1
|
Abdelall LM, Nagy YI, Kashef MT. Restoring vancomycin activity against resistant Enterococcus faecalis using a transcription factor decoy as a vanA operon-inhibitor. J Antimicrob Chemother 2024; 79:2999-3006. [PMID: 39255254 DOI: 10.1093/jac/dkae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Vancomycin-resistant enterococci (VRE) represent a public health threat due to the few available treatments. Such alarm has triggered worldwide initiatives to develop effective antimicrobial compounds and novel delivery and therapeutic strategies. vanA operon is responsible for most cases of acquired vancomycin resistance in enterococci. OBJECTIVES Development of a transcription factor decoy (TFD) system as a vanA gene transcription-inhibitor. METHODS Vancomycin MIC was determined in the presence of TFD-lipoplexes. Additionally, the effect of TFD-lipoplexes on the expression level of the vanA gene and the growth pattern of E. faecalis was evaluated. The haemolytic activity of the developed TFD-lipoplexes and their cytotoxicity were examined. TFD-lipoplexes efficiency in treating vancomycin-resistant E. faecalis (VREF) infection was tested in vivo using a systemic mice infection model. RESULTS A reduction in vancomycin MIC against VRE from 256 mg/L (resistant) to 16 mg/L (intermediate susceptible), in the presence of TFD-lipoplexes, was recorded. The developed TFD-lipoplexes lacked any effect on E. faecalis growth and significantly reduced the transcription level of the vanA gene by about 3-fold. In an initial evaluation of the safety of TFD-lipoplexes, they were found not to be overtly haemolytic to human blood or cytotoxic to human skin fibroblast cells. The co-administration of TFD-lipoplexes and vancomycin efficiently eradicated VREF infection in vivo. CONCLUSIONS The developed TFD-lipoplexes successfully restored vancomycin activity against VREF. They offer a safe effective unconventional therapy against this stubborn organism and present a revolution in gene therapy that can be applied to other resistance-encoding genes in various organisms.
Collapse
Affiliation(s)
- Loai M Abdelall
- Department of General Administration of Factories Inspection, Central Administration of Operations, Egyptian Drug Authority, Giza 12654, Egypt
| | - Yosra Ibrahim Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
2
|
Yan MY, He YH, Ruan GJ, Xue F, Zheng B, Lv Y. The prevalence and molecular epidemiology of vancomycin-resistant Enterococcus (VRE) carriage in patients admitted to intensive care units in Beijing, China. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:351-357. [PMID: 35922268 DOI: 10.1016/j.jmii.2022.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/16/2022] [Accepted: 07/02/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Vancomycin-resistant Enterococcus (VRE) can be carried in the gut for a long period and its carriage status is associated with subsequent infections. This study aimed to investigate the frequency of intestinal VRE carriage in intensive care patients in Beijing. METHODS A multicenter, retrospective cross-sectional study was conducted at six hospitals in Beijing, China. All patients admitted to intensive care units (ICUs) between April 2 and May 1, 2017, were enrolled, and their clinical data were gathered by reviewing electronic medical records. Rectal swabs collected from patients were stored at -80 °C in the Institute of Clinical Pharmacology, Peking University First Hospital, and they were selectively cultured for VRE, then the identified strains were analyzed by polymerase chain reaction (PCR) to detect the glycopeptide resistance gene and were characterized by multilocus sequence typing (MLST). RESULTS Of 148 patients recruited, 46 (31.1%) carried VRE, with the majority (n = 42) being Enterococcus faecium. In total, 78.3% of the VRE were vanA positive and 15.2% vanM positive, while 6.5% undetected glycopeptide resistance gene. The predominant ST was ST78 (47.6%) followed by ST192 (14.3%), ST555 (9.5%), and ST789 (9.5%). Multivariate analysis showed that factors associated VRE carriage were patients aged >65 years (odds ratio [OR], 3.786; 95% confidence interval [CI], 1.402-10.222) and recent third-generation cephalosporins use (OR, 6.360; 95% CI, 1.873-21.601). CONCLUSIONS The overall proportion of VRE carriage in patients admitted to ICUs was markedly high in Beijing, China. The vanM gene has been spread widely but vanA gene was the dominant resistance determinant in VRE in Beijing.
Collapse
Affiliation(s)
- Meng-Yao Yan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China
| | - Yuan-Hui He
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China
| | - Gen-Jie Ruan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China
| | - Feng Xue
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China
| | - Bo Zheng
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China.
| | - Yuan Lv
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China.
| |
Collapse
|
3
|
Seetswane E, Loeto D, Muzila M, Tshekiso K, Gomba A, Baruti K, Jongman M. Phenotypic and genotypic profiling reveals a high prevalence of methicillin-resistant Staphylococcus aureus isolated from hospitals, houseflies and adjacent informal food retailers in Botswana. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36287593 DOI: 10.1099/mic.0.001213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The increasing occurrence of methicillin-resistant Staphylococcus aureus (MRSA) in the environment, food and healthcare systems is a global public health concern. MRSA is reported to cause food poisoning, osteomyelitis and pyogenic infections of the skin, and consequently has been categorized as a high-priority pathogen by the World Health Organization. Here, we determined the presence of MRSA in clinical (n=56), food (n=150) and housefly samples (n=970) collected from two hospitals in Botswana. Characterization based on phenotypic (antimicrobial resistance, biofilm production) and genotypic (antimicrobial resistance genes and integrons) profiles were performed on all isolates. Of the total samples tested, 64 were positive for MRSA following conventional culture methods and PCR amplification of the mecA and mecC genes for confirmation of presumptive MRSA isolates. The confirmed isolates included 71 % (95 % CI 83.2-59.6) from clinical, 9 % (95 % CI 14--4.8) from food, and 1 % (95 % CI 1.6-0.4) collected from housefly samples. In total 89 % (n=57) isolates in the current study showed a multidrug resistance phenotype, among these, resistance to β-lactams and glycoside antibiotic classes were predominant. Genotypic characterization showed the domination of the blatem gene (95 %) followed by fox (63 %) and tetO (19 %) whilst vanA was only reported in 13 % of the isolates. Integrons were detected in 50 % (32/64) of the total MRSA isolates, and we report a high prevalence of etd gene, detected in 67 % (43/64) of the isolates followed by eta 38 % (24/64) whilst tsst-1 (3%) was the least detected genetic determinant. The genes etb and PVL were not detected in a ll the tested MRSA isolates. We provide the first report on the prevalence of MRSA isolated from the clinical-food-vector nexus harbouring biofilm and blatem genes, and antibiotic resistance profiles in Botswana. These results are significant for risk-assessment analysis and the development of improved MRSA infection prevention and control strategies.
Collapse
Affiliation(s)
- Eunicah Seetswane
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Daniel Loeto
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Mbaki Muzila
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Kgomotso Tshekiso
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Annancietar Gomba
- National Health Laboratory Services, National Institute of Occupational Health, Johannesburg, South Africa
| | - Kabo Baruti
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana.,Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Mosimanegape Jongman
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| |
Collapse
|
4
|
Wongnak K, Pattanachaiwit S, Rattanasirirat W, Limsrivanichakorn S, Kiratisin P, Assanasen S, Leelaporn A. First characterization of Tn1546-like structures of vancomycin-resistant Enterococcus faecium Thai isolates. J Infect Chemother 2021; 27:991-998. [PMID: 33663929 DOI: 10.1016/j.jiac.2021.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Vancomycin-resistant Enterococcus faecium (VREfm) carrying vanA was first isolated from patient at Siriraj Hospital, Thailand in 2004. Since then, VREfm isolates have been detected increasingly in this 2500-bed university hospital. To understand the epidemiology of vanA VREfm in this setting, the isolates collected during 2004-2013 were characterized. METHODS A total of 49 vanA VREfm isolates previously confirmed by multiplex PCR were characterized by determining resistance phenotypes to vancomycin, teicoplanin, ampicillin and ciprofloxacin by broth microdilution method. Multilocus sequence typing (MLST) and virulence genes of those isolates were investigated. The Tn1546 structure diversity was studied by long-range overlapping PCR and primer walking sequencing. RESULTS Of all isolates studied, 9 sequence types (ST17, ST80, ST78, ST730, ST203, ST18, ST280, ST64, ST323) in clonal complex 17 and a novel ST1051 were revealed. The esp-positive isolates were 73.5%. Of all vanA operons characterized, at least 9 types of Tn1546-like structures were detected. All of vanA determinants contained 5'-end different from the Tn1546 prototype. Approximately 47% of them also carried the insertion sequence IS1251 at the intergenic region between vanS and vanH. Interestingly, another IS (ISEfa4) was found to be inside the sequence of IS1251 in ST17 isolate. CONCLUSION Heterogeneity of vanA VREfm was observed. Nearly all of isolates studied belonged to CC17. One novel ST1051 strain was detected. Isolates in the initial period carried vanA operon similar to the prototype. The diversity of vanA determinants has been increased in the recent isolates. A novel vanA operon structure was detected.
Collapse
Affiliation(s)
- Kornikar Wongnak
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, 10700, Thailand
| | - Supanit Pattanachaiwit
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, 10700, Thailand
| | - Wasinee Rattanasirirat
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, 10700, Thailand
| | - Sunee Limsrivanichakorn
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, 10700, Thailand
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, 10700, Thailand
| | - Susan Assanasen
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, 10700, Thailand
| | - Amornrut Leelaporn
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
5
|
Sun HL, Liu C, Zhang JJ, Zhou YM, Xu YC. Molecular characterization of vancomycin-resistant enterococci isolated from a hospital in Beijing, China. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:433-442. [DOI: 10.1016/j.jmii.2018.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/12/2018] [Accepted: 12/24/2018] [Indexed: 12/17/2022]
|
6
|
A Silenced vanA Gene Cluster on a Transferable Plasmid Caused an Outbreak of Vancomycin-Variable Enterococci. Antimicrob Agents Chemother 2016; 60:4119-27. [PMID: 27139479 PMCID: PMC4914660 DOI: 10.1128/aac.00286-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/21/2016] [Indexed: 12/17/2022] Open
Abstract
We report an outbreak of vancomycin-variable vanA(+) enterococci (VVE) able to escape phenotypic detection by current guidelines and demonstrate the molecular mechanisms for in vivo switching into vancomycin resistance and horizontal spread of the vanA cluster. Forty-eight vanA(+) Enterococcus faecium isolates and one Enterococcus faecalis isolate were analyzed for clonality with pulsed-field gel electrophoresis (PFGE), and their vanA gene cluster compositions were assessed by PCR and whole-genome sequencing of six isolates. The susceptible VVE strains were cultivated in brain heart infusion broth containing vancomycin at 8 μg/ml for in vitro development of resistant VVE. The transcription profiles of susceptible VVE and their resistant revertants were assessed using quantitative reverse transcription-PCR. Plasmid content was analyzed with S1 nuclease PFGE and hybridizations. Conjugative transfer of vanA was assessed by filter mating. The only genetic difference between the vanA clusters of susceptible and resistant VVE was an ISL3-family element upstream of vanHAX, which silenced vanHAX gene transcription in susceptible VVE. Furthermore, the VVE had an insertion of IS1542 between orf2 and vanR that attenuated the expression of vanHAX Growth of susceptible VVE occurred after 24 to 72 h of exposure to vancomycin due to excision of the ISL3-family element. The vanA gene cluster was located on a transferable broad-host-range plasmid also detected in outbreak isolates with different pulsotypes, including one E. faecalis isolate. Horizontally transferable silenced vanA able to escape detection and revert into resistance during vancomycin therapy represents a new challenge in the clinic. Genotypic testing of invasive vancomycin-susceptible enterococci by vanA-PCR is advised.
Collapse
|