades. Thus, the present study was undertaken to evaluate AYUSH-64 compounds available in this drug against Severe Acute Respiratory Syndrome-Corona Virus (SARS-CoV-2) Main Protease (Mpro; PDB ID: 6LU7) via in silico techniques. Materials and methods Different molecular docking software's of Discovery studio and Auto Dock Vina were used for drugs from selected AYUSH-64 compounds against SARS-CoV-2. We also conducted 100 ns period of molecular dynamics simulations with Desmond and further MM/GBSA for the best complex of AYUSH-64 with Mpro of SARS-CoV-2. Results Among 36 compounds of four ingredients of AYUSH-64 screened, 35 observed to exhibits good binding energies than the published positive co–crystal compound of N3 pepetide. The best affinity and interactions of Akuammicine N-Oxide (from Alstonia scholaris) towards the Mpro with binding energy (AutoDock Vina) of −8.4 kcal/mol and Discovery studio of Libdock score of 147.92 kcal/mol. Further, molecular dynamics simulations with MM-GBSA were also performed for Mpro– Akuammicine N-Oxide docked complex to identify the stability, specific interaction between the enzyme and the ligand. Akuammicine N-Oxide is strongly formed h-bonds with crucial Mpro residues, Cys145, and His164. Conclusion The results provide lead that, the presence of Mpro– Akuammicine N-Oxide with highest Mpro binding energy along with other 34 chemical compounds having similar activity as part of AYUSH-64 make it a suitable candidate for repurposing to management of COVID-19 by further validating through experimental, clinical studies. Main protease (Mpro) is a molecular drug target for the 2019-nCoV of epidemic disease of COVID-19. Docking strategies implemented to identify AUSH-64 having dual role as immunomodualtor and inhibition against Mpro of SARS-CoV-2. Molecular dynamics stability analysis revealed that 2019-nCoV Mpro – Akuammicine N-Oxide is stable. Akuammicine N-Oxide may represent potential treatment options against Mpro of 2019-nCoV.
Collapse
Key Words
- 2019 novel coronavirus, 2019-nCOV
- AYUSH-64
- Absorption, Distribution, Metabolism, Excretion, and Toxicity, ADME/T
- COVID-19
- Coronavirus disease of 2019, COVID-19
- Coronavirus, CoV
- Dynamics simulations
- Main Protease
- Main protease, Mpro
- Middle East Respiratory Syndrome, MERS
- Molecular Docking
- Molecular Dynamics simulations, MD simulations
- Molecular Mechanics/Generalized Born Surface Area, MM/GBSA
- Number of atoms, Pressure, Temperature, NPT
- Protein Data Bank, PDB
- RNA‐dependent RNA polymerase, RdRp
- Radius of Gyration, rGyr
- Root Mean Square Deviation, RMSD
- Root Mean Square Fluctuation, RMSF
- SARS-CoV-2
- Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2
- Severe Acute Respiratory Syndrome, SARS
- Simulation Event Analysis, SEA
- Simulation Quality Analysis, SQA
- World Health Organization, WHO
Collapse
Affiliation(s)
- Thrigulla Saketh Ram
- Research Officer (Ayurveda), CCRAS-National Institute of Indian Medical Heritage, Revenue Board Colony, Gaddiannaram, Hyderabad-500036, Telangana State, India
| | - Manne Munikumar
- Scientist-C (Bioinformatics), NIN-TATA Centre for Excellence in Public Health Nutrition, ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - Vankudavath Naik Raju
- Scientist-C (Programmer), Nutrition Information, Communication & Health Education (NICHE), ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - Parasannanavar Devaraj
- Scientist-C, ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - Naveen Kumar Boiroju
- Scientist-C, ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - Rajkumar Hemalatha
- Scientist-G, Director, ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - P V V Prasad
- Assistant Director In-charge, CCRAS-National Institute of Indian Medical Heritage, Revenue Board Colony, Gaddiannaram, Hyderabad-500036, Telangana State, India
| | - Manohar Gundeti
- Research Officer (Ayurveda), CCRAS-Raja Ramdeo Anandilal Podar (RRAP) Central Ayurveda Research Institute for Cancer, Mumbai
| | - Brijesh S Sisodia
- Asst. Director (Biochemistry), CCRAS-Regional Ayurveda Research Institute for Drug Development, Gwalior
| | - Sharad Pawar
- Research Officer, Scientist-2 (Pharmacognosy), CCRAS-Regional Ayurveda Institute for Fundamental Research, Pune
| | - G P Prasad
- Assistant Director (Ayurveda), CCRAS-Regional Ayurveda Institute for Fundamental Research, Pune
| | - Mukesh Chincholikar
- Research Officer (Ayurveda), Central Council for Research in Ayurvedic Sciences, New Delhi
| | - Sumeet Goel
- Research Officer (Ayurveda), Central Council for Research in Ayurvedic Sciences, New Delhi
| | - Anupam Mangal
- Assistant Director (Pharmacognosy), Central Council for Research in Ayurvedic Sciences, New Delhi
| | - Sudesh Gaidhani
- Assistant Director (Pharmacology), Central Council for Research in Ayurvedic Sciences, New Delhi
| | - N Srikanth
- Deputy Director General, Central Council for Research in Ayurvedic Sciences, New Delhi
| | - K S Dhiman
- Director General, Central Council for Research in Ayurvedic Sciences, New Delhi
| |
Collapse
|
11
|
Abstract
Drug targets for the treatment of obesity and comorbidities represent an ever-renewable source of research opportunities worldwide. One of the earliest is the leptin–leptin receptor system that was discovered in the mid-1990s. Leptin, a satiety hormone, is overproduced in overweight patients but the protein is unable to cross the blood–brain barrier and remains inactive. Circulating high levels of leptin induces a series of conditions that would not be manifested without leptin overproduction, including various forms of cancer and inflammatory and cardiovascular diseases. Current pharmaceutical research focuses on improving the blood–brain barrier penetration of leptin receptor agonists and the development of monofunctional antagonists with broad spectrum therapeutic efficacies but without unwanted side effects. Designer peptides with their expanded chemical space as well as well controllable receptor binding and elimination properties slowly replace full-sized leptin products in the drug development pipeline.
Collapse
|
12
|
Discovery of potential lumazine synthase antagonists for pathogens involved in bacterial meningitis: In silico study. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.100187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|