1
|
Purohit P, Barik D, Agasti S, Panda M, Meher BR. Evaluation of the inhibitory potency of anti-dengue phytocompounds against DENV-2 NS2B-NS3 protease: virtual screening, ADMET profiling and molecular dynamics simulation investigations. J Biomol Struct Dyn 2024; 42:2990-3009. [PMID: 37194462 DOI: 10.1080/07391102.2023.2212798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
Dengue fever has been a worldwide concern, with 50-100 million new infections each year mainly due to five different serotypes of the Dengue virus (DENV). Designing a perfect anti-dengue agent that can inhibit all the serotypes by distinguishing antigenic differences is quite difficult. Previous anti-dengue researches have included chemical compounds screening against DENV enzymes. The ongoing analysis is meant for investigation of the plant-based compounds as antagonistic to DENV-2 focusing on the specific NS2B-NS3Pro target, a trypsin like serine protease that cuts the DENV polyprotein into separate proteins crucial for viral reproduction. Initially, a virtual library of more than 130 phytocompounds was prepared from previously published reports of plants with anti-dengue properties, which were then virtually screened and shortlisted against the WT, H51N and S135A mutant of DENV-2 NS2B-NS3Pro. The three top-most compounds were viewed as Gallocatechin (GAL), Flavokawain-C (FLV), and Isorhamnetin (ISO) showing docking scores of -5.8, -5.7, -5.7 kcal/mol for WT, -7.5, -6.8, -7.6 kcal/mol for the H51N, and -6.9, -6.5, -6.1 kcal/mol for the S135A mutant protease, respectively. 100 ns long MD simulations and MM-GBSA based free energy calculations were performed on the NS2B-NS3Pro complexes to witness the relative binding affinity of the compounds and favourable molecular interactions network. A comprehensive analysis of the study reveals some promising outcomes with ISO as the topmost compound with favourable pharmacokinetic properties for the WT and mutants (H51N and S135A) as well, suggesting as a novel anti-NS2B-NS3Pro agent with better adapting characters in both the mutants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyanka Purohit
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, India
| | - Debashis Barik
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, India
| | - Sidhartha Agasti
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, India
| | - Madhusmita Panda
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, India
| | - Biswa Ranjan Meher
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, India
| |
Collapse
|
2
|
Purohit P, Barik D, Dansana J, Meher BR. Investigating Lycotoxin-An1a (An1a), a defense antiviral peptide from Alopecosa nagpag venom as prospective anti-dengue agent against DENV-2 NS2B-NS3 protease. Comput Biol Chem 2024; 108:108005. [PMID: 38157660 DOI: 10.1016/j.compbiolchem.2023.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Dengue fever is a global health concern with no effective therapy. Screening synthetic chemicals, animal-originated compounds, and phytocompounds against Dengue virus (DENV) targets has failed to find dengue antivirals. The current study examines animal drugs as antagonists against NS2B-NS3Pro, one of DENV's most promising therapeutic targets for dengue fever. Antiviral-Lycotoxin-An1a (An1a), a defence antiviral peptide isolated from the venom of Alopecosa nagpag, a toxic spider. Based on prior in vitro research, it was discovered that the venom peptide suppresses the action of DENV-2 NS2B-NS3Pro. An1a peptide with NS2B-NS3Pro wild type (WT) and two mutants (H51N and S135A) was tested for anti-dengue characteristics using in silico analysis. The WT NS2B-NS3Pro has a catalytic triad of His51, Asp75, and Ser135 in the active site, but the mutants have N51 instead of His51 and Ala135 instead of Ser135. The dynamic sites of the three proteases (WT, H51N, S135A) and the peptide toxin (An1a) were taken into account to achieve molecular docking of An1a with WT NS2B-NS3Pro in conjunction with H51N and S135A. Cluspro-2 performs rigid-flexible docking to predict peptide binding affinity, effectiveness, and inhibitory consistency. Since the ligand had a higher binding affinity, docking score, and molecular interaction network, MD simulations and MM-GBSA free energy calculations were used to investigate the stability of the three protein-peptide complexes. The computer-aided screening and manufacture of spider venom-based anti-dengue medicines yielded intriguing results in the preliminary studies. This study is significant in defining the ideal therapeutic candidate against dengue infections.
Collapse
Affiliation(s)
- Priyanka Purohit
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha760007, India
| | - Debashis Barik
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha760007, India
| | - Jarmani Dansana
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha760007, India
| | - Biswa Ranjan Meher
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha760007, India.
| |
Collapse
|
3
|
Elsori D, Rashid G, Khan NA, Sachdeva P, Jindal R, Kayenat F, Sachdeva B, Kamal MA, Babker AM, Fahmy SA. Nanotube breakthroughs: unveiling the potential of carbon nanotubes as a dual therapeutic arsenal for Alzheimer's disease and brain tumors. Front Oncol 2023; 13:1265347. [PMID: 37799472 PMCID: PMC10548133 DOI: 10.3389/fonc.2023.1265347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023] Open
Abstract
Alzheimer's disease (AD) and brain tumors are debilitating neurological conditions that pose significant challenges in current medical practices. Existing treatment options for AD primarily focus on symptom management, and brain tumors often require aggressive therapeutic approaches. Novel disease-modifying strategies and therapeutic agents are urgently needed to address the underlying causes of AD pathogenesis and improve brain tumor management. In recent years, nanoparticles (NPs) have shown promise as valuable tools in diagnosing and managing various brain disorders, including AD. Among these, carbon nanotubes (CNTs) have garnered attention for their unique properties and biomedical potential. Their ability to cross the blood-brain barrier (BBB) with ease opens up new possibilities for targeted drug delivery and neuroprotection. This literature review aims to explore the versatile nature of CNTs, which can be functionalized with various biomolecules or substances due to their sp2 hybridization. This adaptability enables them to specifically target cells and deliver medications under specific environmental conditions. Moreover, CNTs possess an exceptional capacity to penetrate cell membranes, making them valuable tools in the treatment of AD and brain tumors. By delving into the role of CNTs in biomedicine, this review sheds light on their potential in managing AD, offering a glimpse of hope for effective disease-modifying options. Understanding the mechanisms of CNTs' action and their capabilities in targeting and delivering medication to affected cells will pave the way for innovative therapeutic strategies that can improve the lives of those afflicted with these devastating neurological conditions. The exploration of CNTs as a dual therapeutic arsenal for both brain tumors and Alzheimer's disease holds great promise and may usher in a new era of effective treatment strategies for these challenging conditions.
Collapse
Affiliation(s)
- Deena Elsori
- Faculty of Resillience, Deans Office Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Gowhar Rashid
- Amity Medical School, Amity University Gurgaon, Haryana, India
| | - Nihad Ashraf Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Punya Sachdeva
- Department of Neuropyschology and Neurosciences, Amity University, Noida, UP, India
| | - Riya Jindal
- Department of Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Falak Kayenat
- Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - Bhuvi Sachdeva
- Department of Physics and Astrophysics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Asaad Ma Babker
- Department of Medical Laboratory Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| |
Collapse
|
4
|
Purohit P, Sahoo S, Panda M, Sahoo PS, Meher BR. Targeting the DENV NS2B-NS3 protease with active antiviral phytocompounds: structure-based virtual screening, molecular docking and molecular dynamics simulation studies. J Mol Model 2022; 28:365. [PMID: 36274116 PMCID: PMC9589672 DOI: 10.1007/s00894-022-05355-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022]
Abstract
Dengue fever has been a global health concern. Mitigation is a challenging problem due to non-availability of workable treatments. The most difficult objective is to design a perfect anti-dengue agent capable of inhibiting infections caused by all four serotypes. Various tactics have been employed in the past to discover dengue antivirals, including screening of chemical compounds against dengue virus enzymes. The objective of the current study is to investigate phytocompounds as anti-dengue remedies that target the non-structural 2B and non-structural 3 protease (NS2B-NS3pro), a possible therapeutic target for dengue fever. Initially, 300 + antiviral phytocompounds were collected from Duke's phytochemical and ethnobotanical database and 30 phytocompounds with anti-dengue properties were identified from previously reported studies, which were virtually screened against NS2B-NS3pro using molecular docking and toxicity evaluation. The top five most screened ligands were naringin, hesperidin, gossypol, maslinic acid and rhodiolin with binding affinities of - 8.7 kcal/mol, - 8.5 kcal/mol, - 8.5 kcal/mol, - 8.5 kcal/mol and - 8.1 kcal/mol, respectively. The finest docked compounds complexed with NS2B-NS3pro were subjected for molecular dynamics (MD) simulations and binding free energy estimations through molecular mechanics generalized born surface area-based calculations. The results of the study are intriguing in the context of computer-aided screening and the binding affinities of the phytocompounds, proposing maslinic acid (MAS) as a potent bioactive antiviral for the development of phytocompound-based anti-dengue agent.
Collapse
Affiliation(s)
- Priyanka Purohit
- Computational Biology and Bioinformatics Laboratory, P.G. Department of Botany, Berhampur University, Berhampur, Odisha, 760007, India
| | - Sthitaprajna Sahoo
- Computational Biology and Bioinformatics Laboratory, P.G. Department of Botany, Berhampur University, Berhampur, Odisha, 760007, India
| | - Madhusmita Panda
- Computational Biology and Bioinformatics Laboratory, P.G. Department of Botany, Berhampur University, Berhampur, Odisha, 760007, India
| | - Partha Sarathi Sahoo
- Computational Biology and Bioinformatics Laboratory, P.G. Department of Botany, Berhampur University, Berhampur, Odisha, 760007, India
| | - Biswa Ranjan Meher
- Computational Biology and Bioinformatics Laboratory, P.G. Department of Botany, Berhampur University, Berhampur, Odisha, 760007, India.
| |
Collapse
|