1
|
Majura JJ, Chen X, Chen Z, Tan M, Zhu G, Gao J, Lin H, Cao W. The cryoprotective effect of Litopenaeus vannamei head-derived peptides and its ice-binding mechanism. Curr Res Food Sci 2024; 9:100886. [PMID: 39469721 PMCID: PMC11513795 DOI: 10.1016/j.crfs.2024.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
Although discarded as waste, shrimp heads are a potential source of antifreeze peptides, which can be used as cryoprotectants in the food industry. Their utilization in frozen foods can help mitigate the negative effects caused by the freezing technique. Litopenaeus vannamei shrimp heads were autolyzed, and the shrimp head autolysate (SHA) was separated via ultra-filtration and ion exchange chromatography. The antifreeze effect of SHA on the biochemical properties of myofibrillar proteins of peeled shrimps during five freeze-thaw cycles was evaluated. Peptide screening was done using the LC-MS/MS technique. A molecular docking (MD) study of the interaction between ice and shrimp head-derived antifreeze peptides was done. Results showed that shrimp-head autolysate has a maximum thermal hysteresis value of 1.84 °C. During the freeze-thaw cycles, the shrimp-head autolysate exhibited an antifreeze effect on frozen peeled shrimps. 1.0 and 3.0%-SHA groups showed significantly lower freeze denaturation than the negative control group. The muscle tissues of SHA-treated groups were not as severely damaged as the negative control group. The molecular docking study revealed that the shrimp head-AFPs bound to ice via hydrogen bonding, and both hydrophilic and hydrophobic amino acid residues were involved in the ice-binding interactions. 6 ice-binding sites were involved in the peptide-ice interaction. Our findings suggest that shrimp head-derived AFPs can be developed into functional additives in frozen foods and add more insights into the existing literature on antifreeze peptides.
Collapse
Affiliation(s)
- Julieth Joram Majura
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiujuan Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Mingtang Tan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Guoping Zhu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| |
Collapse
|
2
|
Liu Y, Li Y, Wu J, Zhang X, Nan P, Wang P, Sun D, Wang Y, Zhu J, Ge B, Francisco JS. Direct Visualization of Molecular Stacking in Quasi-2D Hexagonal Ice. J Am Chem Soc 2024; 146:23598-23605. [PMID: 39165248 DOI: 10.1021/jacs.4c08313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Understanding ice nucleation and growth is of great interest to researchers due to its importance in the biological, cryopreservation, and environmental fields. However, microstructural investigations of ice on the molecular scale are still lacking. In this paper, a simple method is proposed to prepare quasi-2-dimensional ice Ih films, which have been characterized via cryogenic transmission electron microscope. The intersecting stacking faults of basal (BSF) and prismatic (PSF) types have been directly visualized and resolved with a notable first-time report of PSF in ice Ih. Moreover, the possible growth pathways of BSF, namely, the Ic phase, were elucidated by the theoretical calculations and the chair conformation of H2O molecules. This study offers valuable insights that can enhance researchers' understanding of the growth kinetics of crystalline ice.
Collapse
Affiliation(s)
- Yangrui Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yun Li
- Shenzhen Key Laboratory of Natural Gas Hydrate, Department of Physics & Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Jing Wu
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyu Zhang
- Shenzhen Key Laboratory of Natural Gas Hydrate, Department of Physics & Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pengfei Nan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Pengfei Wang
- Shenzhen Key Laboratory of Natural Gas Hydrate, Department of Physics & Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Dapeng Sun
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yumei Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinlong Zhu
- Shenzhen Key Laboratory of Natural Gas Hydrate, Department of Physics & Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| |
Collapse
|
3
|
Tirado-Kulieva VA, Miranda-Zamora WR, Hernández-Martínez E, Pantoja-Tirado LR, Bazán-Tantaleán DL, Camacho-Orbegoso EW. Effect of antifreeze proteins on the freeze-thaw cycle of foods: fundamentals, mechanisms of action, current challenges and recommendations for future work. Heliyon 2022; 8:e10973. [PMID: 36262292 PMCID: PMC9573917 DOI: 10.1016/j.heliyon.2022.e10973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
Freezing is widely used in food preservation, but if not carried out properly, ice crystals can multiply (nucleation) or grow (recrystallization) rapidly. This also affects thawing, causing structural damage and affecting overall quality. The objective of this review is to comprehensively study the cryoprotective effect of antifreeze proteins (AFPs), highlighting their role in the freeze-thaw process of food. The properties of AFPs are based on their thermal hysteresis capacity (THC), on the modification of crystal morphology and on the inhibition of ice recrystallization. The mechanism of action of AFPs is based on the adsorption-inhibition theory, but the specific role of hydrogen and hydrophobic bonds/residues and structural characteristics is also detailed. Because of the properties of AFPs, they have been successfully used to preserve the quality of a wide variety of refrigerated and frozen foods. Among the limitations of the use of AFPs, the high cost of production stands out, but currently there are solutions such as the use the production of recombinant proteins, cloning and chemical synthesis. Although in vitro, in vivo and human studies have shown that AFPs are non-toxic, their safety remains a matter of debate. Further studies are recommended to expand knowledge about AFPs, to reduce costs in their large-scale production, to understand their interaction with other food compounds and their possible effects on the consumer.
Collapse
Affiliation(s)
| | | | | | - Lucia Ruth Pantoja-Tirado
- Carrera Profesional de Ingeniería en Industrias Alimentarias, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Peru
| | | | | |
Collapse
|
4
|
Relationship between type II polyproline helix secondary structure and thermal hysteresis activity of short homopeptides. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Maddah M, Shahabi M, Peyvandi K. How Does DcAFP, a Plant Antifreeze Protein, Control Ice Inhibition through the Kelvin Effect? Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mina Maddah
- Department of Chemistry, K.N. Toosi University of Technology, 1969764499 Tehran, Iran
- Super Computing Institute, University of Tehran, 1417935840 Tehran, Iran
| | - Maryam Shahabi
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, 3513119111 Semnan, Iran
| | - Kiana Peyvandi
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, 3513119111 Semnan, Iran
| |
Collapse
|
6
|
Sun L, Zhang C, Chen J, Zhao X, Bai F, Zhong S. Combining oligomer build-up with alanine scanning to determine the flocculation protein mutants for enhancing oligosaccharide binding. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.2015068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lu Sun
- School of Bioengineering, Dalian University of Technology, Liaoning, People’s Republic of China
| | - Chenhong Zhang
- School of Bioengineering, Dalian University of Technology, Liaoning, People’s Republic of China
| | - Jiemin Chen
- School of Bioengineering, Dalian University of Technology, Liaoning, People’s Republic of China
| | - Xinqing Zhao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Fengwu Bai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Shijun Zhong
- School of Bioengineering, Dalian University of Technology, Liaoning, People’s Republic of China
| |
Collapse
|
7
|
Hudait A, Qiu Y, Odendahl N, Molinero V. Hydrogen-Bonding and Hydrophobic Groups Contribute Equally to the Binding of Hyperactive Antifreeze and Ice-Nucleating Proteins to Ice. J Am Chem Soc 2019; 141:7887-7898. [DOI: 10.1021/jacs.9b02248] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Arpa Hudait
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Yuqing Qiu
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Nathan Odendahl
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|