1
|
Asai Y, Ooi H, Sato Y. Risk evaluation of carbapenem-induced liver injury based on machine learning analysis. J Infect Chemother 2023; 29:660-666. [PMID: 36914094 DOI: 10.1016/j.jiac.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
INTRODUCTION Information regarding carbapenem-induced liver injury is limited, and the rate of liver injury caused by meropenem (MEPM) and doripenem (DRPM) remains unknown. Decision tree (DT) analysis, a machine learning method, has a flowchart-like model where users can easily predict the risk of liver injury. Thus, we aimed to compare the rate of liver injury between MEPM and DRPM and construct a flowchart that can be used to predict carbapenem-induced liver injury. METHODS We investigated patients treated with MEPM (n = 310) or DRPM (n = 320) and confirmed liver injury as the primary outcome. We used a chi-square automatic interaction detection algorithm to construct DT models. The dependent variable was set as liver injury from a carbapenem (MEPM or DRPM), and factors including alanine aminotransferase (ALT), albumin-bilirubin (ALBI) score, and concomitant use of acetaminophen were used as explanatory variables. RESULTS The rates of liver injury were 22.9% (71/310) and 17.5% (56/320) in the MEPM and DRPM groups, respectively; no significant differences in the rate were observed (95% confidence interval: 0.710-1.017). Although the DT model of MEPM could not be constructed, DT analysis showed that the incidence of introducing DRPM in patients with ALT >22 IU/L and ALBI scores > -1.87 might be high-risk. CONCLUSIONS The risk of developing liver injury did not differ significantly between the MEPM and DRPM groups. Since ALT and ALBI score are evaluated in clinical settings, this DT model is convenient and potentially useful for medical staff in assessing liver injury before DRPM administration.
Collapse
Affiliation(s)
- Yuki Asai
- Pharmacy, National Hospital Organization Mie Chuo Medical Center, 2158-5 Hisaimyojin, Tsu, Mie, 514-1101, Japan.
| | - Hayahide Ooi
- Pharmacy, National Hospital Organization Mie Chuo Medical Center, 2158-5 Hisaimyojin, Tsu, Mie, 514-1101, Japan
| | - Yoshiharu Sato
- Pharmacy, National Hospital Organization Mie Chuo Medical Center, 2158-5 Hisaimyojin, Tsu, Mie, 514-1101, Japan
| |
Collapse
|
2
|
Liu PY, Ko WC, Lee WS, Lu PL, Chen YH, Cheng SH, Lu MC, Lin CY, Wu TS, Yen MY, Wang LS, Liu CP, Shao PL, Lee YL, Shi ZY, Chen YS, Wang FD, Tseng SH, Lin CN, Chen YH, Sheng WH, Lee CM, Tang HJ, Hsueh PR. In vitro activity of cefiderocol, cefepime/enmetazobactam, cefepime/zidebactam, eravacycline, omadacycline, and other comparative agents against carbapenem-non-susceptible Pseudomonas aeruginosa and Acinetobacter baumannii isolates associated from bloodstream infection in Taiwan between 2018-2020. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:888-895. [PMID: 34521591 DOI: 10.1016/j.jmii.2021.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND/PURPOSE This study aimed to investigate the in vitro susceptibilities of carbapenem-non-susceptible Pseudomonas aeruginosa (CNSPA) and Acinetobacter baumannii (CNSAB) isolates to cefiderocol, novel β-lactamase inhibitor (BLI) combinations, new tetracycline analogues, and other comparative antibiotics. METHODS In total, 405 non-duplicate bacteremic CNSPA (n = 150) and CNSAB (n = 255) isolates were collected from 16 hospitals in Taiwan between 2018 and 2020. Minimum inhibitory concentrations (MICs) were determined using the broth microdilution method, and susceptibilities were interpreted according to the relevant guidelines or in accordance with results of previous studies and non-species-related pharmacokinetic/pharmacodynamic data. RESULTS Among the isolates tested, cefiderocol demonstrated potent in vitro activity against CNSPA (MIC50/90, 0.25/1 mg/L; 100% of isolates were inhibited at ≤4 mg/L) and CNSAB (MIC50/90, 0.5/2 mg/L; 94.9% of isolates were inhibited at ≤4 mg/L) isolates. More than 80% of CNSPA isolates were susceptible to cefiderocol, ceftazidime/avibactam, ceftolozane/tazobactam, and amikacin, based on breakpoints established by the Clinical and Laboratory Standards Institute. Activities of new BLI combinations varied significantly. Tetracycline analogues, including tigecycline (MIC50/90, 1/2 mg/L; 92.5% of CNSAB isolates were inhibited at ≤2 mg/L) and eravacycline (MIC50/90, 0.5/1 mg/L; 99.6% of CNSAB isolates were inhibited at ≤2 mg/L) exhibited more potent in vitro activity against CNSAB than omadacycline (MIC50/90, 4/8 mg/L). CONCLUSIONS The spread of CNSPA and CNSAB poses a major challenge to global health. Significant resistance be developed even before a novel agent becomes commercially available. The development of on-site antimicrobial susceptibility tests for these novel agents is of great clinical importance.
Collapse
Affiliation(s)
- Po-Yu Liu
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Sen Lee
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hsing Cheng
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan; School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Min-Chi Lu
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Ying Lin
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Muh-Yong Yen
- Division of Infectious Diseases, Taipei City Hospital, National Yang-Ming University, School of Medicine, Taipei, Taiwan
| | - Lih-Shinn Wang
- Division of Infectious Diseases, Department of Internal Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; Tzu Chi University, Hualien, Taiwan
| | - Chang-Pan Liu
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; MacKay Medical College, New Taipei City, Taiwan
| | - Pei-Lan Shao
- Department of Pediatrics, Hsin-Chu Branch, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | - Yu-Lin Lee
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Zhi-Yuan Shi
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yao-Shen Chen
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Hui Tseng
- Center for Disease Control and Prevention, Ministry of Health and Welfare, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yu-Hui Chen
- Infection Control Center, Chi Mei Hospital, Liouying, Taiwan
| | - Wang-Huei Sheng
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Ming Lee
- Department of Internal Medicine, St Joseph's Hospital, Yunlin County, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Po-Ren Hsueh
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Huang C, Chen I, Yang Y. Doripenem in the Treatment of Patients with Nosocomial Pneumonia: A Meta-Analysis. J Clin Med 2022; 11:jcm11144014. [PMID: 35887777 PMCID: PMC9319354 DOI: 10.3390/jcm11144014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: Clinically, doripenem therapy for nosocomial pneumonia remains a serious concern. The purpose of this meta-analysis was to explore the efficacy and the safety of doripenem therapy for nosocomial pneumonia in comparison with other antimicrobial agents. Methods: Studies were eligible for inclusion only if they directly compared the clinical effectiveness of doripenem and other antimicrobial agent therapies for nosocomial pneumonia in adult patients between 1 January 2000 and 30 April 2022. All studies were included if they reported one or more of the following outcomes: clinical cure rate, microbiological cure rate, all-cause mortality, and adverse events. Results: Six randomized controlled trials and three retrospective studies were included in the meta-analysis. There were 952 patients in the doripenem group and 1183 patients in the comparator group. The comparator antimicrobial agents included imipenem/cilastatin, meropenem, and piperacillin/tazobactam. Seven studies had a high risk of bias. Doripenem therapy for nosocomial pneumonia had a microbiological cure rate, a clinical cure rate, an all-cause mortality, and adverse events similar to those of comparators. Conclusions: The efficacy and the safety of doripenem therapy for nosocomial pneumonia were comparable with those of comparators. Randomized controlled trials are needed to confirm the role of doripenem in nosocomial pneumonia therapy.
Collapse
Affiliation(s)
- Chienhsiu Huang
- Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan;
- Correspondence: or ; Tel.: +886-9-2155-2418
| | - Ihung Chen
- Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan;
| | - Yalun Yang
- Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan;
| |
Collapse
|
4
|
Catalán P, Wood E, Blair JMA, Gudelj I, Iredell JR, Beardmore RE. Seeking patterns of antibiotic resistance in ATLAS, an open, raw MIC database with patient metadata. Nat Commun 2022; 13:2917. [PMID: 35614098 PMCID: PMC9133080 DOI: 10.1038/s41467-022-30635-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Antibiotic resistance represents a growing medical concern where raw, clinical datasets are under-exploited as a means to track the scale of the problem. We therefore sought patterns of antibiotic resistance in the Antimicrobial Testing Leadership and Surveillance (ATLAS) database. ATLAS holds 6.5M minimal inhibitory concentrations (MICs) for 3,919 pathogen-antibiotic pairs isolated from 633k patients in 70 countries between 2004 and 2017. We show most pairs form coherent, although not stationary, timeseries whose frequencies of resistance are higher than other databases, although we identified no systematic bias towards including more resistant strains in ATLAS. We sought data anomalies whereby MICs could shift for methodological and not clinical or microbiological reasons and found artefacts in over 100 pathogen-antibiotic pairs. Using an information-optimal clustering methodology to classify pathogens into low and high antibiotic susceptibilities, we used ATLAS to predict changes in resistance. Dynamics of the latter exhibit complex patterns with MIC increases, and some decreases, whereby subpopulations' MICs can diverge. We also identify pathogens at risk of developing clinical resistance in the near future.
Collapse
Affiliation(s)
- Pablo Catalán
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911, Leganés, Spain.
| | - Emily Wood
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ivana Gudelj
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Westmead Hospital,Western Sydney Local Health District, Sydney, NSW, Australia
- School of Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Robert E Beardmore
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
5
|
Geographic Patterns of Carbapenem-resistant Pseudomonas aeruginosa in the Asia-Pacific Region: Results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program, 2015-2019. Antimicrob Agents Chemother 2021; 66:e0200021. [PMID: 34807753 DOI: 10.1128/aac.02000-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a common pathogen that is associated with multidrug-resistant (MDR) and carbapenem-resistant (CR) phenotypes; therefore, we investigated its resistance patterns and mechanisms by using data from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program in the Asia-Pacific region during 2015-2019. MICs were determined using the broth microdilution method. Genes encoding major extended-spectrum β-lactamases and carbapenemases were investigated by multiplex PCR assays. Susceptibility was interpreted using the Clinical and Laboratory Standards Institute (CLSI) breakpoints. A total of 6,349 P. aeruginosa isolates were collected in the ATLAS program between 2015 and 2019 from 14 countries. According to the CLSI definitions, the numbers (and rates) of CR and MDR P. aeruginosa were 1,198 (18.9%) and 1,303 (20.5%), respectively. For 747 of the CR P. aeruginosa strains that were available for gene screening, 253 β-lactamases genes were detected in 245 (32.8%) isolates. The most common gene was blaVIM (29.0, 71/245), followed by blaNDM (24.9%, 61/245) and blaVEB (20.8%, 51/245). The resistance patterns and associated genes varied significantly between the countries in the Asia-Pacific region. India had the highest rates of carbapenem resistance (29.3%, 154/525) and gene detection (17.7%, 93/525). Compared to those harboring either class A or B β-lactamase genes, the CR P. aeruginosa without detected β-lactamase genes had lower MICs for most of the antimicrobial agents, including ceftazidime/avibactam and ceftolozane/tazobactam. In conclusion, MDR and CR P. aeruginosa infections pose a major threat, particularly those with detected carbapenemase genes. Continuous surveillance is important for improving antimicrobial stewardship and antibiotic prescriptions.
Collapse
|
6
|
Gatti M, Viaggi B, Rossolini GM, Pea F, Viale P. An evidence-based multidisciplinary approach focused at creating algorithms for targeted therapy of infection-related ventilator associated complications (IVACs) caused by Enterobacterales in critically ill adult patients. Expert Rev Anti Infect Ther 2021; 20:331-352. [PMID: 34488527 DOI: 10.1080/14787210.2021.1976145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Prompt implementation of appropriate targeted antibiotic therapy representsa valuable approach in improving clinical and ecological outcome in critically septic patients. Thismultidisciplinary opinion article aims to develop evidence-based algorithms for targeted antibiotictherapy of infection-related ventilator associated complications (IVACs) caused by Enterobacterales,which are among the most common pathogens associated with these conditions. AREAS COVERED A multidisciplinary team of four experts had several rounds of assessment for developingalgorithms devoted to targeted antimicrobial therapy of IVACs caused by Enterobacterales.A literature search was performed on PubMed-MEDLINE (until March 2021) to provide evidence forsupporting therapeutic choices. Quality and strength of evidence was established according toa hierarchical scale of the study design. Six different algorithms with associated recommendations concerning therapeutic choice and dosing optimization were suggested according to the susceptibilitypattern of Enterobacterales: multi-susceptible, extended-spectrum beta-lactamase (ESBL)-producing,AmpC beta-lactamase-producing, Klebsiella pneumoniae carbapenemase (KPC)-producing, OXA-48-producing, and metallo-beta-lactamase (MBL)-producing Enterobacterales. EXPERT OPINION The implementation of algorithms focused on prompt revision of antibiotic regimensguided by results of conventional and rapid diagnostic methodologies, appropriate place in therapy ofnovel beta-lactams, implementation of strategies for sparing the broadest-spectrum antibiotics, and PK/PD optimization of antibiotic dosing regimens is strongly suggested.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Ssd Clinical Pharmacology, Irccs Azienda Ospedaliero Universitaria Di Bologna, Bologna, Italy
| | - Bruno Viaggi
- Neurointensive Care Unit, Department of Anesthesiology, Careggi, University Hospital, Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Ssd Clinical Pharmacology, Irccs Azienda Ospedaliero Universitaria Di Bologna, Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Infectious Diseases Unit, Irccs Azienda Ospedaliero Universitaria Di Bologna, Bologna, Italy
| |
Collapse
|
7
|
Jean SS, Lee YL, Liu PY, Lu MC, Ko WC, Hsueh PR. Multicenter surveillance of antimicrobial susceptibilities and resistance mechanisms among Enterobacterales species and non-fermenting Gram-negative bacteria from different infection sources in Taiwan from 2016 to 2018. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:463-473. [PMID: 34503920 DOI: 10.1016/j.jmii.2021.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/07/2021] [Accepted: 07/25/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To explore the in vitro antimicrobial susceptibility among clinically important Gram-negative bacteria (GNB) in Taiwan. METHODS From 2016 through 2018, a total of 5458 GNB isolates, including Escherichia coli (n = 1545), Klebsiella pneumoniae (n = 1255), Enterobacter species (n = 259), Pseudomonas aeruginosa (n = 1127), Acinetobacter baumannii complex (n = 368), and Stenotrophomonas maltophilia (n = 179), were collected. The susceptibility results were summarized by the breakpoints of minimum inhibitory concentration (MIC) of CLSI 2020, EUCAST 2020 (for colistin), or published articles (for ceftolozane/tazobactam). The resistance genes among multidrug-resistant (MDR) or extensively drug-resistant (XDR)-GNB were investigated by multiplex PCR. RESULTS Significantly higher rates of non-susceptibility (NS) to ertapenem and carbapenemase production, predominantly KPC and OXA-48-like beta-lactamase, were observed in Enterobacterales isolates causing respiratory tract infection than those causing complicated urinary tract or intra-abdominal infection (12.7%/3.44% vs. 5.7%/0.76% or 7.7%/0.97%, respectively). Isolates of Enterobacter species showed higher rates of phenotypic extended-spectrum β-lactamase and NS to ertapenem than E. coli or K. pneumoniae isolates. Although moderate activity (54-83%) was observed against most potential AmpC-producing Enterobacterales isolates, ceftolozane/tazobactam exhibited poor in vitro (44.7-47.4%) activity against phenotypic AmpC Enterobacter cloacae isolates. Additionally, 251 (22.3%) P. aeruginosa isolates exhibited the carbapenem-NS phenotype, and their MDR and XDR rate was 63.3% and 33.5%, respectively. Fifteen (75%) of twenty Burkholderia cenocepacia complex isolates were inhibited by ceftolozane/tazobactam at MICs of ≤4 μg/mL. CONCLUSIONS With the increase in antibiotic resistance in Taiwan, it is imperative to periodically monitor the susceptibility profiles of clinically important GNB.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Emergency Medicine, Department of Emergency Medicine and Critical Care Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Lin Lee
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Po-Yu Liu
- Division of Infectious Disease, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Min-Chi Lu
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Lin TC, Hung YP, Lin WT, Dai W, Huang YL, Ko WC. Risk factors and clinical impact of bacteremia due to carbapenem-nonsusceptible Enterobacteriaceae: A multicenter study in southern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:1122-1129. [PMID: 34244117 DOI: 10.1016/j.jmii.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The emergence of carbapenem-non-susceptible Enterobacteriaceae (CnSE) infections is a public health threat. This study investigated the risk factors and clinical impact of bacteremia due to CnSE. MATERIAL AND METHODS The study was conducted at three hospitals in southern Taiwan between January 1, 2017, and October 31, 2019. Only the first episode of CnSE bacteremia from each adult was included. For one episode of CnSE bacteremia, two subsequent bacteremic episodes due to carbapenem-susceptible Enterobacteriaceae isolates in each hospital were included as the controls. RESULTS Among a total of 641 episodes of monomicrobial Enterobacteriaceae bacteremia were noted, 47 (7.3%) of which were of CnSE bacteremia. Ninety-four episodes of carbapenem-susceptible Enterobacteriaceae (CSE) bacteremia were selected as the controls for further analyses. In the multivariate analysis, hypertension (odds ratio [OR], 4.21; P = 0.005), Pitt bacteremia score (OR, 1.61; P = 0.002), and nosocomial bacteremia (OR, 3.30; P = 0.01) were associated with carbapenem nonsusceptibility among Enterobacteriaceae bacteremia. The most abundant CnSE isolate was Klebsiella pneumoniae (91.5%), followed by Klebsiella oxytoca (6.4%) and Escherichia coli (2.1%). Patients with CnSE bacteremia had a higher overall in-hospital mortality rate than those with CSE bacteremia (53.2% vs. 23.4%, P = 0.001). Moreover, in the multivariate analysis, the in-hospital mortality was significantly associated with higher Pitt bacteremia score (OR, 1.38; P = 0.02) and marginally associated with CnSE infections (OR, 2.44; P = 0.06). CONCLUSION Among adults with Enterobacteriaceae bacteremia, carbapenem nonsusceptibility, male sex, and the presence of hypertension or chronic kidney disease indicate a poor prognosis during hospitalization.
Collapse
Affiliation(s)
- Tsao-Chin Lin
- Medical of Laboratory, Sinying Hospital, Ministry of Health and Welfare, Tainan, Taiwan; Department of Medical Laboratory and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Pin Hung
- Departments of Internal Medicine, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Tang Lin
- Medical Laboratory, ChiaYi Hospital, Ministry of Health and Welfare, ChiaYi, Taiwan
| | - Wei Dai
- Department of Experiment and Diagnosis, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Yeou-Lih Huang
- Department of Medical Laboratory and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Chen CH, Tu CY, Chen WC, Kuo LK, Wang YT, Fu PK, Ku SC, Fang WF, Chen CM, Lai CC. Clinical Efficacy of Cefoperazone-Sulbactam versus Piperacillin-Tazobactam in the Treatment of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia. Infect Drug Resist 2021; 14:2251-2258. [PMID: 34168466 PMCID: PMC8216753 DOI: 10.2147/idr.s313828] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022] Open
Abstract
Objective The aim of this study was to compare the usefulness of cefoperazone-sulbactam and that of piperacillin-tazobactam in the treatment of hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP). Methods This retrospective study included the adult patients receiving cefoperazone-sulbactam or piperacillin-tazobactam against HAP/VAP in nine hospitals in Taiwan from March 1, 2018 to May 30, 2019. Primary outcome was clinical cure rate. Results A total of 410 patients were enrolled. Among them, 209 patients received cefoperazone-sulbactam and 201 patients received piperacillin-tazobactam. Overall, cefoperazone-sulbactam group had similar distribution of age, sex, or SOFA scores as piperacillin-tazobactam group. However, cefoperazone-sulbactam had higher comorbidity score and disease severity than piperacillin-tazobactam group (Charlson score: 6.5 ± 2.9 vs 5.7 ± 2.7, p < 0.001; APACHE II score: 21.4 ± 6.2 vs 19.3 ± 6.0, p = 0.002). Regarding clinical outcomes, no significant difference in clinical cure and failure rates was observed between cefoperazone-sulbactam and piperacillin-tazobactam group (clinical cure rate: 80.9% vs 80.1% and clinical failure rate: 17.2% vs 18.4%, p = 0.943). Moreover, no significant difference in clinical effectiveness and ineffectiveness rates was observed between cefoperazone-sulbactam and piperacillin-tazobactam group (clinical effective rate: 80.9% vs 80.6% and clinical ineffective rate: 17.7% vs 18.9%, p = 0.711). The all-cause mortality rates of the cefoperazone-sulbactam and piperacillin-tazobactam groups were similar (23.9% vs 20.9%, p = 0.48). After adjustment of Charlson score and APACHE II score, the similarities in these clinical outcomes did not change in overall patients and patients with HAP or VAP. Conclusion For treating adult patients with nosocomial pneumonia, cefoperazone-sulbactam was as effective as piperacillin-tazobactam.
Collapse
Affiliation(s)
- Chia-Hung Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yen Tu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Chih Chen
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Kuo Kuo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yao-Tung Wang
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pin-Kuei Fu
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shih-Chi Ku
- Division of Chest Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Feng Fang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chin-Ming Chen
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chih-Cheng Lai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Tainan Branch, Tainan, Taiwan
| |
Collapse
|
10
|
Microfluidic assembly of pomegranate-like hierarchical microspheres for efflux regulation in oral drug delivery. Acta Biomater 2021; 126:277-290. [PMID: 33774198 DOI: 10.1016/j.actbio.2021.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Herein, a multi-functional nano-in-micro hierarchical microsphere system is demonstrated for controlling the intestinal efflux pumps that affect the oral bioavailability of many therapeutic drugs. The hierarchical particles were generated by a co-flow microfluidic device and consisted of porous silica nanoparticles packed in Eudragit® polymeric matrix. Meropenem (MER), a last-resort antibacterial drug, was loaded into porous silica (MCM-48) with a loading capacity of 34.3 wt%. In this unique materials combination, MCM-48 enables ultrahigh loading of a hydrophilic MER, while the Eudragit® polymers not only protect MER from gastric pH but also act as an antagonist for p-glycoprotein protein efflux pumps to reduce the efflux of MER back into the gastrointestinal lumen. We investigated the in-vitro temporal MER release and bidirectional (absorptive and secretory) drug permeation model across the Caco-2 monolayer. The bioavailability of MER was significantly improved by all of the prepared formulations (i.e. increased absorptive transport and reduced secretory transport). The Eudragit® RSPO formulated MER-MCM showed the best performance with an efflux ratio (i.e. secretory transport/absorptive transport) of 0.35, which is 7.4 folds less than pure MER (2.62). Lastly, the prepared formulations were able to retain the antibacterial activity of MER against Staphylococcus aureus and Pseudomonas aeruginosa. STATEMENT OF SIGNIFICANCE: Meropenem (MER) is a last resort antibiotic used for the treatment of drug-resistant and acute infections and only available as intravenous injectable dosage due to its poor chemical and thermal stability, and ultra-poor oral bioavailability because of the efflux action of P-glycoprotein (P-gp) pumps. Multifunctional colloidal micro/nanoparticles can help to solve these issues. Herein, we designed pomegranate-like hierarchical microspheres comprised of porous silica nanoparticles and enteric Eudragit® polymers (Eudragit®S100, Eudragit®RSPO, and Eudragit®RS100) using a co-flow microfluidic device. Our formulations allow for ultrahigh loading of hydrophilic MER, protects MER from gastric pH, and also block P-gp efflux pumps for enhanced MER permeation/retention with Eudragit®RSPO - showing 13.9-folds higher permeation and 7.4-folds reduction in efflux ratio in a bi-directional Caco-2 monolayer culture system.
Collapse
|
11
|
Raza A, Sime FB, Cabot PJ, Roberts JA, Falconer JR, Kumeria T, Popat A. Liquid CO2 Formulated Mesoporous Silica Nanoparticles for pH-Responsive Oral Delivery of Meropenem. ACS Biomater Sci Eng 2021; 7:1836-1853. [DOI: 10.1021/acsbiomaterials.0c01284] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Fekade Bruck Sime
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jason A. Roberts
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
- Department of Pharmacy, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - James R. Falconer
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- School of Materials Science and Engineering, The University of New South Wales, Sydney NSW 2052, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Mater Research Institute, The University of Queensland Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
12
|
Raza A, Ngieng SC, Sime FB, Cabot PJ, Roberts JA, Popat A, Kumeria T, Falconer JR. Oral meropenem for superbugs: challenges and opportunities. Drug Discov Today 2020; 26:551-560. [PMID: 33197621 DOI: 10.1016/j.drudis.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/10/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
An increase in the number of multidrug-resistant microbial strains is the biggest threat to global health and is projected to cause >10 million deaths by 2055. The carbapenem family of antibacterial drugs are an important class of last-resort treatment of infections caused by drug-resistant bacteria and are only available as an injectable formulation. Given their instability within the gut and poor permeability across the gut wall, oral carbapenem formulations show poor bioavailability. Meropenem (MER), a carbapenem antibiotic, has broad-spectrum antibacterial activity, but suffers from the above-mentioned issues. In this review, we discuss strategies for improving the oral bioavailability of MER, such as inhibiting tubular secretion, prodrug formulations, and use of nanomedicine. We also highlight challenges and emerging approaches for the development of oral MER.
Collapse
Affiliation(s)
- Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Shih Chen Ngieng
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Fekade Bruck Sime
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Peter J Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jason A Roberts
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD 4102, Australia; Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD 4102, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - James R Falconer
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
13
|
Özbek-Çelik B, Damar-Çelik D, Nørskov-Lauritsen N. Post-antibiotic Effect of Various Antibiotics against <i>Achromobacter xylosoxidans</i> Strains Isolated from Patients with Cystic Fibrosis. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2020. [DOI: 10.5799/jcei/8294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Rapid identification of bloodstream bacterial and fungal pathogens and their antibiotic resistance determinants from positively flagged blood cultures using the BioFire FilmArray blood culture identification panel. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:882-891. [PMID: 32305272 DOI: 10.1016/j.jmii.2020.03.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND/PURPOSE Rapid and accurate identification of pathogens and their antibiotic resistance directly from flagged blood cultures can aid clinicians in optimizing early antibiotic treatment and improve the clinical outcomes, especially in settings associated with high rates of bloodstream infection caused by vancomycin-resistant Enterococci (VRE) and carbapenem-resistant Enterobacteriaceae (CRE). We compared the results of the BioFire FilmArray Blood Culture Identification (BCID) panel with those of conventional methods for identifying the pathogens and their antibiotic susceptibility status. METHODS In total, 100 randomly selected positive blood cultures (BACTEC Plus Aerobic/F bottles or BACTEC Anaerobic Lytic/10 bottles) were analyzed. The pathogen detection efficiency of FilmArray BCID panel was compared with that of conventional method using MALDI-TOF MS system (Bruker MALDI Biotyper) and susceptibility testing by the Vitek 2 system. The sequencing analysis of antibiotic resistance genes was performed for discrepant results obtained from MALDI Biotyper and Vitek 2. RESULTS Among the 100 positively flagged blood cultures, 94% of FilmArray BCID panel results were consistent with the MALDI Biotyper results. All five VRE isolates positive for vanA/vanB genes, 10 of 12 Staphylococcus species positive for mecA gene, and only one Klebsiella pneumoniae isolate positive for K. pneumoniae carbapenemase gene (blaKPC) detected in the FilmArray BCID panel were also concordant with results by the results by conventional susceptibility testing/molecular confirmation. CONCLUSIONS The FilmArray BCID panel results not only demonstrated good correlation with conventional blood culture identification and susceptibility results but also provided results rapidly, especially for the early detection of MRSA, VRE and blaKPC-mediated CRE.
Collapse
|
15
|
Jean SS, Chang YC, Lin WC, Lee WS, Hsueh PR, Hsu CW. Epidemiology, Treatment, and Prevention of Nosocomial Bacterial Pneumonia. J Clin Med 2020; 9:jcm9010275. [PMID: 31963877 PMCID: PMC7019939 DOI: 10.3390/jcm9010275] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Septicaemia likely results in high case-fatality rates in the present multidrug-resistant (MDR) era. Amongst them are hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), two frequent fatal septicaemic entities amongst hospitalised patients. We reviewed the PubMed database to identify the common organisms implicated in HAP/VAP, to explore the respective risk factors, and to find the appropriate antibiotic choice. Apart from methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, extended-spectrum β-lactamase-producing Enterobacteriaceae spp., MDR or extensively drug-resistant (XDR)-Acinetobacter baumannii complex spp., followed by Stenotrophomonas maltophilia, Chryseobacterium indologenes, and Elizabethkingia meningoseptica are ranked as the top Gram-negative bacteria (GNB) implicated in HAP/VAP. Carbapenem-resistant Enterobacteriaceae notably emerged as an important concern in HAP/VAP. The above-mentioned pathogens have respective risk factors involved in their acquisition. In the present XDR era, tigecycline, colistin, and ceftazidime-avibactam are antibiotics effective against the Klebsiella pneumoniae carbapenemase and oxacillinase producers amongst the Enterobacteriaceae isolates implicated in HAP/VAP. Antibiotic combination regimens are recommended in the treatment of MDR/XDR-P. aeruginosa or A. baumannii complex isolates. Some special patient populations need prolonged courses (>7-day) and/or a combination regimen of antibiotic therapy. Implementation of an antibiotic stewardship policy and the measures recommended by the United States (US) Institute for Healthcare were shown to decrease the incidence rates of HAP/VAP substantially.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Wan Fang Hospital, Taipei Medicine University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-29307930 (ext. 1262)
| | - Yin-Chun Chang
- Division of Thoracic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.C.); (W.-C.L.)
| | - Wei-Cheng Lin
- Division of Thoracic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.C.); (W.-C.L.)
| | - Wen-Sen Lee
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan;
- Department Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chin-Wan Hsu
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Wan Fang Hospital, Taipei Medicine University, Taipei 110, Taiwan
| |
Collapse
|