1
|
Kalaei Z, Shekarchi AA, Hojjat-Farsangi M, Jalali P, Jadidi-Niaragh F. The prognostic and therapeutic potential of vimentin in colorectal cancer. Mol Biol Rep 2024; 51:1027. [PMID: 39347868 DOI: 10.1007/s11033-024-09965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Several cells and molecules in the tumor microenvironment have been introduced as effective factors in the prognosis and progression of colorectal cancer. As a key element of the intermediate filament family, vimentin is expressed by mesenchymal cells in a ubiquitous manner and contributes significantly to cellular integrity and stress resistance in colorectal cancer. Recent studies have shown that alterations in the expression patterns of intermediate filaments are significantly related to cancer progression, especially in phenotypes associated with cellular migration and invasion. In addition to its multiple biological roles, vimentin also has a substantial function in mediating the epithelial-mesenchymal transition. Therefore, evaluating vimentin as an effective factor involved in the prognosis of colorectal cancer and targeting it as a novel approach to cancer therapy have become one of the main goals of many researchers worldwide. In this article, we will review the various biological functions of vimentin, as well as its relationship with colorectal cancer with the aim of providing novel insights into its clinical importance in the prognosis and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Zahra Kalaei
- Department of Biology, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Cao Q, Tian Y, Deng Z, Yang F, Chen E. Epigenetic Alteration in Colorectal Cancer: Potential Diagnostic and Prognostic Implications. Int J Mol Sci 2024; 25:3358. [PMID: 38542332 PMCID: PMC10969857 DOI: 10.3390/ijms25063358] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 01/03/2025] Open
Abstract
Colorectal cancer (CRC), a prevalent malignant tumor of the digestive system, ranks as the third and second in global incidence and mortality, respectively, in 2020, with 1.93 million new cases (≈10% of all cancers). There are 940,000 deaths (≈9.4% of all cancers), and the incidence of CRC in younger patients (under 50 years of age) has become a new trend. The pathogenesis of CRC is primarily attributed to a series of genetic and epigenetic abnormalities within normal colonic epithelial cells, coupled with the reshaping of the tumor microenvironment in the surrounding stroma. This process leads to the transformation of colorectal adenomas into invasive adenocarcinomas. Although genetic changes are known to be the primary driving force in the occurrence and progression of CRC, recent research indicates that epigenetic regulation serves as a crucial molecular marker in cancer, playing a significant role in the pathological and physiological control of interactions between genetics and the environment. This review discusses the current global epidemiology of CRC, its risk factors, and preventive treatment strategies. The current study explores the latest advancements in the epigenetic regulation of CRC, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs). These developments hold potential as screening tools, prognostic biomarkers, and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Qing Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (Q.C.); (Y.T.); (Z.D.); (F.Y.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (Q.C.); (Y.T.); (Z.D.); (F.Y.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
| | - Zhiyi Deng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (Q.C.); (Y.T.); (Z.D.); (F.Y.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
| | - Fangfang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (Q.C.); (Y.T.); (Z.D.); (F.Y.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
| | - Erfei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (Q.C.); (Y.T.); (Z.D.); (F.Y.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
- School of Medicine, Northwest University, Xi’an 710069, China
| |
Collapse
|
3
|
Wever BMM, Steenbergen RDM. Unlocking the potential of tumor-derived DNA in urine for cancer detection: methodological challenges and opportunities. Mol Oncol 2024. [PMID: 38462745 DOI: 10.1002/1878-0261.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/27/2024] [Indexed: 03/12/2024] Open
Abstract
High cancer mortality rates and the rising cancer burden worldwide drive the development of innovative methods in order to advance cancer diagnostics. Urine contains a viable source of tumor material and allows for self-collection from home. Biomarker testing in this liquid biopsy represents a novel approach that is convenient for patients and can be effective in detecting cancer at a curable stage. Here, we set out to provide a detailed overview of the rationale behind urine-based cancer detection, with a focus on non-urological cancers, and its potential for cancer diagnostics. Moreover, evolving methodological challenges and untapped opportunities for urine biomarker testing are discussed, particularly emphasizing DNA methylation of tumor-derived cell-free DNA. We also provide future recommendations for technical advancements in urine-based cancer detection and elaborate on potential mechanisms involved in the transrenal transport of cell-free DNA.
Collapse
Affiliation(s)
- Birgit M M Wever
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, The Netherlands
| | - Renske D M Steenbergen
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, The Netherlands
| |
Collapse
|
4
|
Ye J, Zhang J, Ding W. DNA methylation modulates epigenetic regulation in colorectal cancer diagnosis, prognosis and precision medicine. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:34-53. [PMID: 38464391 PMCID: PMC10918240 DOI: 10.37349/etat.2024.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 03/12/2024] Open
Abstract
Colorectal cancer (CRC) is a multifaceted disease influenced by the interplay of genetic and environmental factors. The clinical heterogeneity of CRC cannot be attributed exclusively to genetic diversity and environmental exposures, and epigenetic markers, especially DNA methylation, play a critical role as key molecular markers of cancer. This review compiles a comprehensive body of evidence underscoring the significant involvement of DNA methylation modifications in the pathogenesis of CRC. Moreover, this review explores the potential utility of DNA methylation in cancer diagnosis, prognostics, assessment of disease activity, and prediction of drug responses. Recognizing the impact of DNA methylation will enhance the ability to identify distinct CRC subtypes, paving the way for personalized treatment strategies and advancing precision medicine in the management of CRC.
Collapse
Affiliation(s)
- Jingxin Ye
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Gastroenterology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, Jiangsu Province, China
| | - Jianfeng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Weifeng Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
5
|
Jordaens S, Zwaenepoel K, Tjalma W, Deben C, Beyers K, Vankerckhoven V, Pauwels P, Vorsters A. Urine biomarkers in cancer detection: A systematic review of preanalytical parameters and applied methods. Int J Cancer 2023; 152:2186-2205. [PMID: 36647333 DOI: 10.1002/ijc.34434] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023]
Abstract
The aim of this review was to explore the status of urine sampling as a liquid biopsy for noninvasive cancer research by reviewing used preanalytical parameters and protocols. We searched two main health sciences databases, PubMed and Web of Science. From all eligible publications (2010-2022), information was extracted regarding: (a) study population characteristics, (b) cancer type, (c) urine preanalytics, (d) analyte class, (e) isolation method, (f) detection method, (g) comparator used, (h) biomarker type, (i) conclusion and (j) sensitivity and specificity. The search query identified 7835 records, of which 924 unique publications remained after screening the title, abstract and full text. Our analysis demonstrated that many publications did not report information about the preanalytical parameters of their urine samples, even though several other studies have shown the importance of standardization of sample handling. Interestingly, it was noted that urine is used for many cancer types and not just cancers originating from the urogenital tract. Many different types of relevant analytes have been shown to be found in urine. Additionally, future considerations and recommendations are discussed: (a) the heterogeneous nature of urine, (b) the need for standardized practice protocols and (c) the road toward the clinic. Urine is an emerging liquid biopsy with broad applicability in different analytes and several cancer types. However, standard practice protocols for sample handling and processing would help to elaborate the clinical utility of urine in cancer research, detection and disease monitoring.
Collapse
Affiliation(s)
- Stephanie Jordaens
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Novosanis NV, Wijnegem, Belgium
| | - Karen Zwaenepoel
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Wiebren Tjalma
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Multidisciplinary Breast Clinic, Gynecological Oncology Unit, Department of Obstetrics and Gynecology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | | | - Vanessa Vankerckhoven
- Novosanis NV, Wijnegem, Belgium.,Center for Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Alex Vorsters
- Center for Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
6
|
Sequeira-Antunes B, Ferreira HA. Urinary Biomarkers and Point-of-Care Urinalysis Devices for Early Diagnosis and Management of Disease: A Review. Biomedicines 2023; 11:biomedicines11041051. [PMID: 37189669 DOI: 10.3390/biomedicines11041051] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Biosensing and microfluidics technologies are transforming diagnostic medicine by accurately detecting biomolecules in biological samples. Urine is a promising biological fluid for diagnostics due to its noninvasive collection and wide range of diagnostic biomarkers. Point-of-care urinalysis, which integrates biosensing and microfluidics, has the potential to bring affordable and rapid diagnostics into the home to continuing monitoring, but challenges still remain. As such, this review aims to provide an overview of biomarkers that are or could be used to diagnose and monitor diseases, including cancer, cardiovascular diseases, kidney diseases, and neurodegenerative disorders, such as Alzheimer’s disease. Additionally, the different materials and techniques for the fabrication of microfluidic structures along with the biosensing technologies often used to detect and quantify biological molecules and organisms are reviewed. Ultimately, this review discusses the current state of point-of-care urinalysis devices and highlights the potential of these technologies to improve patient outcomes. Traditional point-of-care urinalysis devices require the manual collection of urine, which may be unpleasant, cumbersome, or prone to errors. To overcome this issue, the toilet itself can be used as an alternative specimen collection and urinalysis device. This review then presents several smart toilet systems and incorporated sanitary devices for this purpose.
Collapse
|
7
|
Zhang X, Hou H, Jiang M, Zhang X. Aberrant circulating tumor DNA methylation and exosomal microRNA biomarkers for early detection of colorectal cancer. Mol Biol Rep 2023; 50:2743-2750. [PMID: 36583782 DOI: 10.1007/s11033-022-08194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) became the third most commonly diagnosed malignancy and the second leading cause of cancer death in 2020. However, the rates of early screening and early diagnosis for CRC remain unsatisfactory. Thus, it is essential to explore the initiating factors of CRC and strategies for its early diagnosis. Research progress in liquid biopsy has led to the finding that circulating tumor-derived DNA (ctDNA) and exosomes play vital roles in early detection of CRC. THE APPLICATIONS OF LIQUID BIOPSY FOR EARLY DETECTION OF COLORECTAL CANCER: Moreover, the increased understanding of epigenetics has highlighted the role of ctDNA methylation in CRC carcinogenesis, and the detection of aberrant ctDNA methylation markers is a feasible strategy for diagnosis of early-stage CRC. Among exosomal markers, microRNAs (miRNAs) are abundant and are the most researched. Upregulated or downregulated expression of exosome-derived miRNAs can indicate the occurrence of early-stage CRC. FUTURE PERSPECTIVE The current research progress on aberrant ctDNA methylation and tumor exosomal miRNA biomarkers in early detection of CRC is summarized in this review, and the advantages and shortcomings of the methods are discussed.
Collapse
Affiliation(s)
- Xuchen Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Helei Hou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Man Jiang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China. .,Qingdao Cancer Institute, Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Kim AK, Hamilton JP, Lin SY, Chang TT, Hann HW, Hu CT, Lou Y, Lin YJ, Gade TP, Park G, Luu H, Lee TJ, Wang J, Chen D, Goggins MG, Jain S, Song W, Su YH. Urine DNA biomarkers for hepatocellular carcinoma screening. Br J Cancer 2022; 126:1432-1438. [PMID: 35046521 PMCID: PMC9091244 DOI: 10.1038/s41416-022-01706-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) occurs in a well-defined high-risk patient population, but better screening tests are needed to improve sensitivity and efficacy. Therefore, we investigated the use of urine circulating tumour DNA (ctDNA) as a screening test. METHODS Candidate markers in urine were selected from HCC and controls. We then enrolled 609 patients from five medical centres to test the selected urine panel. A two-stage model was developed to combine AFP and urine panel as a screening test. RESULTS Mutated TP53, and methylated RASSF1a, and GSTP1 were selected as the urine panel markers. Serum AFP outperformed the urine panel among all cases of HCC, but the urine panel identified 49% of HCC cases with low AFP < 20 ng/ml. Using the two-stage model, the combined AFP and urine panel identified 148 of the 186 HCC cases (79.6% sensitivity at 90% specificity), which was 30% more than the cases detected with serum AFP alone. It also increased early-stage HCC detection from 62% to 92% (BCLC stage 0), and 40% to 77% (BCLC stage A). CONCLUSION Urine ctDNA has promising diagnostic utility in patients in HCC, especially in those with low AFP and can be used as a potential non-invasive HCC screening test.
Collapse
Affiliation(s)
- Amy K Kim
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James P Hamilton
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hie-Won Hann
- Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Chi-Tan Hu
- Division of Gastroenterology, Department of Internal Medicine, Hualien Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Yue Lou
- The Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Yih-Jyh Lin
- Department of Surgery, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan, Republic of China
| | - Terence P Gade
- Department of Radiology, University of Pennsylvania College of Medicine, Philadelphia, PA, USA
| | - Grace Park
- Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Harry Luu
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tai-Jung Lee
- The Baruch S. Blumberg Institute, Doylestown, PA, USA
| | | | - Dion Chen
- ClinPharma Consulting, Inc, Phoenixville, PA, USA
| | - Michael G Goggins
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD, USA
| | | | - Wei Song
- JBS Science, Inc., Doylestown, PA, USA
| | - Ying-Hsiu Su
- The Baruch S. Blumberg Institute, Doylestown, PA, USA.
| |
Collapse
|
9
|
Dermody SM, Bhambhani C, Swiecicki PL, Brenner JC, Tewari M. Trans-Renal Cell-Free Tumor DNA for Urine-Based Liquid Biopsy of Cancer. Front Genet 2022; 13:879108. [PMID: 35571046 PMCID: PMC9091346 DOI: 10.3389/fgene.2022.879108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer biomarkers are a promising tool for cancer detection, personalization of therapy, and monitoring of treatment response or recurrence. “Liquid biopsy” commonly refers to minimally invasive or non-invasive sampling of a bodily fluid (i.e., blood, urine, saliva) for detection of cancer biomarkers such as circulating tumor cells or cell-free tumor DNA (ctDNA). These methods offer a means to collect frequent tumor assessments without needing surgical biopsies. Despite much progress with blood-based liquid biopsy approaches, there are limitations—including the limited amount of blood that can be drawn from a person and challenges with collecting blood samples at frequent intervals to capture ctDNA biomarker kinetics. These limitations are important because ctDNA is present at extremely low levels in plasma and there is evidence that measuring ctDNA biomarker kinetics over time can be useful for clinical prediction. Additionally, blood-based assays require access to trained phlebotomists and often a trip to a healthcare facility. In contrast, urine is a body fluid that can be self-collected from a patient’s home, at frequent intervals, and mailed to a laboratory for analysis. Multiple reports indicate that fragments of ctDNA pass from the bloodstream through the kidney’s glomerular filtration system into the urine, where they are known as trans-renal ctDNA (TR-ctDNA). Accumulating studies indicate that the limitations of blood based ctDNA approaches for cancer can be overcome by measuring TR-ctDNA. Here, we review current knowledge about TR-ctDNA in urine as a cancer biomarker approach, and discuss its clinical potential and open questions in this research field.
Collapse
Affiliation(s)
- Sarah M. Dermody
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, United States
| | - Chandan Bhambhani
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Paul L. Swiecicki
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, United States
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - J. Chad Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, United States
| | - Muneesh Tewari
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, United States
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Center for Computational Biology and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Muneesh Tewari,
| |
Collapse
|
10
|
Lin SY, Chang TT, Steffen JD, Chen S, Jain S, Song W, Lin YJ, Su YH. Detection of CTNNB1 Hotspot Mutations in Cell-Free DNA from the Urine of Hepatocellular Carcinoma Patients. Diagnostics (Basel) 2021; 11:1475. [PMID: 34441409 PMCID: PMC8393790 DOI: 10.3390/diagnostics11081475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. The beta-catenin gene, CTNNB1, is among the most frequently mutated in HCC tissues. However, mutational analysis of HCC tumors is hampered by the difficulty of obtaining tissue samples using traditional biopsy. Here, we explored the feasibility of detecting tumor-derived CTNNB1 mutations in cell-free DNA (cfDNA) extracted from the urine of HCC patients. Using a short amplicon qPCR assay targeting HCC mutational hotspot CTNNB1 codons 32-37 (exon 3), we detected CTNNB1 mutations in 25% (18/73) of HCC tissues and 24% (15/62) of pre-operative HCC urine samples in two independent cohorts. Among the CTNNB1-mutation-positive patients with available matched pre- and post-operative urine (n = 13), nine showed apparent elimination (n = 7) or severalfold reduction (n = 2) of the mutation in urine following tumor resection. Four of the seven patients with no detectable mutations in postoperative urine remained recurrence-free within five years after surgery. In contrast, all six patients with mutation-positive in post-operative urine recurred, including the two with reduced mutation levels. This is the first report of association between the presence of CTNNB1 mutations in pre- and post-operative urine cfDNA and HCC recurrence with implications for minimum residual disease detection.
Collapse
Affiliation(s)
- Selena Y. Lin
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.D.S.); (S.C.); (S.J.); (W.S.)
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Jamin D. Steffen
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.D.S.); (S.C.); (S.J.); (W.S.)
| | - Sitong Chen
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.D.S.); (S.C.); (S.J.); (W.S.)
| | - Surbhi Jain
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.D.S.); (S.C.); (S.J.); (W.S.)
| | - Wei Song
- JBS Science, Inc., Doylestown, PA 18902, USA; (S.Y.L.); (J.D.S.); (S.C.); (S.J.); (W.S.)
| | - Yih-Jyh Lin
- Department of Surgery, National Cheng Kung University Medical College and Hospital, Tainan 701, Taiwan
| | - Ying-Hsiu Su
- The Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA
| |
Collapse
|
11
|
Llorente-González C, González-Rodríguez M, Vicente-Manzanares M. Targeting cytoskeletal phosphorylation in cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:292-308. [PMID: 36046434 PMCID: PMC9400739 DOI: 10.37349/etat.2021.00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation of cytoskeletal proteins regulates the dynamics of polymerization, stability, and disassembly of the different types of cytoskeletal polymers. These control the ability of cells to migrate and divide. Mutations and alterations of the expression levels of multiple protein kinases are hallmarks of most forms of cancer. Thus, altered phosphorylation of cytoskeletal proteins is observed in most cancer cells. These alterations potentially control the ability of cancer cells to divide, invade and form distal metastasis. This review highlights the emergent role of phosphorylation in the control of the function of the different cytoskeletal polymers in cancer cells. It also addresses the potential effect of targeted inhibitors in the normalization of cytoskeletal function.
Collapse
Affiliation(s)
- Clara Llorente-González
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Marta González-Rodríguez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
12
|
Cimmino I, Bravaccini S, Cerchione C. Urinary Biomarkers in Tumors: An Overview. Methods Mol Biol 2021; 2292:3-15. [PMID: 33651347 DOI: 10.1007/978-1-0716-1354-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Recent reports suggest that urine is a useful noninvasive tool for the identification of urogenital tumors, including bladder, prostate, kidney, and other nonurological cancers. As a liquid biopsy, urine represents an important source for the improvement of new promising biomarkers, a suitable tool to identify indolent cancer and avoid overtreatment. Urine is enriched with DNAs, RNAs, proteins, circulating tumor cells, exosomes, and other small molecules which can be detected with several diagnostic methodologies.We provide an overview of the ongoing state of urinary biomarkers underlying both their potential utilities to improve cancer prognosis, diagnosis, and therapeutic strategy and their limitations.
Collapse
Affiliation(s)
- Ilaria Cimmino
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Sara Bravaccini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Claudio Cerchione
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| |
Collapse
|
13
|
Rodriguez-Casanova A, Costa-Fraga N, Bao-Caamano A, López-López R, Muinelo-Romay L, Diaz-Lagares A. Epigenetic Landscape of Liquid Biopsy in Colorectal Cancer. Front Cell Dev Biol 2021; 9:622459. [PMID: 33614651 PMCID: PMC7892964 DOI: 10.3389/fcell.2021.622459] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and is a major cause of cancer-related deaths worldwide. Thus, there is a clinical need to improve early detection of CRC and personalize therapy for patients with this disease. In the era of precision oncology, liquid biopsy has emerged as a major approach to characterize the circulating tumor elements present in body fluids, including cell-free DNA and RNA, circulating tumor cells, and extracellular vesicles. This non-invasive tool has allowed the identification of relevant molecular alterations in CRC patients, including some indicating the disruption of epigenetic mechanisms. Epigenetic alterations found in solid and liquid biopsies have shown great utility as biomarkers for early detection, prognosis, monitoring, and evaluation of therapeutic response in CRC patients. Here, we summarize current knowledge of the most relevant epigenetic mechanisms associated with cancer development and progression, and the implications of their deregulation in cancer cells and liquid biopsy of CRC patients. In particular, we describe the methodologies used to analyze these epigenetic alterations in circulating tumor material, and we focus on the clinical utility of epigenetic marks in liquid biopsy as tumor biomarkers for CRC patients. We also discuss the great challenges and emerging opportunities of this field for the diagnosis and personalized management of CRC patients.
Collapse
Affiliation(s)
- Aitor Rodriguez-Casanova
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Nicolás Costa-Fraga
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Aida Bao-Caamano
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Laura Muinelo-Romay
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
14
|
Cao Y, Zhao G, Yuan M, Liu X, Ma Y, Cao Y, Miao B, Zhao S, Li D, Xiong S, Zheng M, Fei S. KCNQ5 and C9orf50 Methylation in Stool DNA for Early Detection of Colorectal Cancer. Front Oncol 2021; 10:621295. [PMID: 33585248 PMCID: PMC7878552 DOI: 10.3389/fonc.2020.621295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background Aberrant DNA methylation has emerged as a class of promising biomarkers for early colorectal cancer (CRC) detection, but the performance of methylated C9orf50 and methylated KCNQ5 in stool DNA has never been evaluated. Methods Methylation specific quantitative PCR (qPCR) assays for methylated C9orf50 and methylated KCNQ5 were developed. The methylation levels of C9orf50 and KCNQ5 in 198 CRC patients, 20 advanced adenoma (AA) patients, 101 small polyp (SP) patients, and 141 no evidence of disease (NED) subjects were analyzed. Results The methylation levels of both KCNQ5 and C9orf50 genes were significantly higher in CRC and AA groups than those in SP and NED groups, but showed no significant difference among different stages of CRC. The sensitivities of methylated KCNQ5 and methylated C9orf50 for CRC detection were 77.3% (95% CI: 70.7–82.8%) and 85.9% (95% CI: 80.0–90.2%) with specificities of 91.5% (95% CI: 85.3–95.3%) and 95.0% (95% CI: 89.7–97.8%), respectively. When C9orf50 and methylated KCNQ5 were combined, the clinical performance for CRC detection was similar to that of methylated C9orf50 alone. Conclusions Stool DNA based methylated C9orf50 test has the potential to become an alternative approach for CRC screening and prevention.
Collapse
Affiliation(s)
- Yaping Cao
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Guodong Zhao
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Department of R&D, Suzhou VersaBio Technologies Co. Ltd., Kunshan, China
| | - Mufa Yuan
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Xiaoyu Liu
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan, China
| | - Yong Ma
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yang Cao
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Bei Miao
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Shuyan Zhao
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Danning Li
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Shangmin Xiong
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan, China.,Department of R&D, Suzhou VersaBio Technologies Co. Ltd., Kunshan, China
| | - Minxue Zheng
- Zhejiang University Kunshan Biotechnology Laboratory, Zhejiang University Kunshan Innovation Institute, Kunshan, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Sujuan Fei
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Bach S, Paulis I, Sluiter NR, Tibbesma M, Martin I, van de Wiel MA, Tuynman JB, Bahce I, Kazemier G, Steenbergen RDM. Detection of colorectal cancer in urine using DNA methylation analysis. Sci Rep 2021; 11:2363. [PMID: 33504902 PMCID: PMC7840909 DOI: 10.1038/s41598-021-81900-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause for cancer-related death globally. Clinically, there is an urgent need for non-invasive CRC detection. This study assessed the feasibility of CRC detection by analysis of tumor-derived methylated DNA fragments in urine. Urine samples, including both unfractioned and supernatant urine fractions, of 92 CRC patients and 63 healthy volunteers were analyzed for DNA methylation levels of 6 CRC-associated markers (SEPT9, TMEFF2, SDC2, NDRG4, VIM and ALX4). Optimal marker panels were determined by two statistical approaches. Methylation levels of SEPT9 were significantly increased in urine supernatant of CRC patients compared to controls (p < 0.0001). Methylation analysis in unfractioned urine appeared inaccurate. Following multivariate logistic regression and classification and regression tree analysis, a marker panel consisting of SEPT9 and SDC2 was able to detect up to 70% of CRC cases in urine supernatant at 86% specificity. First evidence is provided for CRC detection in urine by SEPT9 methylation analysis, which combined with SDC2 allows for an optimal differentiation between CRC patients and controls. Urine therefore provides a promising liquid biopsy for non-invasive CRC detection.
Collapse
Affiliation(s)
- S Bach
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - I Paulis
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - N R Sluiter
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - M Tibbesma
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - I Martin
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1089a, Amsterdam, The Netherlands
| | - M A van de Wiel
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1089a, Amsterdam, The Netherlands
| | - J B Tuynman
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - I Bahce
- Department of Pulmonary Diseases, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - G Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - R D M Steenbergen
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Laugsand EA, Brenne SS, Skorpen F. DNA methylation markers detected in blood, stool, urine, and tissue in colorectal cancer: a systematic review of paired samples. Int J Colorectal Dis 2021; 36:239-251. [PMID: 33030559 PMCID: PMC7801356 DOI: 10.1007/s00384-020-03757-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE Methylated cell-free DNA in liquid biopsies are promising non-invasive biomarkers for colorectal cancer (CRC). Optimal markers would have high sensitivity and specificity for early detection of CRC and could be detected in more than one type of material from the patient. We systematically reviewed the literature on DNA methylation markers of colorectal cancer, detected in more than one type of material, regarding their potential as contributors to a panel for screening and follow-up of CRC. METHODS The databases MEDLINE, Web of Science, and Embase were systematically searched. Data extraction and review was performed by two authors independently. Agreement between methylation status in tissue and other materials (blood/stool/urine) was analyzed using the McNemar test and Cohen's kappa. RESULTS From the 51 included studies, we identified seven single markers with sensitivity ≥ 75% and specificity ≥ 90% for CRC. We also identified one promising plasma panel and two stool panels. The correspondence of methylation status was evaluated as very good for four markers, but only marginal for most of the other markers investigated (12 of 21). CONCLUSION The included studies reported only some of the variables and markers of interest and included few patients. Hence, a meta-analysis was not possible at this point. Larger, prospective studies must be designed to study the discordant detection of markers in tissue and liquid biopsies. When reporting their findings, such studies should use a standardized format.
Collapse
Affiliation(s)
- Eivor Alette Laugsand
- Department of Surgery, Levanger Hospital, Nord-Trøndelag Hospital trust, N-7600, Levanger, Norway.
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway.
| | - Siv Sellæg Brenne
- Department of Surgery, Levanger Hospital, Nord-Trøndelag Hospital trust, N-7600, Levanger, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| | - Frank Skorpen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| |
Collapse
|
17
|
Abstract
Application of next generation sequencing techniques in the field of liquid biopsy, in particular urine, requires specific bioinformatics methods in order to deal with its peculiarity. Many aspects of cancer can be explored starting from nucleic acids, especially from cell-free DNA and circulating tumor DNA in order to characterize cancer. It is possible to detect small mutations, as single nucleotide variants, small insertions and deletions, copy-number alterations, and epigenetic profiles. Due to the low fraction of circulating tumor DNA over the whole cell-free DNA, some methods have been exploited. One of them is the application of unique barcodes to each DNA fragment in order to lower the limit of detection of cancer-related variants. Some bioinformatics workflows and tools are the same of a classic analysis of tumor tissue, but there are some steps in which specific algorithms have to be introduced.
Collapse
|
18
|
Lin J, Huang Z, Lin X, Wu Q, Quan K, Cheng Y, Zheng M, Xu J, Dai Y, Qiu H, Lin D, Feng S. Rapid and label-free urine test based on surface-enhanced Raman spectroscopy for the non-invasive detection of colorectal cancer at different stages. BIOMEDICAL OPTICS EXPRESS 2020; 11:7109-7119. [PMID: 33408983 PMCID: PMC7747921 DOI: 10.1364/boe.406097] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 05/09/2023]
Abstract
The concept of being able to urinate in a cup and screen for colorectal cancer (CRC) is fascinating to the public at large. Here, a simple and label-free urine test based on surface-enhanced Raman spectroscopy (SERS) was employed for CRC detection. Significant spectral differences among normal, stages I-II, and stages III-IV CRC urines were observed. Using discriminant function analysis, the diagnostic sensitivities of 95.8%, 80.9%, and 84.3% for classification of normal, stages I-II, and stages III-IV CRC were achieved in training model, indicating the great promise of urine SERS as a rapid, convenient and noninvasive method for CRC staging detection.
Collapse
Affiliation(s)
- Jinyong Lin
- Radiation Oncology Department, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Digital Fujian Internet-of-Things Laboratory of Environment Monitoring, Fujian Normal University, Fuzhou, 350007, China
- These authors contributed equally to this work
| | - Zongwei Huang
- Radiation Oncology Department, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
- These authors contributed equally to this work
| | - Xueliang Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Digital Fujian Internet-of-Things Laboratory of Environment Monitoring, Fujian Normal University, Fuzhou, 350007, China
| | - Qiong Wu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Digital Fujian Internet-of-Things Laboratory of Environment Monitoring, Fujian Normal University, Fuzhou, 350007, China
| | - Kerun Quan
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
| | - Yanming Cheng
- Radiation Oncology Department, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Mingzhi Zheng
- Radiation Oncology Department, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Jiaying Xu
- Radiation Oncology Department, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Yitao Dai
- Radiation Oncology Department, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Hejin Qiu
- Radiation Oncology Department, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Digital Fujian Internet-of-Things Laboratory of Environment Monitoring, Fujian Normal University, Fuzhou, 350007, China
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Digital Fujian Internet-of-Things Laboratory of Environment Monitoring, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
19
|
Chen CK, Liao J, Li MS, Khoo BL. Urine biopsy technologies: Cancer and beyond. Theranostics 2020; 10:7872-7888. [PMID: 32685026 PMCID: PMC7359094 DOI: 10.7150/thno.44634] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Since the discovery of circulating tumor cells in 1869, technological advances in the study of biomarkers from liquid biopsy have made it possible to diagnose disease in a less invasive way. Although blood-based liquid biopsy has been used extensively for the detection of solid tumors and immune diseases, the potential of urine-based liquid biopsy has not been fully explored. Advancements in technologies for the harvesting and analysis of biomarkers are providing new opportunities for the characterization of other disease types. Liquid biopsy markers such as exfoliated bladder cancer cells, cell-free DNA (cfDNA), and exosomes have the potential to change the nature of disease management and care, as they allow a cost-effective and convenient mode of patient monitoring throughout treatment. In this review, we addressed the advancement of research in the field of disease detection for the key liquid biopsy markers such as cancer cells, cfDNA, and exosomes, with an emphasis on urine-based liquid biopsy. First, we highlighted key technologies that were widely available and used extensively for clinical urine sample analysis. Next, we presented recent technological developments in cell and genetic research, with implications for the detection of other types of diseases, besides cancer. We then concluded with some discussions on these areas, emphasizing the role of microfluidics and artificial intelligence in advancing point-of-care applications. We believe that the benefits of urine biopsy provide diagnostic development potential, which will pave opportunities for new ways to guide treatment selections and facilitate precision disease therapies.
Collapse
Affiliation(s)
| | | | | | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Chandrapalan S, Arasaradnam RP. Urine as a biological modality for colorectal cancer detection. Expert Rev Mol Diagn 2020; 20:489-496. [PMID: 32130868 DOI: 10.1080/14737159.2020.1738928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The increasing incidence of colorectal cancer (CRC) in young adults warrants early and preferably noninvasive diagnostic modalities. Although the current stool-based assays have had good performance indicators for CRC detection, the overall poor uptake remains a challenging issue. However, alternative blood and urine markers are emerging.Areas covered: This paper discusses the various urinary biomarkers available for the detection of CRC. The more commonly encountered drawbacks are the small number of studies and the size of the study population. We discuss the role of microRNA and ProstaglandinE2 in CRC detection. The emergence of new, low-cost technologies, specifically in the detection of volatile organic compounds (VOCs), presents a promising future. We postulate possible mechanisms for the origin of these VOCs in urine and their role in carcinogenesis.Expert opinion: Urinary biomarkers provide an alternative option to the stool-based screening tests. MicroRNA and ProstaglandinE2 have shown utility in CRC detection. Evidence so far suggests that VOCs could also be a potential biomarker for the detection of CRC. In addition to its interaction within the colon lumen, this altered 'VOC signature' might also play a role in carcinogenesis. Low-cost technology may enable such diagnostic methods to be utilized at the point of care.
Collapse
Affiliation(s)
- Subashini Chandrapalan
- Department of Gastroenterology, University Hospital of Coventry and Warwickshire, Coventry, UK
| | - Ramesh P Arasaradnam
- Department of Gastroenterology, University Hospital of Coventry and Warwickshire, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK.,Health, Biological & Experimental Sciences, University of Coventry, Coventry, UK.,School of Health Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
21
|
Ying X, Pan R, Zhong J, Wu B, Jiang Y, Ying J, Zhou C, Dai J, Zhao S, Shen Y, Zhang W, Duan S. Significant association of EED promoter hypomethylation with colorectal cancer. Oncol Lett 2019; 18:1564-1570. [PMID: 31423224 DOI: 10.3892/ol.2019.10432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/12/2019] [Indexed: 01/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and serious types of malignancy worldwide. The embryonic ectoderm development (EED) gene is important to maintain transcriptional repressive states of genes over successive cell generations. The present study aimed to investigate the association between EED methylation and CRC. A total of 111 CRC tissue samples, 111 paired para-tumor tissues and 20 colorectal normal tissues were obtained for EED methylation assay, which was performed using a quantitative methylation-specific polymerase chain reaction. The percentage of methylated reference was calculated to represent the DNA methylation level. A dual-luciferase reporter gene assay was used to detect the gene promoter activity of a EED fragment. The current results revealed a significant difference in the EED methylation levels among tumor, para-tumor and normal colorectal tissues (tumor vs. para-tumor vs. normal, 5.03±4.61 vs. 8.65±11.50 vs. 40.12±45.31; F=45.014; P<0.0001). The dual-luciferase reporter gene assay demonstrated that the transcriptional activity of recombinant pGL3-EED plasmid was significantly higher compared with that of the pGL3-Basic control vector (fold-change, 3.15; P=0.014), which suggests the EED fragment can promote gene expression. In conclusion, the present study demonstrated that EED hypomethylation may be an important factor associated with CRC.
Collapse
Affiliation(s)
- Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Boyi Wu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yuting Jiang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Dai
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shuangying Zhao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yinan Shen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Wei Zhang
- Department of Preventive Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
22
|
Iwasaki H, Shimura T, Kataoka H. Current status of urinary diagnostic biomarkers for colorectal cancer. Clin Chim Acta 2019; 498:76-83. [PMID: 31421118 DOI: 10.1016/j.cca.2019.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Fecal occult blood test (FOBT) and flexible sigmoidoscopy are the currently using screening methods for colorectal cancer (CRC). However, these methods still have problems of high false positive rates in FOBT and increased invasiveness and cost associated with endoscopy. The development of non-invasive biomarkers is thus important for the diagnosis of CRC. Urine is one of the most commonly used samples for mass screening owing to its non-invasive and simple process of collection; however, the discovery of urinary diagnostic biomarkers for malignancies is still challenging and developing. Since urine contains abundant substances reflecting systemic body condition, urinary biomarker might contribute to detect CRC in a completely non-invasive manner. In this review, we describe the current utility of urinary diagnostic biomarkers for CRC.
Collapse
Affiliation(s)
- Hiroyasu Iwasaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
23
|
Jain S, Lin SY, Song W, Su YH. Urine-Based Liquid Biopsy for Nonurological Cancers. Genet Test Mol Biomarkers 2019; 23:277-283. [PMID: 30986103 DOI: 10.1089/gtmb.2018.0189] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS The use of circulating cell-free DNA for detection of cancer genetics has been studied extensively. Liquid biopsy often refers to the use of blood as a minimally invasive source of body fluid for detecting circulating tumor DNA (ctDNA). However, urine collection, which is completely noninvasive, has been shown to also have great promise to serve as an alternate body fluid source for ctDNA. In this review article, we focus on the clinical utility of urine for genetic liquid biopsy of nonurological cancers. CONCLUSION Although still in early stages as compared with blood-based liquid biopsy, recent studies have demonstrated the value of urine-based liquid biopsies for: nonurological cancer screening; early detection; monitoring for recurrence and metastasis; and therapeutic efficacy. Overall, the completely noninvasive and patient-friendly nature of the urine-based biopsy warrants further development and offers a promising alternative to blood-based biopsies.
Collapse
Affiliation(s)
- Surbhi Jain
- 1 JBS Science, Inc., Doylestown, Pennsylvania
| | | | - Wei Song
- 1 JBS Science, Inc., Doylestown, Pennsylvania
| | - Ying-Hsiu Su
- 2 Department of Translational Medical Science, The Baruch S. Blumberg Institute, Doylestown, Pennsylvania
| |
Collapse
|
24
|
Li P, Ning J, Luo X, Du H, Zhang Q, Zhou G, Du Q, Ou Z, Wang L, Wang Y. New method to preserve the original proportion and integrity of urinary cell-free DNA. J Clin Lab Anal 2019; 33:e22668. [PMID: 30175467 PMCID: PMC6818579 DOI: 10.1002/jcla.22668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/01/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Due to high nuclease activity and complex contents in urine, urinary cell-free DNA (ucfDNA) was prone to degrade. So, we developed standardized urine collection tube (UCT) to prevent ucfDNA degradation and simultaneously maintain urinary cells in their original form during the sample collection process, ensuring stabilization of the original proportion and integrity of ucfDNA. METHODS Urine samples were collected from bladder cancer patients and divided into 10-mL normal tubes and 10-mL UCTs, respectively, and kept at ambient temperature. Urine supernatant was separated by centrifuging, and ucfDNA was extracted. Then ucfDNA was quantified by quantitative real-time polymerase chain reaction. UcfDNA fragments distribution was analyzed by Agilent 2200, and the frequency of specific mutations of urinary system disease was detected by next-generation sequencing method. RESULTS Urine collected into UCTs showed no statistically significant changes in their original proportion and integrity of ucfDNA up to 7 days at ambient temperature and also ucfDNA fragments were maintained well. Conversely, urine collected into normal tubes was observed an obviously decline in their original proportion of ucfDNA and ucfDNA fragments changed greatly. The △% of allele fraction (AF) for specific genes of ucfDNA from UCTs was lower than from normal tubes by 3.7-fold. CONCLUSION Using UCTs, they can maximally keep the original proportion and integrity of ucfDNA and stabilize urinary cells and minimize the background noise caused by urinary cellular DNA releasing, it will be help to open the door of next-generation noninvasive liquid biopsy applications utilizing urine.
Collapse
Affiliation(s)
- Pei Li
- XiangYa Hospital of Central South UniversityChangshaHunanChina
- Hunan UPSBio, Inc.Hunan University National Science ParkChangshaHunanChina
| | - Jun Ning
- XiangYa Hospital of Central South UniversityChangshaHunanChina
| | - Xipeng Luo
- Hunan UPSBio, Inc.Hunan University National Science ParkChangshaHunanChina
| | - Hongli Du
- School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouGuangdongChina
| | - Qing Zhang
- Hunan UPSBio, Inc.Hunan University National Science ParkChangshaHunanChina
| | - Ganlin Zhou
- Hunan UPSBio, Inc.Hunan University National Science ParkChangshaHunanChina
| | - Qiu Du
- XiangYa Hospital of Central South UniversityChangshaHunanChina
| | - Zhenyu Ou
- XiangYa Hospital of Central South UniversityChangshaHunanChina
| | - Long Wang
- XiangYa Hospital of Central South UniversityChangshaHunanChina
| | - Yu Wang
- Hunan UPSBio, Inc.Hunan University National Science ParkChangshaHunanChina
| |
Collapse
|
25
|
Franczak C, Filhine-Tresarrieu P, Gilson P, Merlin JL, Au L, Harlé A. Technical considerations for circulating tumor DNA detection in oncology. Expert Rev Mol Diagn 2019; 19:121-135. [DOI: 10.1080/14737159.2019.1568873] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Claire Franczak
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre les Nancy, France
| | | | - Pauline Gilson
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Université de Lorraine, CNRS UMR 7039 CRAN, Nancy, France
| | - Jean-Louis Merlin
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Université de Lorraine, CNRS UMR 7039 CRAN, Nancy, France
| | - Lewis Au
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Alexandre Harlé
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Université de Lorraine, CNRS UMR 7039 CRAN, Nancy, France
| |
Collapse
|
26
|
Abstract
Cell-free DNA can be evaluated for the epigenetic component. Epigenetic alterations consist of changes in gene functions that do not involve changes in DNA sequence. The mainly studied epigenetic alteration is DNA methylation occurring at CpG islands in the promoter regions for which several literature data showed clinical relevance. This chapter is an overview of the epigenetic alterations detected in cell-free DNA.
Collapse
|
27
|
Jain S, Su YH, Su YP, McCloud S, Xue R, Lee TJ, Lin SC, Lin SY, Song W, Steffen JD, Hu CT. Characterization of the hepatitis B virus DNA detected in urine of chronic hepatitis B patients. BMC Gastroenterol 2018; 18:40. [PMID: 29548283 PMCID: PMC5857095 DOI: 10.1186/s12876-018-0767-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/08/2018] [Indexed: 02/07/2023] Open
Abstract
Background Detection of human hepatitis B virus (HBV) DNA in the urine of patients with chronic hepatitis B infection (CHB) has been reported previously, suggesting urine could provide a potential route of horizontal HBV transmission. However, it is not clear whether the HBV DNA detected in urine is indeed full-length, infectious viral DNA. The aim of this study is to assess the potential infectivity of urine from patients with CHB and to correlate HBV DNA detection in urine with clinical parameters, such as serum viral load and HBeAg status. Methods Urine from 60 CHB patients with serum viral loads ranging from undetectable to 108 IU/mL were analyzed for HBV DNA and serum immune markers. HBV DNA was detected from total urine DNA and size-fractionated urine DNA (separated into ≤1 kb and > 1 kb fractions) by PCR analysis of six regions of the HBV genome. Results Twenty-seven of 59 (45.7%) patients with HBV serum viral load (≥20 IU/mL) contained at least 20 copies per mL of fragmented HBV DNA in urine detected in at least 1 of the 6 PCR assay regions. Only one patient contained HBV DNA detected by all six regions, and was found to have evidence of blood in the urine. Sixteen of 25 urine samples with high viral load (> 105 IU/mL) and 11 of 34 urine samples with low viral load (< 105 IU/mL) contained detectable HBV DNA. Twelve of 27 (44.44%) patients with detectable HBV DNA in urine were HBeAg positive, and only 5 of these HBeAg positive patients were in the group of 33 (15.15%) patients with no detectable HBV DNA in urine. By Fishers’ exact test, HBV DNA in urine is significantly associated with high serum viral load (P = 0.0197) and HBeAg (P = 0.0203). Conclusions We conclude that urine from CHB patients with healthy kidney function should not contain full-length HBV DNA, and therefore should not be infectious. Electronic supplementary material The online version of this article (10.1186/s12876-018-0767-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Surbhi Jain
- JBS Science, Inc., Doylestown, PA, 18902, USA
| | - Ying-Hsiu Su
- The Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA
| | - Yih-Ping Su
- The Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA
| | | | - Ruixia Xue
- The Second Hospital of Yuncheng, Yuncheng, Shanxi Province, 044000, China
| | - Tai-Jung Lee
- The Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA
| | - Shu-Chuan Lin
- Buddhist Tzu Chi General Hospital and Tzu Chi University, 707, Sec. 3, Chung-Yang Rd, Hualien, 970, Taiwan, R.O.C
| | | | - Wei Song
- JBS Science, Inc., Doylestown, PA, 18902, USA.,U-Screen Dx Inc., Doylestown, PA, 18902, USA
| | - Jamin D Steffen
- JBS Science, Inc., Doylestown, PA, 18902, USA.,Hepron Molecular Lab, Inc., Doylestown, PA, 18902, USA
| | - Chi-Tan Hu
- Buddhist Tzu Chi General Hospital and Tzu Chi University, 707, Sec. 3, Chung-Yang Rd, Hualien, 970, Taiwan, R.O.C..
| |
Collapse
|
28
|
Lu T, Li J. Clinical applications of urinary cell-free DNA in cancer: current insights and promising future. Am J Cancer Res 2017; 7:2318-2332. [PMID: 29218253 PMCID: PMC5714758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023] Open
Abstract
Liquid biopsy is gaining significant attention as a tool for unveiling the molecular landscape of tumor and holds great promise for individualized medicine for cancer. Cell-free DNA serves as an extremely important component of liquid biopsy for cancer, and cell-free DNA in urine is even promising due to the remarkable advantage of urine as an ultra-noninvasive sample source over tissue and blood. Compared with the widely studied cell-free DNA in blood, less is known about the role of urinary cell-free DNA. Urinary cell-free DNA has the ability to give comprehensive and crucial information on cancer as it carries genetic messages from cells shedding directly into urine as well as transporting from circulation. As an indispensable component of liquid biopsy, urinary cell-free DNA is believed to have the potential of being a useful and ultra-noninvasive tool for cancer screening, diagnosis, prognosis, and monitoring of cancer progression and therapeutic effect. In this review, we provide the current insights into the clinical applications of urinary cell-free DNA in cancer. We also introduce the basic biological significance and some technical issues in the detection of urinary cell-free DNA.
Collapse
Affiliation(s)
- Tian Lu
- National Center for Clinical Laboratories, Beijing Hospital, National Center of GerontologyBeijing, People’s Republic of China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical SciencesBeijing, People’s Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing HospitalBeijing, People’s Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of GerontologyBeijing, People’s Republic of China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical SciencesBeijing, People’s Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing HospitalBeijing, People’s Republic of China
| |
Collapse
|
29
|
Peng M, Chen C, Hulbert A, Brock MV, Yu F. Non-blood circulating tumor DNA detection in cancer. Oncotarget 2017; 8:69162-69173. [PMID: 28978187 PMCID: PMC5620327 DOI: 10.18632/oncotarget.19942] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023] Open
Abstract
Tumor DNA contains specific somatic alterations that are crucial for the diagnosis and treatment of cancer. Due to the spatial and temporal intra-tumor heterogeneity, multi-sampling is needed to adequately characterize the somatic alterations. Tissue biopsy, however, is limited by the restricted access to sample and the challenges to recapitulate the tumor clonal diversity. Non-blood circulating tumor DNA are tumor DNA fragments presents in non-blood body fluids, such as urine, saliva, sputum, stool, pleural fluid, and cerebrospinal fluid (CSF). Recent studies have demonstrated the presence of tumor DNA in these non-blood body fluids and their application to the diagnosis, screening, and monitoring of cancers. Non-blood circulating tumor DNA has an enormous potential for large-scale screening of local neoplasms because of its non-invasive nature, close proximity to the tumors, easiness and it is an economically viable option. It permits longitudinal assessments and allows sequential monitoring of response and progression. Enrichment of tumor DNA of local cancers in non-blood body fluids may help to archive a higher sensitivity than in plasma ctDNA. The direct contact of cancerous cells and body fluid may facilitate the detection of tumor DNA. Furthermore, normal DNA always dilutes the plasma ctDNA, which may be aggravated by inflammation and injury when very high amounts of normal DNA are released into the circulation. Altogether, our review indicate that non-blood circulating tumor DNA presents an option where the disease can be tracked in a simple and less-invasive manner, allowing for serial sampling informing of the tumor heterogeneity and response to treatment.
Collapse
Affiliation(s)
- Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| | - Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| | - Alicia Hulbert
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Malcolm V Brock
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| |
Collapse
|
30
|
Chen D, Jain S, Su YH, Song W. Building Classification Models with Combined Biomarker Tests: Application to Early Detection of Liver Cancer. ACTA ACUST UNITED AC 2017; 5:91-103. [PMID: 29152526 DOI: 10.17265/2328-224x/2017.0506.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Early detection of hepatocellular carcinoma (HCC) is critical for the effective treatment. Alpha fetoprotein (AFP) serum level is currently used for HCC screening, but the cutoff of the AFP test has limited sensitivity (~50%), indicating a high false negative rate. We have successfully demonstrated that cancer derived DNA biomarkers can be detected in urine of patients with cancer and can be used for the early detection of cancer (Jain et al., 2015; Lin et al., 2011; Song et al., 2012; Su, Lin, Song, & Jain, 2014; Su, Wang, Norton, Brenner, & Block, 2008). By combining urine biomarkers (uBMK) values and serum AFP (sAFP) level, a new classification model has been proposed for more efficient HCC screening. Several criterions have been discussed to optimal the cutoff for uBMK score and sAFP score. A joint distribution of sAFP and uBMK with point mass has been fitted using maximum likelihood method. Numerical results show that the sAFP data and uBMK data are very well described by proposed model. A tree-structured sequential test can be optimized by selecting the cutoffs. Bootstrap simulations also show the robust classification results with the optimal cutoff.
Collapse
Affiliation(s)
- Dion Chen
- Biostatistics, Janssen R&D, LLC, Spring House, PA 19477, USA
| | - Surbhi Jain
- Biomarkers, JBS Science, Inc., Doylestown, PA 18902, USA
| | - Ying-Hsu Su
- Biomarkers, The Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| | - Wei Song
- Biomarkers, JBS Science, Inc., Doylestown, PA 18902, USA
| |
Collapse
|
31
|
Hann HW, Jain S, Park G, Steffen JD, Song W, Su YH. Detection of urine DNA markers for monitoring recurrent hepatocellular carcinoma. ACTA ACUST UNITED AC 2017; 3:105-111. [PMID: 28795155 DOI: 10.20517/2394-5079.2017.15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM This study aimed to explore the potential of detecting hepatocellular carcinoma (HCC)-associated DNA markers, TP53 249T mutations and aberrant methylation of RASSF1A and GSTP1 genes, for monitoring HCC recurrence. HCC remains a leading cause of death worldwide, with one of the fastest growing incidence rates in the US. While treatment options are available and new ones emerging, there remains a poor prognosis of this disease mostly due to its late diagnosis and high recurrence rate. Although there are no specific guidelines addressing how HCC recurrence should be monitored, recurrence is usually monitored by serum-alpha fetal protein and imaging methods such as magnetic resonance imaging (MRI). However, early detection of recurrent HCC remains limited, particularly at the site of treated lesion. METHODS Here, the authors followed 10 patients that were treated for a primary HCC, and monitored for months or years later. At these follow-up visits, urine was collected and tested retrospectively for 3 DNA biomarkers that associate with HCC development. RESULTS This 10-patient study compared detection of urine DNA markers with MRI for monitoring HCC recurrence. Five patients were confirmed by MRI for recurrence, and all 5 had detectable DNA biomarkers up to 9 months before recurrence confirmation by MRI. CONCLUSION Overall, this suggests that detection of HCC-associated DNA markers in urine could provide a promising tool to complement detection of recurrent HCC by imaging.
Collapse
Affiliation(s)
- Hie-Won Hann
- Liver Disease Prevention Center, Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Surbhi Jain
- JBS Science, Inc., Doylestown, PA 18902, USA
| | - Grace Park
- Liver Disease Prevention Center, Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | | | - Wei Song
- JBS Science, Inc., Doylestown, PA 18902, USA
| | - Ying-Hsiu Su
- The Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| |
Collapse
|
32
|
Lin SY, Linehan JA, Wilson TG, Hoon DS. Emerging Utility of Urinary Cell-free Nucleic Acid Biomarkers for Prostate, Bladder, and Renal Cancers. Eur Urol Focus 2017; 3:265-272. [DOI: 10.1016/j.euf.2017.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 01/05/2023]
|
33
|
Holmila R, Sklias A, Muller DC, Degli Esposti D, Guilloreau P, Mckay J, Sangrajrang S, Srivatanakul P, Hainaut P, Merle P, Herceg Z, Nogueira da Costa A. Targeted deep sequencing of plasma circulating cell-free DNA reveals Vimentin and Fibulin 1 as potential epigenetic biomarkers for hepatocellular carcinoma. PLoS One 2017; 12:e0174265. [PMID: 28333958 PMCID: PMC5363871 DOI: 10.1371/journal.pone.0174265] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/06/2017] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer death worldwide, but is still lacking sensitive and specific biomarkers for early diagnosis and prognosis. In this study, we applied targeted massively parallel semiconductor sequencing to assess methylation on a panel of genes (FBLN1, HINT2, LAMC1, LTBP1, LTBP2, PSMA2, PSMA7, PXDN, TGFB1, UBE2L3, VIM and YWHAZ) in plasma circulating cell-free DNA (cfDNA) and to evaluate the potential of these genes as HCC biomarkers in two different series, one from France (42 HCC cases and 42 controls) and one from Thailand (42 HCC cases, 26 chronic liver disease cases and 42 controls). We also analyzed a set of HCC and adjacent tissues and liver cell lines to further compare with 'The Cancer Genome Atlas' (TCGA) data. The methylation in cfDNA was detected for FBLN1, PSMA7, PXDN and VIM, with differences in methylation patterns between cases and controls for FBLN1 and VIM. The average methylation level across analyzed CpG-sites was associated with higher odds of HCC for VIM (1.48 [1.02, 2.16] for French cases and 2.18 [1.28, 3.72] for Thai cases), and lower odds of HCC for FBLN1 (0.89 [0.76, 1.03] for French cases and 0.75 [0.63, 0.88] for Thai cases). In conclusion, our study provides evidence that changes in VIM and FBLN1 methylation levels in cfDNA are associated with HCC and could represent useful plasma-based biomarkers. Also, the potential to investigate methylation patterns in cfDNA could bring new strategies for HCC detection and monitoring high-risk groups and response to treatment.
Collapse
Affiliation(s)
- Reetta Holmila
- Epigenetics group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Athena Sklias
- Epigenetics group, International Agency for Research on Cancer (IARC), Lyon, France
| | - David C. Muller
- Genetic Epidemiology group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Davide Degli Esposti
- Epigenetics group, International Agency for Research on Cancer (IARC), Lyon, France
| | | | - James Mckay
- Genetic Cancer Susceptibility group, International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | - Pierre Hainaut
- Institut Albert Bonniot, INSERM Unité 823, La Tronche, France
| | - Philippe Merle
- Croix-Rousse Hospital, Lyon, France
- UMR INSERM 1052, CRCL, Lyon, France
| | - Zdenko Herceg
- Epigenetics group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Andre Nogueira da Costa
- Molecular mechanisms and biomarkers group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
34
|
Salvi S, Martignano F, Molinari C, Gurioli G, Calistri D, De Giorgi U, Conteduca V, Casadio V. The potential use of urine cell free DNA as a marker for cancer. Expert Rev Mol Diagn 2016; 16:1283-1290. [PMID: 27796148 DOI: 10.1080/14737159.2016.1254551] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Although the role of circulating cell free DNA in cancer has been widely demonstrated, less is known about the role of urine cell free DNA (UcfDNA). UcfDNA can serve as a 'liquid biopsy' for urological and non-urological tumors, as it carries information on DNA from cells exfoliated in urine and from circulation. Areas covered: We review the studies on UcfDNA as a source of biomarkers for cancer, focusing on the new techniques and the differences between urological and non-urological tumors. We searched Pubmed for articles published between 1998 and 2016 with the following key words and phrases: 'urine' and 'cell free DNA' or 'liquid biopsy' or 'cancer'. Expert commentary: Despite the few papers published on this topic, UcfDNA is an important component of 'liquid biopsy', a useful and non-invasive tool for cancer diagnosis, prognosis and treatment monitoring, containing a wide range of genetic information.
Collapse
Affiliation(s)
- Samanta Salvi
- a Biosciences Laboratory , Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS , Meldola , Italy
| | - Filippo Martignano
- a Biosciences Laboratory , Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS , Meldola , Italy
| | - Chiara Molinari
- a Biosciences Laboratory , Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS , Meldola , Italy
| | - Giorgia Gurioli
- a Biosciences Laboratory , Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS , Meldola , Italy
| | - Daniele Calistri
- a Biosciences Laboratory , Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS , Meldola , Italy
| | - Ugo De Giorgi
- b Department of Medical Oncology , Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS , Meldola , Italy
| | - Vincenza Conteduca
- b Department of Medical Oncology , Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS , Meldola , Italy
| | - Valentina Casadio
- a Biosciences Laboratory , Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS , Meldola , Italy
| |
Collapse
|
35
|
Salvi S, Gurioli G, De Giorgi U, Conteduca V, Tedaldi G, Calistri D, Casadio V. Cell-free DNA as a diagnostic marker for cancer: current insights. Onco Targets Ther 2016; 9:6549-6559. [PMID: 27822059 PMCID: PMC5087772 DOI: 10.2147/ott.s100901] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The increasing knowledge of the molecular pathogenesis of cancer and the rapid development of new molecular techniques are promoting the study of early molecular alterations involved in cancer development in body fluids. Specific genetic and epigenetic alterations could be found in plasma, serum, and urine cell-free DNA (cfDNA) and could potentially be used as diagnostic biomarkers for several types of cancers. This review focuses on the role of cfDNA in diagnosis: a PubMed search was performed by selecting papers according to journal impact factor and robustness of statistical analysis. A comprehensive evaluation of “liquid biopsy”, including cfDNA analysis, will be one of the critical challenges to better understand the early mechanisms of cancer development.
Collapse
Affiliation(s)
| | | | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Vincenza Conteduca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | | | | |
Collapse
|
36
|
Altobelli E, Angeletti PM, Latella G. Role of Urinary Biomarkers in the Diagnosis of Adenoma and Colorectal Cancer: A Systematic Review and Meta-Analysis. J Cancer 2016; 7:1984-2004. [PMID: 27877214 PMCID: PMC5118662 DOI: 10.7150/jca.16244] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/16/2016] [Indexed: 12/23/2022] Open
Abstract
The growing interest in enhancing and spreading colorectal cancer (CRC) screening has been stimulating the exploration of novel biomarkers with greater sensitivity and specificity than immunochemical faecal occult blood test (iFOBT). The present study provides i) a systematic review of the urinary biomarkers that have been tested to achieve early CRC diagnosis and assess the risk of colorectal adenoma and adenocarcinoma, and ii) a meta-analysis of the data regarding the urinary prostaglandin (PG) metabolite PGE-M. As regard to gene markers, we found significantly different percent methylation of the vimentin gene in CRC patients and healthy controls (HC) (p<0.0001). Respect to metabolism of nitrogenous bases, cytidine, 1-methyladenosine, and adenosine, have higher concentrations in CRC patients than in HC (respectively, p<0.01, p=0.01, and p<0.01). As regard to spermine we found that N1,N12 diacetyl spermine (DiAcSpm) and N1, N8 diacetylspermidine (DiAcSpd) were significantly higher in CRC than in HC (respectively p=0.01 and p<0.01). Respect to PGE-M, levels were higher in CRC than in those with multiple polyposis (p<0.006) and HC subjects (p<0.0004). PGE-M seems to be the most interesting and promising urinary marker for CRC and adenoma risk assessment and for CRC screening. In conclusion, evidence suggests that urinary biomarker could have a potential role as urinary biomarkers in the diagnosis of colorectal cancer. Particularly, PGE-M seems to be the most promising urinary marker for CRC early detection.
Collapse
Affiliation(s)
- Emma Altobelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Epidemiology and Biostatistics Unit, AUSL Teramo, University of L'Aquila, L'Aquila, Italy
| | - Paolo Matteo Angeletti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
37
|
Aran V, Victorino AP, Thuler LC, Ferreira CG. Colorectal Cancer: Epidemiology, Disease Mechanisms and Interventions to Reduce Onset and Mortality. Clin Colorectal Cancer 2016; 15:195-203. [DOI: 10.1016/j.clcc.2016.02.008] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/03/2016] [Indexed: 02/07/2023]
|
38
|
Lam K, Pan K, Linnekamp JF, Medema JP, Kandimalla R. DNA methylation based biomarkers in colorectal cancer: A systematic review. Biochim Biophys Acta Rev Cancer 2016; 1866:106-20. [PMID: 27385266 DOI: 10.1016/j.bbcan.2016.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
Abstract
Since genetic and epigenetic alterations influence the development of colorectal cancer (CRC), huge potential lies in the use of DNA methylation as biomarkers to improve the current diagnosis, screening, prognosis and treatment prediction. Here we performed a systematic review on DNA methylation-based biomarkers published in CRC, and discussed the current state of findings and future challenges. Based on the findings, we then provide a perspective on future studies. Genome-wide studies on DNA methylation revealed novel biomarkers as well as distinct subgroups that exist in CRC. For diagnostic purposes, the most independently validated genes to study further are VIM, SEPT9, ITGA4, OSM4, GATA4 and NDRG4. These hypermethylated biomarkers can even be combined with LINE1 hypomethylation and the performance of markers should be examined in comparison to FIT further to find sensitive combinations. In terms of prognostic markers, myopodin, KISS1, TMEFF2, HLTF, hMLH1, APAF1, BCL2 and p53 are independently validated. Most prognostic markers published lack both a multivariate analysis in comparison to clinical risk factors and the appropriate patient group who will benefit by adjuvant chemotherapy. Methylation of IGFBP3, mir148a and PTEN are found to be predictive markers for 5-FU and EGFR therapy respectively. For therapy prediction, more studies should focus on finding markers for chemotherapeutic drugs as majority of the patients would benefit. Translation of these biomarkers into clinical utility would require large-scale prospective cohorts and randomized clinical trials in future. Based on these findings and consideration we propose an avenue to introduce methylation markers into clinical practice in near future. For future studies, multi-omics profiling on matched tissue and non-invasive cohorts along with matched cohorts of adenoma to carcinoma is indispensable to concurrently stratify CRC and find novel, robust biomarkers. Moreover, future studies should examine the timing and heterogeneity of methylation as well as the difference in methylation levels between epithelial and stromal tissues.
Collapse
Affiliation(s)
- Kevin Lam
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Kathy Pan
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Janneke Fiona Linnekamp
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Raju Kandimalla
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Amacher DE. A 2015 survey of established or potential epigenetic biomarkers for the accurate detection of human cancers. Biomarkers 2016; 21:387-403. [PMID: 26983778 DOI: 10.3109/1354750x.2016.1153724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Context The silencing or activation of cancer-associated genes by epigenetic mechanisms can ultimately lead to the clonal expansion of cancer cells. Objective The aim of this review is to summarize all relevant epigenetic biomarkers that have been proposed to date for the diagnosis of some prevalent human cancers. Methods A Medline search for the terms epigenetic biomarkers, human cancers, DNA methylation, histone modifications and microRNAs was performed. Results One hundred fifty-seven relevant publications were found and reviewed. Conclusion To date, a significant number of potential epigenetic cancer biomarkers of human cancer have been investigated, and some have advanced to clinical implementation.
Collapse
|
40
|
Xue M, Lai SC, Xu ZP, Wang LJ. Noninvasive DNA methylation biomarkers in colorectal cancer: A systematic review. J Dig Dis 2015; 16:699-712. [PMID: 26565661 DOI: 10.1111/1751-2980.12299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/25/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To summarize the current evidence on the biomarkers associated with DNA methylation in the screening and diagnosis of colorectal cancer (CRC). METHODS A literature search was conducted on the databases of PubMed and Web of Science to identify articles published from 1 January 2000 to 6 June 2015 with language striction. Stuides focusing on the association between noninvasive biomarkers indicating DNA methylation and CRC were included. RESULTS Altogether 74 studies were finally included in the study. Varied genetic markers in the feces and blood samples were hypermethylated in patients with CRC than in the healthy controls. Some of them could even be detected at the early stage of the tumors. The sensitivity of the genetic markers was superior to that of fecal occult blood test and carcinoembryonic antigen. Multitarget DNA assays using a combination of different methylated genes could improve the diagnostic sensitivity. CONCLUSIONS Genetic markers might be minimally invasive, economical and accurate for the screening and surveillance of CRC. Large multicenter studies evaluating these biomarkers systematically and prospectively not only in CRC but also in other types of cancers are needed in the future.
Collapse
Affiliation(s)
- Meng Xue
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University.,Institute of Gastroenterology, Zhejiang University
| | - San Chuan Lai
- Institute of Gastroenterology, Zhejiang University.,Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhi Peng Xu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University
| | - Liang Jing Wang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University.,Institute of Gastroenterology, Zhejiang University
| |
Collapse
|
41
|
Jain S, Xie L, Boldbaatar B, Lin SY, Hamilton JP, Meltzer SJ, Chen SH, Hu CT, Block TM, Song W, Su YH. Differential methylation of the promoter and first exon of the RASSF1A gene in hepatocarcinogenesis. Hepatol Res 2015; 45:1110-23. [PMID: 25382672 PMCID: PMC4426255 DOI: 10.1111/hepr.12449] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/29/2014] [Accepted: 11/04/2014] [Indexed: 12/19/2022]
Abstract
AIM Aberrant methylation of the promoter, P2, and the first exon, E1, regions of the tumor suppressor gene RASSF1A, have been associated with hepatocellular carcinoma (HCC), albeit with poor specificity. This study analyzed the methylation profiles of P1, P2 and E1 regions of the gene to identify the region of which methylation most specifically corresponds to HCC and to evaluate the potential of this methylated region as a biomarker in urine for HCC screening. METHODS Bisulfite DNA sequencing and quantitative methylation-specific polymerase chain reaction assays were performed to compare methylation of the 56 CpG sites in regions P1, P2 and E1 in DNA isolated from normal, hepatitic, cirrhotic, adjacent non-HCC, and HCC liver tissue and urine samples for the characterization of hypermethylation of the RASSF1A gene as a biomarker for HCC screening. RESULTS In tissue, comparing HCC (n = 120) with cirrhosis and hepatitis together (n = 70), methylation of P1 had an area under the receiver operating characteristics curve (AUROC) of 0.90, whereas methylation of E1 and P2 had AUROC of 0.84 and 0.72, respectively. At 90% sensitivity, specificity for P1 methylation was 72.9% versus 38.6% for E1 and 27.1% for P2. Methylated P1 DNA was detected in urine in association with cirrhosis and HCC. It had a sensitivity of 81.8% for α-fetoprotein negative HCC. CONCLUSION Among the three regions analyzed, methylation of P1 is the most specific for HCC and holds great promise as a DNA marker in urine for screening of cirrhosis and HCC.
Collapse
Affiliation(s)
- Surbhi Jain
- JBS Science Inc., Doylestown, University College of Medicine, Philadelphia, Pennsylvania
| | - Lijia Xie
- JBS Science Inc., Doylestown, University College of Medicine, Philadelphia, Pennsylvania
| | - Batbold Boldbaatar
- JBS Science Inc., Doylestown, University College of Medicine, Philadelphia, Pennsylvania
| | - Selena Y. Lin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - James P. Hamilton
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine
| | - Stephen J. Meltzer
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland; USA
| | - Shun-Hua Chen
- Department of Microbiology, Medical College, National Cheng Kung University, Tainan
| | - Chi-Tan Hu
- Department of Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, China,Tzu Chi University, Hualien, Taiwan, China
| | - Timothy M. Block
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Wei Song
- JBS Science Inc., Doylestown, University College of Medicine, Philadelphia, Pennsylvania
| | - Ying-Hsiu Su
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Yue Q, Feng L, Cao B, Liu M, Zhang D, Wu W, Jiang B, Yang M, Liu X, Guo D. Proteomic Analysis Revealed the Important Role of Vimentin in Human Cervical Carcinoma HeLa Cells Treated With Gambogic Acid. Mol Cell Proteomics 2015; 15:26-44. [PMID: 26499837 DOI: 10.1074/mcp.m115.053272] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 12/20/2022] Open
Abstract
Gambogic acid (GA) is an anticancer agent in phase IIb clinical trial in China. In HeLa cells, GA inhibited cell proliferation, induced cell cycle arrest at G2/M phase and apoptosis, as showed by results of MTT assay and flow cytometric analysis. Possible target-related proteins of GA were searched using comparative proteomic analysis (2-DE) and nine proteins at early (3 h) stage together with nine proteins at late (24 h) stage were found. Vimentin was the only target-related protein found at both early and late stage. Results of both 2-DE analysis and Western blotting assay suggested cleavage of vimentin induced by GA. MS/MS analysis of cleaved vimentin peptides indicated possible cleavage sites of vimentin at or near ser51 and glu425. Results of targeted proteomic analysis showed that GA induced change in phosphorylation state of the vimentin head domain (aa51-64). Caspase inhibitors could not abrogate GA-induced cleavage of vimentin. Over-expression of vimentin ameliorated cytotoxicity of GA in HeLa cells. The GA-activated signal transduction, from p38 MAPK, heat shock protein 27 (HSP27), vimentin, dysfunction of cytoskeleton, to cell death, was predicted and then confirmed. Results of animal study showed that GA treatment inhibited tumor growth in HeLa tumor-bearing mice and cleavage of vimentin could be observed in tumor xenografts of GA-treated animals. Results of immunohistochemical staining also showed down-regulated vimentin level in tumor xenografts of GA-treated animals. Furthermore, compared with cytotoxicity of GA in HeLa cells, cytotoxicity of GA in MCF-7 cells with low level of vimentin was weaker whereas cytotoxicity of GA in MG-63 cells with high level of vimentin was stronger. These results indicated the important role of vimentin in the cytotoxicity of GA. The effects of GA on vimentin and other epithelial-to-mesenchymal transition (EMT) markers provided suggestion for better usage of GA in clinic.
Collapse
Affiliation(s)
- Qingxi Yue
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; §Institute of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; ¶College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China;
| | - Lixing Feng
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Biyin Cao
- ‖College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Miao Liu
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongmei Zhang
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wanying Wu
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Baohong Jiang
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Min Yang
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xuan Liu
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dean Guo
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; ¶College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
43
|
Xue M, Wang LJ. Value of DNA methylation markers in colorectal cancer screening. Shijie Huaren Xiaohua Zazhi 2015; 23:4626-4635. [DOI: 10.11569/wcjd.v23.i29.4626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors in the world. Recognizing CRC at an early stage by population-based screening is crucial in the prevention and treatment of CRC. Numerous candidate genes, which play important roles in the development and progression of CRC, have been found to be hyper-methylated in the promoter regions in recent studies. The promoter fragments of those hyper-methylated genes in tumor tissues have also been detected in the blood and fecal specimens, with higher sensitivity and specificity than traditional markers in the screening of CRC, including carcino-embryonic antigen (CEA) and fecal occult blood test. Here, we will discuss what we have already known about the DNA methylation markers for CRC screening and the potential research direction in the future.
Collapse
|
44
|
Ng JMK, Yu J. Promoter hypermethylation of tumour suppressor genes as potential biomarkers in colorectal cancer. Int J Mol Sci 2015; 16:2472-96. [PMID: 25622259 PMCID: PMC4346847 DOI: 10.3390/ijms16022472] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/02/2014] [Accepted: 01/14/2015] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignancy and the fourth leading cause of cancer deaths worldwide. It results from the accumulation of multiple genetic and epigenetic changes leading to the transformation of colon epithelial cells into invasive adenocarcinomas. In CRC, epigenetic changes, in particular promoter CpG island methylation, occur more frequently than genetic mutations. Hypermethylation contributes to carcinogenesis by inducing transcriptional silencing or downregulation of tumour suppressor genes and currently, over 600 candidate hypermethylated genes have been identified. Over the past decade, a deeper understanding of epigenetics coupled with technological advances have hinted at the potential of translating benchtop research into biomarkers for clinical use. DNA methylation represents one of the largest bodies of literature in epigenetics, and hence has the highest potential for minimally invasive biomarker development. Most progress has been made in the development of diagnostic markers and there are currently two, one stool-based and one blood-based, biomarkers that are commercially available for diagnostics. Prognostic and predictive methylation markers are still at their infantile stages.
Collapse
Affiliation(s)
- Jennifer Mun-Kar Ng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
45
|
Binefa G, Rodríguez-Moranta F, Teule &A, Medina-Hayas M. Colorectal cancer: from prevention to personalized medicine. World J Gastroenterol 2014; 20:6786-808. [PMID: 24944469 PMCID: PMC4051918 DOI: 10.3748/wjg.v20.i22.6786] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/16/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a very heterogeneous disease that is caused by the interaction of genetic and environmental factors. CRC develops through a gradual accumulation of genetic and epigenetic changes, leading to the transformation of normal colonic mucosa into invasive cancer. CRC is one of the most prevalent and incident cancers worldwide, as well as one of the most deadly. Approximately 1235108 people are diagnosed annually with CRC, and 609051 die from CRC annually. The World Health Organization estimates an increase of 77% in the number of newly diagnosed cases of CRC and an increase of 80% in deaths from CRC by 2030. The incidence of CRC can benefit from different strategies depending on its stage: health promotion through health education campaigns (when the disease is not yet present), the implementation of screening programs (for detection of the disease in its early stages), and the development of nearly personalized treatments according to both patient characteristics (age, sex) and the cancer itself (gene expression). Although there are different strategies for screening and although the number of such strategies is increasing due to the potential of emerging technologies in molecular marker application, not all strategies meet the criteria required for screening tests in population programs; the three most accepted tests are the fecal occult blood test (FOBT), colonoscopy and sigmoidoscopy. FOBT is the most used method for CRC screening worldwide and is also the primary choice in most population-based screening programs in Europe. Due to its non-invasive nature and low cost, it is one of the most accepted techniques by population. CRC is a very heterogeneous disease, and with a few exceptions (APC, p53, KRAS), most of the genes involved in CRC are observed in a small percentage of cases. The design of genetic and epigenetic marker panels that are able to provide maximum coverage in the diagnosis of colorectal neoplasia seems a reasonable strategy. In recent years, the use of DNA, RNA and protein markers in different biological samples has been explored as strategies for CRC diagnosis. Although there is not yet sufficient evidence to recommend the analysis of biomarkers such as DNA, RNA or proteins in the blood or stool, it is likely that given the quick progression of technology tools in molecular biology, increasingly sensitive and less expensive, these tools will gradually be employed in clinical practice and will likely be developed in mass.
Collapse
|
46
|
Wang X, Kuang YY, Hu XT. Advances in epigenetic biomarker research in colorectal cancer. World J Gastroenterol 2014; 20:4276-4287. [PMID: 24764665 PMCID: PMC3989963 DOI: 10.3748/wjg.v20.i15.4276] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/05/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) causes approximately 600000 deaths annually and is the third leading cause of cancer mortality worldwide. Despite significant advancements in treatment options, CRC patient survival is still poor owing to a lack of effective tools for early diagnosis and a limited capacity for optimal therapeutic decision making. Since there exists a need to find new biomarkers to improve diagnosis of CRC, the research on epigenetic biomarkers for molecular diagnostics encourages the translation of this field from the bench to clinical practice. Epigenetic alterations are thought to hold great promise as tumor biomarkers. In this review, we will primarily focus on recent advances in the study of epigenetic biomarkers for colorectal cancer and discuss epigenetic biomarkers, including DNA methylation, microRNA expression and histone modification, in cancer tissue, stool, plasma, serum, cell lines and xenografts. These studies have improved the chances that epigenetic biomarkers will find a place in the clinical practices of screening, early diagnosis, prognosis, therapy choice and recurrence surveillance for CRC patients. However, these studies have typically been small in size, and evaluation at a larger scale of well-controlled randomized clinical trials is the next step that is necessary to increase the quality of epigenetic biomarkers and ensure their widespread clinical use.
Collapse
|
47
|
Aberrant promoter methylation of the vimentin gene may contribute to colorectal carcinogenesis: a meta-analysis. Tumour Biol 2014; 35:6783-90. [PMID: 24729088 DOI: 10.1007/s13277-014-1905-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/28/2014] [Indexed: 12/11/2022] Open
Abstract
This meta-analysis of published cohort studies was conducted to evaluate how closely the promoter methylation of the vimentin gene is correlated with the pathogenesis of colorectal carcinogenesis (CRC). The Web of Science (1945 ~ 2013), Cochrane Library Database (issue 12, 2013), PubMed (1966 ~ 2013), EMBASE (1980 ~ 2013), CINAHL (1982 ~ 2013), and Chinese Biomedical Database (CBM) (1982 ~ 2013) were searched without language restrictions. Meta-analyses were conducted using Stata software (Version 12.0, Stata Corporation, College Station, TX, USA). Odds ratios (ORs) and 95 % confidence intervals (95 %CI) were calculated. Seven clinical cohort studies with a total of 467 CRC subjects met our inclusion criteria. Our meta-analysis results demonstrated that the frequency of vimentin promoter methylation in cancer tissues was significantly higher than in normal and benign tissues (cancer tissues vs. normal tissues: OR = 32.41, 95 %CI = 21.04 ~ 49.93, P < 0.001; cancer tissues vs. benign tissues: OR = 1.60, 95 %CI 1.05 ~ 2.42, P = 0.028). Ethnicity-stratified analysis indicated that the frequency of aberrant vimentin promoter methylation was correlated with the pathogenesis of CRC in both Asians and Caucasians. The findings of our meta-analysis confirm that vimentin methylation may play a crucial role in the pathogenesis of CRC.
Collapse
|
48
|
Jain S, Wojdacz TK, Su YH. Challenges for the application of DNA methylation biomarkers in molecular diagnostic testing for cancer. Expert Rev Mol Diagn 2013; 13:283-94. [PMID: 23570406 DOI: 10.1586/erm.13.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aberrant DNA methylation is ubiquitous in human cancer and has been shown to occur early during carcinogenesis, thus providing attractive potential biomarkers for the early detection of cancer. The introduction of genome-wide DNA methylation analysis comparing tumor and nonmalignant tissues resulted in the discovery of many regions that undergo aberrant methylation during carcinogenesis. Those regions can potentially be used as biomarkers for cancer detection. However, a biomarker will be useful for screening or early detection of cancer only if it can be detected in a noninvasive or minimally invasive fashion without tissue biopsy. The authors discuss the challenges in translating DNA methylation biomarkers to cancer diagnosis - including obstacles in assay development, tissue-specific methylation load on tumor suppressor genes, detecting markers with sufficient sensitivity and specificity in the periphery, and ways in which these obstacles can be overcome.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 18901, USA
| | | | | |
Collapse
|
49
|
Rawson JB, Bapat B. Epigenetic biomarkers in colorectal cancer diagnostics. Expert Rev Mol Diagn 2012; 12:499-509. [PMID: 22702366 DOI: 10.1586/erm.12.39] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a significant health burden worldwide. Despite advancements in treatment options, improvements in CRC patient survival have been limited owing to lack of early detection and limited capacity for optimal therapeutic decision-making. Biomarkers to improve CRC diagnosis, prognosis and prediction of treatment response therefore represent opportunities to improve patient outcome. In addition to genetic alterations and genomic instability, it is now clear that epigenetic alterations play dramatic roles in driving tumor onset and progression in CRC. A recent surge in investigation of epigenetic biomarkers including DNA methylation, miRNA expression and histone modifications has demonstrated that these alterations may be enticing translational biomarker candidates in CRC. In particular, methylation kits have already been incorporated into clinical practice for a handful of cancers, including CRC. This review will aim to summarize the established and emerging roles of epigenetic modifications in CRC detection, prognostication and prediction of treatment response.
Collapse
Affiliation(s)
- James B Rawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, L6-304B, Box 30, Toronto, ON M5G 1X5, Canada
| | | |
Collapse
|