1
|
Kim CY, Na K, Park S, Jeong SK, Cho JY, Shin H, Lee MJ, Han G, Paik YK. FusionPro, a Versatile Proteogenomic Tool for Identification of Novel Fusion Transcripts and Their Potential Translation Products in Cancer Cells. Mol Cell Proteomics 2019; 18:1651-1668. [PMID: 31208993 PMCID: PMC6683003 DOI: 10.1074/mcp.ra119.001456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/23/2019] [Indexed: 01/21/2023] Open
Abstract
Fusion proteoforms are translation products derived from gene fusion. Although very rare, the fusion proteoforms play important roles in biomedical science. For example, fusion proteoforms influence the development of tumors by serving as cancer markers or cell cycle regulators. Although numerous studies have reported bioinformatics tools that can predict fusion transcripts, few proteogenomic tools are available that can predict and identify proteoforms. In this study, we develop a versatile proteogenomic tool "FusionPro," which facilitates the identification of fusion transcripts and their potential translatable peptides. FusionPro provides an independent gene fusion prediction module and can build sequence databases for annotated fusion proteoforms. FusionPro shows greater sensitivity than the available fusion finders when analyzing simulated or real RNA sequencing data sets. We use FusionPro to identify 18 fusion junction peptides and three potential fusion-derived peptides by MS/MS-based analysis of leukemia cell lines (Jurkat and K562) and ovarian cancer tissues from the Clinical Proteomic Tumor Analysis Consortium. Among the identified fusion proteins, we molecularly validate two fusion junction isoforms and a translation product of FAM133B:CDK6. Moreover, sequence analysis suggests that the fusion protein participates in the cell cycle progression. In addition, our prediction results indicate that fusion transcripts often have multiple fusion junctions and that these fusion junctions tend to be distributed in a nonrandom pattern at both the chromosome and gene levels. Thus, FusionPro allows users to detect various types of fusion translation products using a transcriptome-informed approach and to gain a comprehensive understanding of the formation and biological roles of fusion proteoforms.
Collapse
Affiliation(s)
- Chae-Yeon Kim
- ‡Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; §Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Keun Na
- §Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Saeram Park
- §Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seul-Ki Jeong
- §Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jin-Young Cho
- §Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Heon Shin
- §Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Min Jung Lee
- §Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Gyoonhee Han
- ¶Department of Pharmacy, College of Pharmacy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young-Ki Paik
- §Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
2
|
3D Genome Organization Influences the Chromosome Translocation Pattern. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:113-133. [PMID: 29956294 DOI: 10.1007/978-981-13-0593-1_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent imaging, molecular, and computational modeling studies have greatly enhanced our knowledge of how eukaryotic chromosomes are folded in the nuclear space. This work has begun to reveal how 3D genome structure contributes to various DNA-mediated metabolic activities such as replication, transcription, recombination, and repair. Failure of proper DNA repair can lead to the chromosomal translocations observed in human cancers and other diseases. Questions about the role of 3D genome structure in translocation mechanisms have interested scientists for decades. Recent applications of imaging and Chromosome Conformation Capture approaches have clarified the influence of proximal positioning of chromosomal domains and gene loci on the formation of chromosomal translocations. These approaches have revealed the importance of 3D genome structure not only in translocation partner selection, but also in repair efficiency, likelihood of DNA damage, and the biological implications of translocations. This chapter focuses on our current understanding of the role of 3D genome structure in chromosome translocation formation and its potential implications in disease outcome.
Collapse
|
3
|
Tadesse S, Yu M, Kumarasiri M, Le BT, Wang S. Targeting CDK6 in cancer: State of the art and new insights. Cell Cycle 2016; 14:3220-30. [PMID: 26315616 DOI: 10.1080/15384101.2015.1084445] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinase 6 (CDK6) plays a vital role in regulating the progression of the cell cycle. More recently, CDK6 has also been shown to have a transcriptional role in tumor angiogenesis. Up-regulated CDK6 activity is associated with the development of several types of cancers. While CDK6 is over-expressed in cancer cells, it has a low detectable level in non-cancerous cells and CDK6-null mice develop normally, suggesting a specific oncogenic role of CDK6, and that its inhibition may represent an ideal mechanism-based and low toxic therapeutic strategy in cancer treatment. Identification of selective small molecule inhibitors of CDK6 is thus needed for drug development. Herein, we review the latest understandings of the biological regulation and oncogenic roles of CDK6. The potential clinical relevance of CDK6 inhibition, the progress in the development of small-molecule CDK6 inhibitors and the rational design of potential selective CDK6 inhibitors are also discussed.
Collapse
Affiliation(s)
- Solomon Tadesse
- a Center for Drug Discovery and Development, Sansom Institute for Health Research, Center for Cancer Biology; and School of Pharmacy and Medical Sciences, University of South Australia ; Adelaide , Australia
| | - Mingfeng Yu
- a Center for Drug Discovery and Development, Sansom Institute for Health Research, Center for Cancer Biology; and School of Pharmacy and Medical Sciences, University of South Australia ; Adelaide , Australia
| | - Malika Kumarasiri
- a Center for Drug Discovery and Development, Sansom Institute for Health Research, Center for Cancer Biology; and School of Pharmacy and Medical Sciences, University of South Australia ; Adelaide , Australia
| | - Bich Thuy Le
- a Center for Drug Discovery and Development, Sansom Institute for Health Research, Center for Cancer Biology; and School of Pharmacy and Medical Sciences, University of South Australia ; Adelaide , Australia
| | - Shudong Wang
- a Center for Drug Discovery and Development, Sansom Institute for Health Research, Center for Cancer Biology; and School of Pharmacy and Medical Sciences, University of South Australia ; Adelaide , Australia
| |
Collapse
|
4
|
Hsu LI, Briggs F, Shao X, Metayer C, Wiemels JL, Chokkalingam AP, Barcellos LF. Pathway Analysis of Genome-wide Association Study in Childhood Leukemia among Hispanics. Cancer Epidemiol Biomarkers Prev 2016; 25:815-22. [PMID: 26941364 PMCID: PMC4873450 DOI: 10.1158/1055-9965.epi-15-0528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/17/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The incidence of acute lymphoblastic leukemia (ALL) is nearly 20% higher among Hispanics than non-Hispanic Whites. Previous studies have shown evidence for association between risk of ALL and variation within IKZF1, ARID5B, CEBPE, CDKN2A, GATA3, and BM1-PIP4K2A genes. However, variants identified only account for <10% of the genetic risk of ALL. METHODS We applied pathway-based analyses to genome-wide association study (GWAS) data from the California Childhood Leukemia Study to determine whether different biologic pathways were overrepresented in childhood ALL and major ALL subtypes. Furthermore, we applied causal inference and data reduction methods to prioritize candidate genes within each identified overrepresented pathway, while accounting for correlation among SNPs. RESULTS Pathway analysis results indicate that different ALL subtypes may involve distinct biologic mechanisms. Focal adhesion is a shared mechanism across the different disease subtypes. For ALL, the top five overrepresented Kyoto Encyclopedia of Genes and Genomes pathways include axon guidance, protein digestion and absorption, melanogenesis, leukocyte transendothelial migration, and focal adhesion (PFDR < 0.05). Notably, these pathways are connected to downstream MAPK or Wnt signaling pathways which have been linked to B-cell malignancies. Several candidate genes for ALL, such as COL6A6 and COL5A1, were identified through targeted maximum likelihood estimation. CONCLUSIONS This is the first study to show distinct biologic pathways are overrepresented in different ALL subtypes using pathway-based approaches, and identified potential gene candidates using causal inference methods. IMPACT The findings demonstrate that newly developed bioinformatics tools and causal inference methods can provide insights to furthering our understanding of the pathogenesis of leukemia. Cancer Epidemiol Biomarkers Prev; 25(5); 815-22. ©2016 AACR.
Collapse
Affiliation(s)
- Ling-I Hsu
- School of Public Health, University of California, Berkeley, Berkeley, California.
| | - Farren Briggs
- Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Xiaorong Shao
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Joseph L Wiemels
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Anand P Chokkalingam
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Lisa F Barcellos
- School of Public Health, University of California, Berkeley, Berkeley, California
| |
Collapse
|
5
|
Abstract
Uncontrolled cellular proliferation, mediated by dysregulation of the cell-cycle machinery and activation of cyclin-dependent kinases (CDKs) to promote cell-cycle progression, lies at the heart of cancer as a pathological process. Clinical implementation of first-generation, nonselective CDK inhibitors, designed to inhibit this proliferation, was originally hampered by the high risk of toxicity and lack of efficacy noted with these agents. The emergence of a new generation of selective CDK4/6 inhibitors, including ribociclib, abemaciclib and palbociclib, has enabled tumour types in which CDK4/6 has a pivotal role in the G1-to-S-phase cell-cycle transition to be targeted with improved effectiveness, and fewer adverse effects. Results of pivotal phase III trials investigating palbociclib in patients with advanced-stage oestrogen receptor (ER)-positive breast cancer have demonstrated a substantial improvement in progression-free survival, with a well-tolerated toxicity profile. Mechanisms of acquired resistance to CDK4/6 inhibitors are beginning to emerge that, although unwelcome, might enable rational post-CDK4/6 inhibitor therapeutic strategies to be identified. Extending the use of CDK4/6 inhibitors beyond ER-positive breast cancer is challenging, and will likely require biomarkers that are predictive of a response, and the use of combination therapies in order to optimize CDK4/6 targeting.
Collapse
Affiliation(s)
- Ben O'Leary
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Richard S Finn
- Division of Haematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Nicholas C Turner
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.,Breast Unit, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| |
Collapse
|
6
|
Xochelli A, Baliakas P, Moore S, Sole F, Wickham N, Salido M, Athanasiadou A, Oscier D, Stamatopoulos K. Translocation t(2;7)(p11.2;q21.2): a rare genetic aberration associated with B-cell lymphoproliferative disorders of marginal-zone origin. Cancer Genet 2014; 207:281-3. [DOI: 10.1016/j.cancergen.2014.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/10/2014] [Accepted: 06/19/2014] [Indexed: 12/22/2022]
|
7
|
Kollmann K, Heller G, Schneckenleithner C, Warsch W, Scheicher R, Ott R, Schäfer M, Fajmann S, Schlederer M, Schiefer AI, Reichart U, Mayerhofer M, Hoeller C, Zöchbauer-Müller S, Kerjaschki D, Bock C, Kenner L, Hoefler G, Freissmuth M, Green A, Moriggl R, Busslinger M, Malumbres M, Sexl V. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell 2013; 24:167-81. [PMID: 23948297 PMCID: PMC3743049 DOI: 10.1016/j.ccr.2013.07.012] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 05/17/2013] [Accepted: 07/22/2013] [Indexed: 12/20/2022]
Abstract
In contrast to its close homolog CDK4, the cell cycle kinase CDK6 is expressed at high levels in lymphoid malignancies. In a model for p185BCR-ABL+ B-acute lymphoid leukemia, we show that CDK6 is part of a transcription complex that induces the expression of the tumor suppressor p16INK4a and the pro-angiogenic factor VEGF-A. This function is independent of CDK6's kinase activity. High CDK6 expression thus suppresses proliferation by upregulating p16INK4a, providing an internal safeguard. However, in the absence of p16INK4a, CDK6 can exert its full tumor-promoting function by enhancing proliferation and stimulating angiogenesis. The finding that CDK6 connects cell-cycle progression to angiogenesis confirms CDK6's central role in hematopoietic malignancies and could underlie the selection pressure to upregulate CDK6 and silence p16INK4a.
Collapse
Affiliation(s)
- Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Gerwin Heller
- Clinical Division of Oncology, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Wolfgang Warsch
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Ruth Scheicher
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Rene G. Ott
- Institute of Pharmacology, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Schäfer
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Sabine Fajmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Michaela Schlederer
- Department of Clinical Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ana-Iris Schiefer
- Department of Clinical Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ursula Reichart
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Matthias Mayerhofer
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Hoeller
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Zöchbauer-Müller
- Clinical Division of Oncology, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Dontscho Kerjaschki
- Department of Clinical Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria
| | - Gerald Hoefler
- Department of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Anthony R. Green
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, UK
- Department of Hematology, University of Cambridge, Cambridge CB2 0XY, UK
- Department of Hematology, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria
| | - Meinrad Busslinger
- Institute of Pharmacology, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Marcos Malumbres
- Cell Division and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Corresponding author
| |
Collapse
|