1
|
Fernandes DA. Multifunctional gold nanoparticles for cancer theranostics. 3 Biotech 2024; 14:267. [PMID: 39416669 PMCID: PMC11473483 DOI: 10.1007/s13205-024-04086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
The diagnosis and treatment of cancer can often be challenging requiring more attractive options. Some types of cancers are more aggressive than others and symptoms for many cancers are subtle, especially in the early stages. Nanotechnology provides high sensitivity, specificity and multimodal capability for cancer detection, treatment and monitoring. In particular, metal nanoparticles (NPs) such as gold nanoparticles (AuNPs) are attractive nanosystems for researchers interested in bioimaging and therapy. The size, shape and surface of AuNPs can be modified for improving targeting and accumulation in cancer cells, for example through introduction of ligands and surface charge. The interactions of AuNPs with electromagnetic radiation (e.g., visible-near-infrared, X-rays) can be used for photothermal therapy and radiation therapy, through heat generated from light absorption and emission of Auger electrons, respectively. The subsequent expansion and high X-ray attenuation from AuNPs can be used for enhancing contrast for tumor detection (e.g., using photoacoustic, computed tomography imaging). Multi-functionality can be further extended through covalent/non-covalent functionalization, for loading additional imaging/therapeutic molecules for combination therapy and multimodal imaging. In order to cover the important aspects for designing and using AuNPs for cancer theranostics, this review focuses on the synthesis, functionalization and characterization methods that are important for AuNPs, and presents their unique properties and different applications in cancer theranostics.
Collapse
|
2
|
Verma N, Setia A, Mehata AK, Randhave N, Badgujar P, Malik AK, Muthu MS. Recent Advancement of Indocyanine Green Based Nanotheranostics for Imaging and Therapy of Coronary Atherosclerosis. Mol Pharm 2024; 21:4804-4826. [PMID: 39225111 DOI: 10.1021/acs.molpharmaceut.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Atherosclerosis is a vascular intima condition in which any part of the circulatory system is affected, including the aorta and coronary arteries. Indocyanine green (ICG), a theranostic compound approved by the FDA, has shown promise in the treatment of coronary atherosclerosis after incorporation into nanoplatforms. By integration of ICG with targeting agents such as peptides or antibodies, it is feasible to increase its concentration in damaged arteries, hence increasing atherosclerosis detection. Nanotheranostics offers cutting-edge techniques for the clinical diagnosis and therapy of atherosclerotic plaques. Combining the optical properties of ICG with those of nanocarriers enables the improved imaging of atherosclerotic plaques and targeted therapeutic interventions. Several ICG-based nanotheranostics platforms have been developed such as polymeric nanoparticles, iron oxide nanoparticles, biomimetic systems, liposomes, peptide-based systems, etc. Theranostics for atherosclerosis diagnosis use magnetic resonance imaging (MRI), computed tomography (CT), near-infrared fluorescence (NIRF) imaging, photoacoustic/ultrasound imaging, positron emission tomography (PET), and single photon emission computed tomography (SPECT) imaging techniques. In addition to imaging, there is growing interest in employing ICG to treat atherosclerosis. In this review, we provide a conceptual explanation of ICG-based nanotheranostics for the imaging and therapy of coronary atherosclerosis. Moreover, advancements in imaging modalities such as MRI, CT, PET, SPECT, and ultrasound/photoacoustic have been discussed. Furthermore, we highlight the applications of ICG for coronary atherosclerosis.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nandini Randhave
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Paresh Badgujar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
3
|
Tang K, Wu F, Mao Y, Shen J, Li Y, Wang B, Zhang A. Clinical value of low-dose three-dimensional reconstruction by multi-slice spiral computed tomography and by traditional X-ray in the diagnosis of distal radius epiphyseal injury in children. Am J Transl Res 2024; 16:3376-3384. [PMID: 39114688 PMCID: PMC11301459 DOI: 10.62347/luzj4979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/30/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE To compare the clinical value of multi-slice spiral computed tomography (MSCT) low-dose three-dimensional reconstruction and traditional X-ray in the auxiliary diagnosis of distal radius epiphyseal injury in children. METHODS A retrospective analysis was performed on 105 children with distal radius bone scale injury (classified by Salter-Harris classification) admitted from March 2020 to June 2022. All children underwent MSCT three-dimensional reconstruction examination and traditional X-ray examination. The detection rate of epiphyseal injury of the distal radius was compared, along with the resolution, sensitivity and specificity. The image clarity and display degree of bone structure were analyzed. The radiation dose-related indicators and the time required for diagnosis were compared. RESULTS The detection rate and diagnostic accuracy of MSCT (100%, 92.38%) was significantly higher than that of X-ray (76.19%, 64.76%). In terms of radiation dose index, the volume dose index CTDI of MSCT ranged from 1-5 mGy while the X-ray group ranged from 5-10 mGy. The dose length product (DLP) value of the MSCT group was lower than in the X-ray group (20-100 mGy·cm vs. 50-150 mGy·cm). The diagnostic scan time for MSCT was shorter than that of conventional X-ray. The acceptance rate with MSCT was 99%, significantly higher than that with conventional X-ray (85%). CONCLUSIONS Low-dose three-dimensional reconstruction of MSCT in the diagnosis of epiphyseal injury of distal radius in children shows significant advantages over traditional CT in the detection rate, diagnostic accuracy, postoperative reduction quality evaluation, and radiation dose.
Collapse
Affiliation(s)
- Kai Tang
- Department of Orthopedics, Affiliated Children’s Hospital of Jiangnan UniversityWuxi 214000, Jiangsu, China
| | - Fang Wu
- Department of Gastroenterology, Wuxi People’s Hospital Affiliated to Nanjing Medical UniversityWuxi 214000, Jiangsu, China
| | - Yongmin Mao
- Department of Orthopedics, Affiliated Children’s Hospital of Jiangnan UniversityWuxi 214000, Jiangsu, China
| | - Jun Shen
- Department of Orthopedics, Affiliated Children’s Hospital of Jiangnan UniversityWuxi 214000, Jiangsu, China
| | - Yi Li
- Department of Orthopedics, Affiliated Children’s Hospital of Jiangnan UniversityWuxi 214000, Jiangsu, China
| | - Bang Wang
- Department of Orthopedics, Affiliated Children’s Hospital of Jiangnan UniversityWuxi 214000, Jiangsu, China
| | - Aiguo Zhang
- Department of Orthopedics, Affiliated Children’s Hospital of Jiangnan UniversityWuxi 214000, Jiangsu, China
| |
Collapse
|
4
|
Bott KN, Matheson BE, Smith ACJ, Tse JJ, Boyd SK, Manske SL. Addressing Challenges of Opportunistic Computed Tomography Bone Mineral Density Analysis. Diagnostics (Basel) 2023; 13:2572. [PMID: 37568935 PMCID: PMC10416827 DOI: 10.3390/diagnostics13152572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Computed tomography (CT) offers advanced biomedical imaging of the body and is broadly utilized for clinical diagnosis. Traditionally, clinical CT scans have not been used for volumetric bone mineral density (vBMD) assessment; however, computational advances can now leverage clinically obtained CT data for the secondary analysis of bone, known as opportunistic CT analysis. Initial applications focused on using clinically acquired CT scans for secondary osteoporosis screening, but opportunistic CT analysis can also be applied to answer research questions related to vBMD changes in response to various disease states. There are several considerations for opportunistic CT analysis, including scan acquisition, contrast enhancement, the internal calibration technique, and bone segmentation, but there remains no consensus on applying these methods. These factors may influence vBMD measures and therefore the robustness of the opportunistic CT analysis. Further research and standardization efforts are needed to establish a consensus and optimize the application of opportunistic CT analysis for accurate and reliable assessment of vBMD in clinical and research settings. This review summarizes the current state of opportunistic CT analysis, highlighting its potential and addressing the associated challenges.
Collapse
Affiliation(s)
- Kirsten N. Bott
- Department of Radiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.N.B.); (S.K.B.)
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Bryn E. Matheson
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ainsley C. J. Smith
- Department of Radiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.N.B.); (S.K.B.)
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Justin J. Tse
- Department of Radiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.N.B.); (S.K.B.)
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Steven K. Boyd
- Department of Radiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.N.B.); (S.K.B.)
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Sarah L. Manske
- Department of Radiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.N.B.); (S.K.B.)
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
5
|
Jiang X, Hu Z, Wang S, Zhang Y. Deep Learning for Medical Image-Based Cancer Diagnosis. Cancers (Basel) 2023; 15:3608. [PMID: 37509272 PMCID: PMC10377683 DOI: 10.3390/cancers15143608] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: The application of deep learning technology to realize cancer diagnosis based on medical images is one of the research hotspots in the field of artificial intelligence and computer vision. Due to the rapid development of deep learning methods, cancer diagnosis requires very high accuracy and timeliness as well as the inherent particularity and complexity of medical imaging. A comprehensive review of relevant studies is necessary to help readers better understand the current research status and ideas. (2) Methods: Five radiological images, including X-ray, ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), positron emission computed tomography (PET), and histopathological images, are reviewed in this paper. The basic architecture of deep learning and classical pretrained models are comprehensively reviewed. In particular, advanced neural networks emerging in recent years, including transfer learning, ensemble learning (EL), graph neural network, and vision transformer (ViT), are introduced. Five overfitting prevention methods are summarized: batch normalization, dropout, weight initialization, and data augmentation. The application of deep learning technology in medical image-based cancer analysis is sorted out. (3) Results: Deep learning has achieved great success in medical image-based cancer diagnosis, showing good results in image classification, image reconstruction, image detection, image segmentation, image registration, and image synthesis. However, the lack of high-quality labeled datasets limits the role of deep learning and faces challenges in rare cancer diagnosis, multi-modal image fusion, model explainability, and generalization. (4) Conclusions: There is a need for more public standard databases for cancer. The pre-training model based on deep neural networks has the potential to be improved, and special attention should be paid to the research of multimodal data fusion and supervised paradigm. Technologies such as ViT, ensemble learning, and few-shot learning will bring surprises to cancer diagnosis based on medical images.
Collapse
Grants
- RM32G0178B8 BBSRC
- MC_PC_17171 MRC, UK
- RP202G0230 Royal Society, UK
- AA/18/3/34220 BHF, UK
- RM60G0680 Hope Foundation for Cancer Research, UK
- P202PF11 GCRF, UK
- RP202G0289 Sino-UK Industrial Fund, UK
- P202ED10, P202RE969 LIAS, UK
- P202RE237 Data Science Enhancement Fund, UK
- 24NN201 Fight for Sight, UK
- OP202006 Sino-UK Education Fund, UK
- RM32G0178B8 BBSRC, UK
- 2023SJZD125 Major project of philosophy and social science research in colleges and universities in Jiangsu Province, China
Collapse
Affiliation(s)
- Xiaoyan Jiang
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China; (X.J.); (Z.H.)
| | - Zuojin Hu
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China; (X.J.); (Z.H.)
| | - Shuihua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| |
Collapse
|
6
|
Lestari YM, Anam C, Sutanto H, Arifin Z, Alkian I, Suyudi I, Dougherty G. Evaluation of silicone rubber-lead shield's effectiveness in protecting the breast during thoracic CT. Biomed Phys Eng Express 2023; 9. [PMID: 36689768 DOI: 10.1088/2057-1976/acb551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Radiation of thoracic computed tomography (CT) involves the breast although it is not considered an organ of interest. According to the International Commission on Radiological Protection (ICRP) No. 103, the breast is an organ with a high level of sensitivity when interacting with x-rays, increasing the potential risk of breast cancer. Therefore, the radiation dose must be optimized while maintaining image quality. The dose optimization can be accomplished using a radiation shield. This study aims to determine the effect of silicone rubber (SR)-lead (Pb) in various thicknesses as an alternative protective material limiting dose and preserving the image quality of the breast in thoracic CT. SR-Pb was made from SR and Pb by a simple method. The SR-Pb had thicknesses of 3, 6, 9, and 12 mm. The breast dose was measured using a CT dose profiler on the surface of the breast phantom. The CT number and the noise level of the resulting image were determined quantitatively. The dose without the radiation shield was 5.4 mGy. The doses measured using shielding with thicknesses of 3, 6, 9, and 12 mm were 5.2, 4.5, 4.3, and 3.3 mGy, respectively. Radiation shielding with a thickness of 12 mm reduced breast surface dose by up to 38%. The CT numbers and noise levels for the left and right breast phantom images were almost the same as those without radiation shields indicating there were only slight artifacts in the image. Therefore, SR-Pb is considered a good shielding material which can be pplied in a clinical setting by placing it directly on the breast surface for dose optimization.
Collapse
Affiliation(s)
| | - Choirul Anam
- Department of Physics, Diponegoro University, Semarang, Indonesia
| | - Heri Sutanto
- Department of Physics, Diponegoro University, Semarang, Indonesia.,Smart Material Research Center, Diponegoro University, Semarang, Indonesia
| | - Zaenal Arifin
- Department of Physics, Diponegoro University, Semarang, Indonesia
| | - Ilham Alkian
- Smart Material Research Center, Diponegoro University, Semarang, Indonesia
| | - Imam Suyudi
- Radiology Installation, Kardinah Hospital, Tegal, Indonesia
| | - Geoff Dougherty
- Department of Applied Physics and Medical Imaging, California State University Channel Islands, Camarillo, CA 93012, United States of America
| |
Collapse
|
7
|
Andersson H, Tamaddon A, Malekian M, Ydström K, Siemund R, Ullberg T, Wasselius J. Comparison of image quality between a novel mobile CT scanner and current generation stationary CT scanners. Neuroradiology 2023; 65:503-512. [PMID: 36441234 PMCID: PMC9905188 DOI: 10.1007/s00234-022-03089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Point-of-care imaging with mobile CT scanners offers several advantages, provided that the image quality is satisfactory. Our aim was to compare image quality of a novel mobile CT to stationary scanners for patients in a neurosurgical intensive care unit (ICU). METHODS From November 2020 to April 2021, all patients above 18 years of age examined by a mobile CT scanner at a neurosurgical ICU were included if they also had a stationary head CT examination during the same hospitalization. Quantitative image quality parameters included attenuation and noise in six predefined regions of interest, as well as contrast-to-noise ratio between gray and white matter. Subjective image quality was rated on a 4-garde scale, by four radiologists blinded to scanner parameters. RESULTS Fifty patients were included in the final study population. Radiation dose and image attenuation values were similar for mobCT and stationary CTs. There was a small statistically significant difference in subjective quality rating between mobCT and stationary CT images. Two radiologists favored the stationary CT images, one was neutral, and one favored mobCT images. For overall image quality, 14% of mobCT images were rated grade 1 (poor image quality) compared to 8% for stationary CT images. CONCLUSION Point-of-care brain CT imaging was successfully performed on clinical neurosurgical ICU patients with small reduction in image quality, predominantly affecting the posterior fossa, compared to high-end stationary CT scanners.
Collapse
Affiliation(s)
- Henrik Andersson
- Department of Medical Imaging and Physiology, Skåne University Hospital, 221 85 Lund, Sweden ,Department of Clinical Sciences, Lund University, 22100 Lund, Sweden
| | - Ashkan Tamaddon
- Department of Medical Imaging and Physiology, Skåne University Hospital, 221 85 Lund, Sweden
| | - Mazdak Malekian
- Department of Medical Imaging and Physiology, Skåne University Hospital, 221 85 Lund, Sweden
| | - Kristina Ydström
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, 22185 Lund, Sweden ,Medical Radiation Physics Malmö, Department of Translational Medicine, Lund University, 22100 Lund, Sweden
| | - Roger Siemund
- Department of Medical Imaging and Physiology, Skåne University Hospital, 221 85 Lund, Sweden ,Department of Clinical Sciences, Lund University, 22100 Lund, Sweden
| | - Teresa Ullberg
- Department of Medical Imaging and Physiology, Skåne University Hospital, 221 85 Lund, Sweden ,Department of Clinical Sciences, Lund University, 22100 Lund, Sweden
| | - Johan Wasselius
- Department of Medical Imaging and Physiology, Skåne University Hospital, 221 85, Lund, Sweden. .,Department of Clinical Sciences, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
8
|
He H, Zhang X, Du L, Ye M, Lu Y, Xue J, Wu J, Shuai X. Molecular imaging nanoprobes for theranostic applications. Adv Drug Deliv Rev 2022; 186:114320. [PMID: 35526664 DOI: 10.1016/j.addr.2022.114320] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022]
Abstract
As a non-invasive imaging monitoring method, molecular imaging can provide the location and expression level of disease signature biomolecules in vivo, leading to early diagnosis of relevant diseases, improved treatment strategies, and accurate assessment of treating efficacy. In recent years, a variety of nanosized imaging probes have been developed and intensively investigated in fundamental/translational research and clinical practice. Meanwhile, as an interdisciplinary discipline, this field combines many subjects of chemistry, medicine, biology, radiology, and material science, etc. The successful molecular imaging not only requires advanced imaging equipment, but also the synthesis of efficient imaging probes. However, limited summary has been reported for recent advances of nanoprobes. In this paper, we summarized the recent progress of three common and main types of nanosized molecular imaging probes, including ultrasound (US) imaging nanoprobes, magnetic resonance imaging (MRI) nanoprobes, and computed tomography (CT) imaging nanoprobes. The applications of molecular imaging nanoprobes were discussed in details. Finally, we provided an outlook on the development of next generation molecular imaging nanoprobes.
Collapse
Affiliation(s)
- Haozhe He
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xindan Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China
| | - Minwen Ye
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yonglai Lu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jun Wu
- PCFM Lab of Ministry of Education, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China.
| |
Collapse
|
9
|
Ezzahmouly M, Essakhi A, El Ouahli A, El Byad H, Ed-dhahraouy M, Hakim S, Gourri E, ELmoutaouakkil A, Hatim Z. Automatic computation of bone defective volume from tomographic images. Heliyon 2022; 8:e09594. [PMID: 35669543 PMCID: PMC9163512 DOI: 10.1016/j.heliyon.2022.e09594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/06/2022] [Accepted: 05/23/2022] [Indexed: 11/12/2022] Open
Abstract
One of the most difficult aims of modern biomaterial science is predicting the shape and volume of a bone defect and adjusting the implementation of a bone substitute. Prior to implantation, practitioners must carefully identify the architecture and volume of the defective bone to be filled. This information is often accessed via imaging techniques. The defective bone is frequently confused with its surroundings and the image background. The use of conventional segmentation for the selection and isolation of the cavity to be filled proves to be difficult. In this work, a defect in a dead bone is created and then imaged with the microtomography technique (343 cuts generated). The goal is to separate the defect's shape and volume from both the bone and the background image. An adaptive morphological operation technique was employed to complete these tasks. The proposed method allows for exact segmentation and calculation of the volume of the cavity to be filled. Using several calculated phantoms, the approach is subjectively and quantitatively evaluated: Compared to the high error value of the conventional method, the error value of the proposed one has no bearing on the overall data. The method's accuracy was also confirmed by comparing the calculated volume of the bone defect (0.91 cm3) and the volume of prepared calcium phosphate cement paste necessary for its filling (0.87 cm3). To challenge the method even further, another direct application on a mandibular bone is realized with an advanced number of cuts (1236 cuts). The result of this application proved that the proposed algorithm overcomes the performance of the classical approaches of segmentation with a gain of 2 min on average. A comparison study between the proposed method and other classical segmentation approaches is also presented. The effectiveness of the method is proved by the various reports and metrics generated. The automated procedure can be beneficial in implantology for realizing and guiding surgical acts, as well as in computer-aided scaffolding techniques.
Collapse
Affiliation(s)
- M. Ezzahmouly
- Research Laboratory in Optimization, Emerging Systems, Networks and Imaging, LAROSERI, Computer Science Department, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
- Energy, Materials and Environment Team, Chemistry Department, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - A. Essakhi
- Laboratory of Renewable Energy and Systems Dynamics, Faculty of Sciences Ain Chok, Casablanca, Morocco
| | - A. El Ouahli
- Energy, Materials and Environment Team, Chemistry Department, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - H. El Byad
- Research Laboratory in Optimization, Emerging Systems, Networks and Imaging, LAROSERI, Computer Science Department, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
- Energy, Materials and Environment Team, Chemistry Department, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - M. Ed-dhahraouy
- Research Laboratory in Optimization, Emerging Systems, Networks and Imaging, LAROSERI, Computer Science Department, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - S. Hakim
- Research Laboratory in Optimization, Emerging Systems, Networks and Imaging, LAROSERI, Computer Science Department, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - E. Gourri
- Energy, Materials and Environment Team, Chemistry Department, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - A. ELmoutaouakkil
- Research Laboratory in Optimization, Emerging Systems, Networks and Imaging, LAROSERI, Computer Science Department, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - Z. Hatim
- Energy, Materials and Environment Team, Chemistry Department, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| |
Collapse
|
10
|
Fladt J, d'Esterre CD, Joundi R, McDougall C, Gensicke H, Barber P. Acute stroke imaging selection for mechanical thrombectomy in the extended time window: is it time to go back to basics? A review of current evidence. J Neurol Neurosurg Psychiatry 2022; 93:238-245. [PMID: 35115388 DOI: 10.1136/jnnp-2021-328000] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
Abstract
Treatment with endovascular therapy in the extended time window for acute ischaemic stroke with large vessel occlusion involves stringent selection criteria based on the two landmark studies DAWN and DEFUSE3. Current protocols typically include the requirement of advanced perfusion imaging which may exclude a substantial proportion of patients from receiving a potentially effective therapy. Efforts to offer endovascular reperfusion therapies to all appropriate candidates may be facilitated by the use of simplified imaging selection paradigms with widely available basic imaging techniques, such as non-contrast CT and CT angiography. Currently available evidence from our literature review suggests that patients meeting simplified imaging selection criteria may benefit as much as those patients selected using advanced imaging techniques (CT perfusion or MRI) from endovascular therapy in the extended time window. A comprehensive understanding of the role of imaging in patient selection is critical to optimising access to endovascular therapy in the extended time window and improving outcomes in acute stroke. This article provides an overview on current developments and future directions in this emerging area.
Collapse
Affiliation(s)
- Joachim Fladt
- Departments of Clinical Neurosciences, Radiology and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.,Stroke Center and Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Christopher D d'Esterre
- Departments of Clinical Neurosciences, Radiology and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Raed Joundi
- Departments of Clinical Neurosciences, Radiology and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Connor McDougall
- Departments of Clinical Neurosciences, Radiology and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Henrik Gensicke
- Stroke Center and Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Philip Barber
- Departments of Clinical Neurosciences, Radiology and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Abstract
Abstract
The goal of this study is to examine theoretically radiation absorption properties of zinc alumino bismuth borate (BZnAlBiSm) glasses with chemical formula 60B2O3-9ZnO-(30-x)Al2O3-xBi2O3-1Sm2O3 where x = 5, 10, 15 and 20 mol%. The linear and mass attenuation coefficents of BZnAlBiSm glasses turn out as this trend BZnAlBiSm-1<BZnAlBiSm-2<BZnAlBiSm-3<BZnAlBiSm-4. The BZnAlBiSm-4 with the smallest half value layers, tenth value layers and mean free paths in the examined energy ranges has the superior radiation shielding characteristics among the BZnAlBiSm glasses. The BZnAlBiSm-4 glass has the highest radiation protection efficiency among the BZnAlBiSm glasses. The transmission factors increase as photon energy range enhances from 0.015 to 15 MeV and thickness declines from 2.5 to 0.5 cm. The energy buildup factors and energy absorption buildup factors of BZnAlBiSm glasses reduce from 15 to 1 mfp. Variation of the effective atomic number and effective electron density as a function of photon energy for BZnAlBiSm glasses are similar. The projected ranges of electron, proton, alpha and carbon for the BZnAlBiSm glasses increase as photon energy enlarges. The fast neutron removal cross sections of the BZnAlBiSm glasses vary in order of BZnAlBiSm-4<BZnAlBiSm-3<BZnAlBiSm-2<BZnAlBiSm-1. Thus, it can be concluded that BZnAlBiSm-1 has the highest neutron absorption ability among the BZnAlBiSm glasses.
Collapse
Affiliation(s)
- Canel Eke
- Department of Mathematics and Science Education , Faculty of Education, Akdeniz University , 07058 , Antalya , Turkey
| |
Collapse
|
12
|
Afshar P, Heidarian S, Enshaei N, Naderkhani F, Rafiee MJ, Oikonomou A, Fard FB, Samimi K, Plataniotis KN, Mohammadi A. COVID-CT-MD, COVID-19 computed tomography scan dataset applicable in machine learning and deep learning. Sci Data 2021; 8:121. [PMID: 33927208 PMCID: PMC8085195 DOI: 10.1038/s41597-021-00900-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Novel Coronavirus (COVID-19) has drastically overwhelmed more than 200 countries affecting millions and claiming almost 2 million lives, since its emergence in late 2019. This highly contagious disease can easily spread, and if not controlled in a timely fashion, can rapidly incapacitate healthcare systems. The current standard diagnosis method, the Reverse Transcription Polymerase Chain Reaction (RT- PCR), is time consuming, and subject to low sensitivity. Chest Radiograph (CXR), the first imaging modality to be used, is readily available and gives immediate results. However, it has notoriously lower sensitivity than Computed Tomography (CT), which can be used efficiently to complement other diagnostic methods. This paper introduces a new COVID-19 CT scan dataset, referred to as COVID-CT-MD, consisting of not only COVID-19 cases, but also healthy and participants infected by Community Acquired Pneumonia (CAP). COVID-CT-MD dataset, which is accompanied with lobe-level, slice-level and patient-level labels, has the potential to facilitate the COVID-19 research, in particular COVID-CT-MD can assist in development of advanced Machine Learning (ML) and Deep Neural Network (DNN) based solutions.
Collapse
Affiliation(s)
- Parnian Afshar
- Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, Canada
| | - Shahin Heidarian
- Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada
| | - Nastaran Enshaei
- Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, Canada
| | - Farnoosh Naderkhani
- Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, Canada
| | - Moezedin Javad Rafiee
- Department of Medicine and Diagnostic Radiology, McGill University Health Center-Research Institute, Montreal, QC, Canada
| | - Anastasia Oikonomou
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | | | - Kaveh Samimi
- Department of Radiology, Iran university of medical science, Tehran, Iran
| | | | - Arash Mohammadi
- Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, Canada.
| |
Collapse
|
13
|
Meng X, Wu Y, Bu W. Functional CT Contrast Nanoagents for the Tumor Microenvironment. Adv Healthc Mater 2021; 10:e2000912. [PMID: 32691929 DOI: 10.1002/adhm.202000912] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Understanding the detailed tumor microenvironment (TME) is essential to achieve effective treatment of tumor, because TME has an extremely profound influence on the occurrence, development, invasion, and metastasis of tumor. It is of great significance to realize accurate diagnosis of the TME by using functional computed tomography (CT) contrast nanoagents (FCTNAs). Here, an overview of FCTNAs that respond to the overexpressed receptors, acidic microenvironment, overexpressed glutathione and enzymes, and hypoxia in tumor is provided, and also prospects the advance of novel spectral CT technique to detect the TME precisely. Utilizing FCTNAs is expected to achieve accurate monitoring of the TME and further provide guidance for the effective personalized tumor treatment in clinic.
Collapse
Affiliation(s)
- Xianfu Meng
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
| | - Yelin Wu
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Wenbo Bu
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
14
|
Image Quality and Dose Comparison of Single-Energy CT (SECT) and Dual-Energy CT (DECT). Radiol Res Pract 2020; 2020:1403957. [PMID: 32373363 PMCID: PMC7189324 DOI: 10.1155/2020/1403957] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
CT and its comprehensive usage have become one of the most indispensable components in medical field especially in the diagnosis of several diseases. SECT and DECT have developed CT diagnostic potentials in several means. In this review article we have discussed the basic principles of single-energy and dual-energy computed tomography and their important physical differences which can cause better diagnostic evaluation. Moreover, different organs diagnostic evaluations through single-energy and dual-energy computed tomography have been discussed. Conventional or single-energy CT (SECT) uses a single polychromatic X-ray beam (ranging from 70 to 140 kVp with a standard of 120 kVp) emitted from a single source and received by a single detector. The concept of dual-energy computed tomography (DECT) is almost as old as the CT technology itself; DECT initially required substantially higher radiation doses (nearly two times higher than those employed in single-energy CT) and presented problems associated with spatial misregistration of the two different kV image datasets between the two separate acquisitions. The basic principles of single-energy and dual-energy computed tomography and their important physical differences can cause better diagnostic evaluation. Moreover, different organs diagnostic evaluations through single-energy and dual-energy computed tomography have been discussed. According to diverse data and statistics it is controversial to definitely indicate the accurate comparison of image quality and dose amount.
Collapse
|
15
|
Effects of image distortion and Hounsfield unit variations on radiation treatment plans: An extended field-of-view reconstruction in a large bore CT scanner. Sci Rep 2020; 10:473. [PMID: 31949301 PMCID: PMC6965617 DOI: 10.1038/s41598-020-57422-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/11/2019] [Indexed: 11/20/2022] Open
Abstract
This study aimed to evaluate the effect of image distortion and Hounsfield unit (HU) variation due to the extended field-of-view (eFOV) of the large-bore (LB) computed tomography (CT) on dose distribution. Both home-made inhomogeneity and breast phantoms were scanned at the geometric center position and four different offset positions. We also performed dose optimizations based on different breast phantom CT sets for evaluating the effects of image artifacts on the intensity-modulated radiation techniques. The volume changes were 0.0% to 0.5% in the air, −0.5% to 3.0% in the water, and 4.0% to 5.0% in the high-density material of the inhomogeneity phantom. Both phantoms scanning results indicate that more distortions occurred in the eFOV area due to the biased scanning center. The gamma index differences ranged from 0.87% to 4.87% for the FIF plan and from 0.52% to 6.26% for the VMAT plan. This resulted in decrease of the minimum (7.3–13.1%), maximum (−0.8–2.2%), and mean doses (−0.2–4.4%). We recommend that it should be evaluated whether the applied CT would have an appropriate eFOV range for clinical radiation treatment planning for patients.
Collapse
|
16
|
Boudjelal A, Messali Z, Elmoataz A, Attallah B. Improved Simultaneous Algebraic Reconstruction Technique Algorithm for Positron-Emission Tomography Image Reconstruction via Minimizing the Fast Total Variation. J Med Imaging Radiat Sci 2017; 48:385-393. [PMID: 31047474 DOI: 10.1016/j.jmir.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022]
Abstract
CONTEXT There has been considerable progress in the instrumentation for data measurement and computer methods for generating images of measured PET data. These computer methods have been developed to solve the inverse problem, also known as the "image reconstruction from projections" problem. AIM In this paper, we propose a modified Simultaneous Algebraic Reconstruction Technique (SART) algorithm to improve the quality of image reconstruction by incorporating total variation (TV) minimization into the iterative SART algorithm. METHODOLOGY The SART updates the estimated image by forward projecting the initial image onto the sinogram space. Then, the difference between the estimated sinogram and the given sinogram is back-projected onto the image domain. This difference is then subtracted from the initial image to obtain a corrected image. Fast total variation (FTV) minimization is applied to the image obtained in the SART step. The second step is the result obtained from the previous FTV update. The SART and the FTV minimization steps run iteratively in an alternating manner. Fifty iterations were applied to the SART algorithm used in each of the regularization-based methods. In addition to the conventional SART algorithm, spatial smoothing was used to enhance the quality of the image. All images were sized at 128 × 128 pixels. RESULTS The proposed algorithm successfully accomplished edge preservation. A detailed scrutiny revealed that the reconstruction algorithms differed; for example, the SART and the proposed FTV-SART algorithm effectively preserved the hot lesion edges, whereas artifacts and deviations were more likely to occur in the ART algorithm than in the other algorithms. CONCLUSIONS Compared to the standard SART, the proposed algorithm is more robust in removing background noise while preserving edges to suppress the existent image artifacts. The quality measurements and visual inspections show a significant improvement in image quality compared to the conventional SART and Algebraic Reconstruction Technique (ART) algorithms.
Collapse
Affiliation(s)
- Abdelwahhab Boudjelal
- Electronics Department, University of Mohammed Boudiaf-M'sila, M'sila, Algeria; Image Team, GREYC Laboratory, University of Caen Normandy, Caen Cedex, France.
| | - Zoubeida Messali
- Electronics Department, University of Mohamed El Bachir El Ibrahimi-Bordj Bou Arréridj, Bordj Bou Arréridj, Algeria
| | - Abderrahim Elmoataz
- Image Team, GREYC Laboratory, University of Caen Normandy, Caen Cedex, France
| | - Bilal Attallah
- Electronics Department, University of Mohammed Boudiaf-M'sila, M'sila, Algeria; Image Team, GREYC Laboratory, University of Caen Normandy, Caen Cedex, France
| |
Collapse
|
17
|
Azeredo F, de Menezes LM, Enciso R, Weissheimer A, de Oliveira RB. Computed gray levels in multislice and cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2013; 144:147-55. [PMID: 23810056 DOI: 10.1016/j.ajodo.2013.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Gray level is the range of shades of gray in the pixels, representing the x-ray attenuation coefficient that allows for tissue density assessments in computed tomography (CT). An in-vitro study was performed to investigate the relationship between computed gray levels in 3 cone-beam CT (CBCT) scanners and 1 multislice spiral CT device using 5 software programs. METHODS Six materials (air, water, wax, acrylic, plaster, and gutta-percha) were scanned with the CBCT and CT scanners, and the computed gray levels for each material at predetermined points were measured with OsiriX Medical Imaging software (Geneva, Switzerland), OnDemand3D (CyberMed International, Seoul, Korea), E-Film (Merge Healthcare, Milwaukee, Wis), Dolphin Imaging (Dolphin Imaging & Management Solutions, Chatsworth, Calif), and InVivo Dental Software (Anatomage, San Jose, Calif). The repeatability of these measurements was calculated with intraclass correlation coefficients, and the gray levels were averaged to represent each material. Repeated analysis of variance tests were used to assess the differences in gray levels among scanners and materials. RESULTS There were no differences in mean gray levels with the different software programs. There were significant differences in gray levels between scanners for each material evaluated (P <0.001). CONCLUSIONS The software programs were reliable and had no influence on the CT and CBCT gray level measurements. However, the gray levels might have discrepancies when different CT and CBCT scanners are used. Therefore, caution is essential when interpreting or evaluating CBCT images because of the significant differences in gray levels between different CBCT scanners, and between CBCT and CT values.
Collapse
Affiliation(s)
- Fabiane Azeredo
- Department of Orthodontics, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
18
|
A Novel CBIR Approach to Differential Diagnosis of Liver Tumor on Computed Tomography Images. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proeng.2012.06.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|