1
|
Gregorova J, Vlachova M, Vychytilova‐Faltejskova P, Dostalova A, Ruzickova T, Vecera M, Radova L, Pospichalova V, Sladecek S, Hyzdalova M, Kotaskova J, Jarosova M, Masek J, Benesova K, Jarkovsky J, Rihova L, Bezdekova R, Almasi M, Boichuk I, Stork M, Pour L, Sevcikova S. MicroRNA Profiling of Bone Marrow Plasma Extracellular Vesicles in Multiple Myeloma, Extramedullary Disease, and Plasma Cell Leukemia. Hematol Oncol 2025; 43:e70036. [PMID: 39804194 PMCID: PMC11727818 DOI: 10.1002/hon.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/09/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Multiple myeloma is a plasma cell malignancy characterized by an abnormal increase in monoclonal immunoglobulins. Despite significant advances in treatment, some patients progress to more aggressive forms of multiple myeloma, including extramedullary disease or plasma cell leukemia. Although the exact molecular mechanisms are not known, several studies have confirmed the involvement of small extracellular vesicle-enriched microRNAs in multiple myeloma progression. Therefore, we performed expression profiling of these molecules in bone marrow plasma of multiple myeloma, extramedullary disease, and plasma cell leukemia patients using small RNA sequencing to identify novel molecules involved in disease pathogenesis. In total, 42 microRNAs were significantly dysregulated among analyzed subgroups. Independent validation by RT-qPCR confirmed elevated levels of miR-140-3p, miR-584-5p, miR-191-5p, and miR-143-3p in multiple myeloma patients compared to extramedullary disease and plasma cell leukemia patients. Subsequent statistical analysis revealed significant correlations between patient clinical characteristics or flow cytometry parameters and microRNA expression. These results indicate that dysregulation of microRNAs could contribute to multiple myeloma progression.
Collapse
Affiliation(s)
- Jana Gregorova
- Babak Myeloma GroupDepartment of PathophysiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Monika Vlachova
- Babak Myeloma GroupDepartment of PathophysiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | | | - Adela Dostalova
- Babak Myeloma GroupDepartment of PathophysiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Tereza Ruzickova
- Babak Myeloma GroupDepartment of PathophysiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Marek Vecera
- Centre for Molecular MedicineCentral European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Lenka Radova
- Centre for Molecular MedicineCentral European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Vendula Pospichalova
- Department of Experimental BiologyFaculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Stanislava Sladecek
- Department of Experimental BiologyFaculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Martina Hyzdalova
- Department of Pharmacology and ToxicologyVeterinary Research InstituteBrnoCzech Republic
| | - Jana Kotaskova
- Department of Internal MedicineHematology and OncologyUniversity Hospital BrnoBrnoCzech Republic
| | - Marie Jarosova
- Department of Internal MedicineHematology and OncologyUniversity Hospital BrnoBrnoCzech Republic
| | - Josef Masek
- Department of Pharmacology and ToxicologyVeterinary Research InstituteBrnoCzech Republic
| | - Klara Benesova
- Faculty of MedicineInstitute of Biostatistics and AnalysesMasaryk UniversityBrnoCzech Republic
| | - Jiri Jarkovsky
- Faculty of MedicineInstitute of Biostatistics and AnalysesMasaryk UniversityBrnoCzech Republic
| | - Lucie Rihova
- Department of Clinical HematologyUniversity Hospital BrnoBrnoCzech Republic
| | - Renata Bezdekova
- Department of Clinical HematologyUniversity Hospital BrnoBrnoCzech Republic
| | - Martina Almasi
- Department of Clinical HematologyUniversity Hospital BrnoBrnoCzech Republic
| | - Ivanna Boichuk
- Department of Internal MedicineHematology and OncologyUniversity Hospital BrnoBrnoCzech Republic
| | - Martin Stork
- Department of Internal MedicineHematology and OncologyUniversity Hospital BrnoBrnoCzech Republic
| | - Ludek Pour
- Department of Internal MedicineHematology and OncologyUniversity Hospital BrnoBrnoCzech Republic
| | - Sabina Sevcikova
- Babak Myeloma GroupDepartment of PathophysiologyFaculty of MedicineMasaryk UniversityBrnoCzech Republic
- Department of Clinical HematologyUniversity Hospital BrnoBrnoCzech Republic
| |
Collapse
|
2
|
Wang X, Yang Q, Wu Y. Novel insights into the circ_0003489/let-7b-5p/GLUT1 axis and its possible role in multiple myeloma. Transpl Immunol 2024:102165. [PMID: 39716648 DOI: 10.1016/j.trim.2024.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) act as vital players in multiple myeloma (MM). Herein, we focused on the function of hsa_circ_0003489 (circ_0003489) in MM development and bortezomib (BTZ) resistance. METHODS Relative RNA levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Relative protein levels were evaluated by Western blotting or immunohistochemistry (IHC). The 5'-ethynyl-2'-deoxyuridine (EdU) and cell colony formation (CF) assays were conducted for cell proliferation. Cell counting kit-8 assay was used to evaluate the BTZ resistance. Flow cytometry analysis was performed for cell apoptosis analysis. Glycolysis was determined by detecting the levels of ECAR, glucose consumption, and lactate production. Dual-luciferase reporter and RNA pull-down assays were carried out to analyze the relationships of circ_0003489 with let-7b-5p microRNA and glucose transporter 1 (GLUT1) glucose transporter protein. Xenograft models were conducted to assess the function of circ_0003489 in vivo. RESULTS Indeed, as shown by qRT-PCR, bone marrow samples of MM patients showed an upregulation of circ_0003489 RNA in comparison to normal controls (P < 0.0001). In in vitro experiments in MM cells, silencing of circ_0003489 repressed cell proliferation, BTZ resistance, and glycolysis. Furthermore, blocking circ_0003489 facilitated in vitro the apoptosis of MM cells. In vivo experiments showed that silencing circ_0003489 decreased tumor formation. Signaling experiments demonstrated that circ_0003489 sponged let-7b-5p microRNA and negatively regulated let-7b-5p microRNA expression. Loss of let-7b-5p microRNA ameliorated circ_0003489 silencing-mediated effects on MM cell malignant behaviors and BTZ resistance. Moreover, we showed that GLUT1 glucose transporter was targeted by let-7b-5p mircoRNA. GLUT1 enhancement reversed the repressive impacts of let-7b-5p upregulation on MM cell malignant behaviors and BTZ resistance. CONCLUSION We suggest that circ_0003489 RNA knockdown inhibited MM progression and reversed BTZ-induced resistance of MM growth by let-7b-5p microRNA regulated function of GLUT1 glucose transporter.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Pharmacy, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Qinqin Yang
- School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian, China
| | - Yuedi Wu
- Department of Pharmacy, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China.
| |
Collapse
|
3
|
Gkioka AI, Tsota M, Koudouna A, Gkiokas A, Mitropoulou CA, Palaiokrassa A, Alexandropoulos A, Papadatou-Gigante M, Bartzi V, Tryfou TM, Sfikakis PP, Dedoussis GV, Kyrtsonis MC. Circulating miR-16 and miR-21 Levels in Multiple Myeloma: Prognostic Significance of Survival and Response to Lenalidomide Treatment. Int J Mol Sci 2024; 25:6065. [PMID: 38892251 PMCID: PMC11172882 DOI: 10.3390/ijms25116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
MicroRNAs (miRNAs), particularly miR-16 and miR-21, play a crucial role in multiple myeloma (MM) pathogenesis by regulating gene expression. This study evaluated the prognostic significance of circulating miR-16 and miR-21 expression levels in 48 patients with MM at diagnosis treated with lenalidomide-dexamethasone (LD) compared with 15 healthy individuals (HI). All patients were treated with LD, 13 at first line and 35 at relapse, of whom 21 were tested twice at diagnosis and before LD initiation. The results revealed significantly lower levels of miR-16 and miR-21 in patients than in HIs, both at diagnosis and relapse, with decreased miR-16 levels at diagnosis, indicating improved overall survival (OS) (p value 0.024). Furthermore, miR-16 and miR-21 levels were associated with disease markers, while both correlated with the depth of response and mir-16 with sustained response to LD treatment. Ratios of both miR-16 and miR-21 expression levels (prior to LD treatment/diagnosis) below two predicted a shorter time to response (p = 0.027) and a longer time to next treatment (p = 0.042), respectively. These findings suggested a prognostic value for serum miR-16 and miR-21 levels in MM, as their expression levels correlated with disease variables and treatment outcomes.
Collapse
Affiliation(s)
- Annita-Ioanna Gkioka
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens’ Medical School, 11527 Athens, Greece; (A.-I.G.); (A.K.); (A.G.); (A.A.); (M.P.-G.); (V.B.); (T.-M.T.); (P.P.S.)
| | - Maria Tsota
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17676 Athens, Greece; (M.T.); (C.-A.M.); (A.P.)
| | - Aspasia Koudouna
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens’ Medical School, 11527 Athens, Greece; (A.-I.G.); (A.K.); (A.G.); (A.A.); (M.P.-G.); (V.B.); (T.-M.T.); (P.P.S.)
| | - Alexandros Gkiokas
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens’ Medical School, 11527 Athens, Greece; (A.-I.G.); (A.K.); (A.G.); (A.A.); (M.P.-G.); (V.B.); (T.-M.T.); (P.P.S.)
| | - Christina-Aggeliki Mitropoulou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17676 Athens, Greece; (M.T.); (C.-A.M.); (A.P.)
| | - Aikaterini Palaiokrassa
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17676 Athens, Greece; (M.T.); (C.-A.M.); (A.P.)
| | - Alexandros Alexandropoulos
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens’ Medical School, 11527 Athens, Greece; (A.-I.G.); (A.K.); (A.G.); (A.A.); (M.P.-G.); (V.B.); (T.-M.T.); (P.P.S.)
| | - Mavra Papadatou-Gigante
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens’ Medical School, 11527 Athens, Greece; (A.-I.G.); (A.K.); (A.G.); (A.A.); (M.P.-G.); (V.B.); (T.-M.T.); (P.P.S.)
| | - Vasiliki Bartzi
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens’ Medical School, 11527 Athens, Greece; (A.-I.G.); (A.K.); (A.G.); (A.A.); (M.P.-G.); (V.B.); (T.-M.T.); (P.P.S.)
| | - Thomais-Marina Tryfou
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens’ Medical School, 11527 Athens, Greece; (A.-I.G.); (A.K.); (A.G.); (A.A.); (M.P.-G.); (V.B.); (T.-M.T.); (P.P.S.)
| | - Petros P. Sfikakis
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens’ Medical School, 11527 Athens, Greece; (A.-I.G.); (A.K.); (A.G.); (A.A.); (M.P.-G.); (V.B.); (T.-M.T.); (P.P.S.)
| | - George V. Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17676 Athens, Greece; (M.T.); (C.-A.M.); (A.P.)
| | - Marie-Christine Kyrtsonis
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens’ Medical School, 11527 Athens, Greece; (A.-I.G.); (A.K.); (A.G.); (A.A.); (M.P.-G.); (V.B.); (T.-M.T.); (P.P.S.)
| |
Collapse
|
4
|
Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Al-Jamal HAN, Johan MF, Islam MA. Dysregulation of Non-Coding RNAs: Roles of miRNAs and lncRNAs in the Pathogenesis of Multiple Myeloma. Noncoding RNA 2023; 9:68. [PMID: 37987364 PMCID: PMC10660696 DOI: 10.3390/ncrna9060068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
The dysregulation of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), leads to the development and advancement of multiple myeloma (MM). miRNAs, in particular, are paramount in post-transcriptional gene regulation, promoting mRNA degradation and translational inhibition. As a result, miRNAs can serve as oncogenes or tumor suppressors depending on the target genes. In MM, miRNA disruption could result in abnormal gene expression responsible for cell growth, apoptosis, and other biological processes pertinent to cancer development. The dysregulated miRNAs inhibit the activity of tumor suppressor genes, contributing to disease progression. Nonetheless, several miRNAs are downregulated in MM and have been identified as gene regulators implicated in extracellular matrix remodeling and cell adhesion. miRNA depletion potentially facilitates the tumor advancement and resistance of therapeutic drugs. Additionally, lncRNAs are key regulators of numerous cellular processes, such as gene expression, chromatin remodeling, protein trafficking, and recently linked MM development. The lncRNAs are uniquely expressed and influence gene expression that supports MM growth, in addition to facilitating cellular proliferation and viability via multiple molecular pathways. miRNA and lncRNA alterations potentially result in anomalous gene expression and interfere with the regular functioning of MM. Thus, this review aims to highlight the dysregulation of these ncRNAs, which engender novel therapeutic modalities for the treatment of MM.
Collapse
Affiliation(s)
- Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman 11111, Sudan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azlan Husin
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Md Asiful Islam
- WHO Collaborating Centre for Global Women’s Health, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
5
|
Mikulski D, Nowicki M, Dróźdż I, Misiewicz M, Kościelny KP, Okoński K, Krawiec K, Perdas E, Wierzbowska A, Fendler W. High serum miR-223-3p expression level predicts complete response and prolonged overall survival in multiple myeloma patients undergoing autologous hematopoietic stem cell transplantation. Front Oncol 2023; 13:1250355. [PMID: 37829335 PMCID: PMC10565214 DOI: 10.3389/fonc.2023.1250355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction AHSCT is the treatment of choice for newly diagnosed patients with transplant-eligible multiple myeloma (MM). However, considerable variability in response to autologous hematopoietic stem cell transplantation (AHSCT) results in only 50% of patients achieving complete response (CR) after AHSCT, which is directly associated with improved progression-free and overall survival (OS). In this study, we aimed to investigate the potential predictive role of selected serum miRNAs in MM patients who underwent AHSCT. Patients and methods Serum expression level of 6 miRNAs: miR-221-3p, miR-15b-5p, miR-223-3p, miR-320c, miR-361-3p, and miR-150-5p was evaluated in 51 patients who underwent AHSCT. Blood samples were collected at two time points: before conditioning chemotherapy (T1) and fourteen days after transplant (+14) (T2). Results All selected miRNAs significantly changed their expression level across the procedure- two were up-regulated after AHSCT: hsa-miR-320c (FC 1.42, p<0.0001) and hsa-miR-361-3p (FC 1.35, p=0.0168); four were down-regulated: hsa-miR-15b-5p (FC 0.53, p<0.0001), hsa-miR-221-3p (FC 0.78, p=0.0004), hsa-miR-223-3p (FC 0.74, p=0.0015) and hsa-miR-150-5p (FC 0.75, p=0.0080). Notably, before AHSCT, hsa-miR-223-3p was down-regulated in International Staging System (ISS) III patients (FC=0.76, p=0.0155), and hsa-miR-320c was up-regulated (FC=1.27, p=0.0470). These differences became non-significant after AHSCT. Eight (15.69%) patients achieved CR before AHSCT and 17 patients (33.33%) at +100 days after AHSCT. In multivariate logistic regression analysis, achievement of CR after induction and hsa-miR-223-3p at T1 were independent predictors of CR after AHSCT. In multivariate Cox regression analysis, hsa-miR-223-3p at T1 expression level was associated with prolonged OS (HR 0.06, 95%CI: 0.00 - 0.99, p=0.0488). Conclusion Serum expression of has-miR-223-3p is a predictor of CR and prolonged OS in MM patients undergoing AHSCT.
Collapse
Affiliation(s)
- Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Mateusz Nowicki
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Izabela Dróźdż
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Małgorzata Misiewicz
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Kacper Piotr Kościelny
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Karol Okoński
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Kinga Krawiec
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Alipoor SD, Chang H. Exosomal miRNAs in the Tumor Microenvironment of Multiple Myeloma. Cells 2023; 12:cells12071030. [PMID: 37048103 PMCID: PMC10092980 DOI: 10.3390/cells12071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells in the bone marrow and is characterized by the clonal proliferation of B-cells producing defective monoclonal immunoglobulins. Despite the latest developments in treatment, drug resistance remains one of the major challenges in the therapy of MM. The crosstalk between MM cells and other components within the bone marrow microenvironment (BME) is the major determinant of disease phenotypes. Exosomes have emerged as the critical drivers of this crosstalk by allowing the delivery of informational cargo comprising multiple components from miniature peptides to nucleic acids. Such material transfers have now been shown to perpetuate drug-resistance development and disease progression in MM. MicroRNAs(miRNAs) specifically play a crucial role in this communication considering their small size that allows them to be readily packed within the exosomes and widespread potency that impacts the developmental trajectory of the disease inside the tumor microenvironment (TME). In this review, we aim to provide an overview of the current understanding of the role of exosomal miRNAs in the epigenetic modifications inside the TME and its pathogenic influence on the developmental phenotypes and prognosis of MM.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran P5X9+7F9, Iran
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2M9, Canada
- Correspondence:
| |
Collapse
|
7
|
Wei X, Yu Z, Tang P, Sun H, Gong L, Liu L, Fang T, He Y, Wang T, Sui W, Xu Y, An G, Xu Z, Ma X, Qiu L, Hao M. Multiple myeloma-derived miR-27b-3p facilitates tumour progression via promoting tumour cell proliferation and immunosuppressive microenvironment. Clin Transl Med 2023; 13:e1140. [PMID: 36642938 PMCID: PMC9841122 DOI: 10.1002/ctm2.1140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 01/17/2023] Open
Affiliation(s)
- Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina,Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina
| | - Peixia Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Hematology Department Fujian Medical University Union HospitalFujian Institute of HematologyFuzhouChina
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina
| | - Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Tingyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina
| | - Zhenshu Xu
- Hematology Department Fujian Medical University Union HospitalFujian Institute of HematologyFuzhouChina
| | - Xiaoke Ma
- School of Computer Science and TechnologyXidian UniversityXi'anChina
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina
| |
Collapse
|
8
|
Tavakoli Pirzaman A, Ebrahimi P, Hasanpour AH, Shakeri M, Babajani B, Pourali Ganji Z, Babaei H, Rahmati A, Hosseinzadeh R, Doostmohamadian S, Kazemi S. miRNAs and Multiple Myeloma: Focus on the Pathogenesis, Prognosis, and Drug Resistance. Technol Cancer Res Treat 2023; 22:15330338231202391. [PMID: 37728167 PMCID: PMC10515583 DOI: 10.1177/15330338231202391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Multiple myeloma (MM) produces clonal plasma cells and aberrant monoclonal antibody accumulation in patients' bone marrow (BM). Around 1% of all cancers and 13% of hematological malignancies are caused by MM, making it one of the most common types of cancer. Diagnostic and therapeutic methods for managing MM are currently undergoing extensive research. MicroRNAs (miRNAs) are short noncoding RNAs that reduce or inhibit the translation of their target mRNA after transcription. Because miRNAs play an influential role in how myeloma develops, resources, and becomes resistant to drugs, miRNA signatures may be used to diagnose, do prognosis, and treat the myeloma response. Consequently, researchers have investigated the levels of miRNA in plasma cells from MM patients and developed tools to test whether they directly impacted tumor growth. This review discusses the latest discoveries in miRNA science and their role in the development of MM. We also emphasize the potential applications of miRNAs to diagnose, prognosticate, and treat MM in the future.
Collapse
Affiliation(s)
| | - Pouyan Ebrahimi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Mahdi Shakeri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Bahareh Babajani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Pourali Ganji
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hedye Babaei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Amirhossein Rahmati
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Rezvan Hosseinzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
9
|
Tuerxun N, Wang J, Qin YT, Zhao F, Wang H, Qu JH, Uddin MN, Hao JP. Identification of key genes and miRNA-mRNA regulatory networks associated with bone marrow immune microenvironment regulations in multiple myeloma by integrative bioinformatics analysis. Hematology 2022; 27:506-517. [PMID: 35536760 DOI: 10.1080/16078454.2022.2068873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The deregulation of microRNAs (miRNAs) and genes in the bone marrow microenvironment have been involved with the pathogenesis of multiple myeloma (MM). However, the exploration of miRNA-mRNA regulatory networks in MM remains lacking. We used GSE125363, GSE125361, GSE47552, GSE2658, GSE136324, GSE16558, and GSE13591 datasets for this bioinformatics study. We identified 156 downregulated and 13 upregulated differentially expressed miRNAs (DEmiRs) in MM. The DEmiRs are associated with the enrichment of pathways mainly involved with cancers, cellular signaling, and immune regulations. We identified 112 hub genes associated with five significant clusters in MM. Moreover, we identified 9 upregulated hub genes (such as IGF1, RPS28, UBA52, CDKN1A, and CDKN2A) and 52 downregulated hub genes (such as TP53, PCNA, BRCA1, CCNB1, and MSH2) in MM that is targeted by DEmiRs. The expression of DEmiRs targeted two hub genes (CDKN2A and TP53) are correlated with the survival prognosis of MM patients. Furthermore, the expression level of CDKN2A is correlated with immune signatures, including CD4+ Regulatory T cells, T cell exhaustion, MHC Class I, immune checkpoint genes, macrophages, neutrophils, and TH2 cells in the TME of MM. Finally, we revealed the consistently deregulated expression level of key gene CDKN2A and its co-regulatory DEmiRs, including hsa-mir-192, hsa-mir-10b, hsa-mir-492, and hsa-mir-24 in the independent cohorts of MM. Identifying key genes and miRNA-mRNA regulatory networks may provide new molecular insights into the tumor immune microenvironment in MM.
Collapse
Affiliation(s)
- Niluopaer Tuerxun
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yu-Ting Qin
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Fang Zhao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Huan Wang
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Jian-Hua Qu
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Md Nazim Uddin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jian-Ping Hao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| |
Collapse
|
10
|
Waldschmidt JM, Yee AJ, Vijaykumar T, Pinto Rengifo RA, Frede J, Anand P, Bianchi G, Guo G, Potdar S, Seifer C, Nair MS, Kokkalis A, Kloeber JA, Shapiro S, Budano L, Mann M, Friedman R, Lipe B, Campagnaro E, O’Donnell EK, Zhang CZ, Laubach JP, Munshi NC, Richardson PG, Anderson KC, Raje NS, Knoechel B, Lohr JG. Cell-free DNA for the detection of emerging treatment failure in relapsed/ refractory multiple myeloma. Leukemia 2022; 36:1078-1087. [PMID: 35027656 PMCID: PMC8983453 DOI: 10.1038/s41375-021-01492-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Interrogation of cell-free DNA (cfDNA) represents an emerging approach to non-invasively estimate disease burden in multiple myeloma (MM). Here, we examined low-pass whole genome sequencing (LPWGS) of cfDNA for its predictive value in relapsed/ refractory MM (RRMM). We observed that cfDNA positivity, defined as ≥10% tumor fraction by LPWGS, was associated with significantly shorter progression-free survival (PFS) in an exploratory test cohort of 16 patients who were actively treated on diverse regimens. We prospectively determined the predictive value of cfDNA in 86 samples from 45 RRMM patients treated with elotuzumab, pomalidomide, bortezomib, and dexamethasone in a phase II clinical trial (NCT02718833). PFS in patients with tumor-positive and -negative cfDNA after two cycles of treatment was 1.6 and 17.6 months, respectively (HR 7.6, P < 0.0001). Multivariate hazard modelling confirmed cfDNA as independent risk factor (HR 96.6, P = 6.92e-05). While correlating with serum-free light chains and bone marrow, cfDNA additionally discriminated patients with poor PFS among those with the same response by IMWG criteria. In summary, detectability of MM-derived cfDNA, as a measure of substantial tumor burden with therapy, independently predicts poor PFS and may provide refinement for standard-of-care response parameters to identify patients with poor response to treatment earlier than is currently feasible.
Collapse
Affiliation(s)
- Johannes M. Waldschmidt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Harvard Medical School, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew J. Yee
- Harvard Medical School, Boston, MA, USA,Massachusetts General Hospital, Boston, MA, USA
| | - Tushara Vijaykumar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ricardo A. Pinto Rengifo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Julia Frede
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Harvard Medical School, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Praveen Anand
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Harvard Medical School, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Giada Bianchi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Guangwu Guo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sayalee Potdar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charles Seifer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Monica S. Nair
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Antonis Kokkalis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Harvard Medical School, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jake A. Kloeber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Mason Mann
- Massachusetts General Hospital, Boston, MA, USA
| | | | - Brea Lipe
- University of Rochester, Rochester, NY, USA
| | | | - Elizabeth K. O’Donnell
- Harvard Medical School, Boston, MA, USA,Massachusetts General Hospital, Boston, MA, USA
| | - Cheng-Zhong Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jacob P. Laubach
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Nikhil C. Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Paul G. Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Kenneth C. Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Noopur S. Raje
- Harvard Medical School, Boston, MA, USA,Massachusetts General Hospital, Boston, MA, USA
| | - Birgit Knoechel
- Harvard Medical School, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jens G. Lohr
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Harvard Medical School, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
11
|
Ma H, Shen L, Yang H, Gong H, Du X. Circular RNA circPSAP functions as an efficient miR-331-3p sponge to regulate proliferation, apoptosis and bortezomib sensitivity of human multiple myeloma cells by upregulating HDAC4. J Pharmacol Sci 2022; 149:27-36. [DOI: 10.1016/j.jphs.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
|
12
|
Papanota AM, Karousi P, Kontos CK, Artemaki PI, Liacos CI, Papadimitriou MA, Bagratuni T, Eleutherakis-Papaiakovou E, Malandrakis P, Ntanasis-Stathopoulos I, Gavriatopoulou M, Kastritis E, Avgeris M, Dimopoulos MA, Scorilas A, Terpos E. A Cancer-Related microRNA Signature Shows Biomarker Utility in Multiple Myeloma. Int J Mol Sci 2021; 22:13144. [PMID: 34884950 PMCID: PMC8658678 DOI: 10.3390/ijms222313144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, arising from terminally differentiated B cells, namely plasma cells. miRNAs are small non-coding RNAs that participate in the post-transcriptional regulation of gene expression. In this study, we investigated the role of nine miRNAs in MM. CD138+ plasma cells were selected from bone marrow aspirates from MM and smoldering MM (sMM) patients. Total RNA was extracted and in vitro polyadenylated. Next, first-strand cDNA synthesis was performed using an oligo-dT-adapter primer. For the relative quantification of the investigated miRNAs, an in-house real-time quantitative PCR (qPCR) assay was developed. A functional in silico analysis of the miRNAs was also performed. miR-16-5p and miR-155-5p expression was significantly lower in the CD138+ plasma cells of MM patients than in those of sMM patients. Furthermore, lower levels of miR-15a-5p, miR-16-5p, and miR-222-3p were observed in the CD138+ plasma cells of MM patients with osteolytic bone lesions, compared to those without. miR-125b-5p was also overexpressed in the CD138+ plasma cells of MM patients with bone disease that presented with skeletal-related events (SREs). Furthermore, lower levels of miR-223-3p were associated with significantly worse overall survival in MM patients. In conclusion, we propose a miRNA signature with putative clinical utility in MM.
Collapse
Affiliation(s)
- Aristea-Maria Papanota
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
| | - Pinelopi I. Artemaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
| | - Christine-Ivy Liacos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
| | - Tina Bagratuni
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Evangelos Eleutherakis-Papaiakovou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| |
Collapse
|
13
|
Chen H, Wang J, Wang H, Liang J, Dong J, Bai H, Jiang G. Advances in the application of Let-7 microRNAs in the diagnosis, treatment and prognosis of leukemia. Oncol Lett 2021; 23:1. [PMID: 34820000 PMCID: PMC8607238 DOI: 10.3892/ol.2021.13119] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
The lethal-7 (Let-7) family of microRNAs (miRNAs) controls the process of development and differentiation, but is also related to the occurrence of tumors and a poor prognosis of patients with tumors. Thus, a more comprehensive exploration of its functions will provide further insights into these processes, and may promote the diagnosis and treatment of tumors. Leukemia is a type of progressive malignant disease, and its pathogenesis involves a variety of epigenetic factors. Amongst the several related epigenetic factors, the Let-7 miRNAs are an important family of molecules that play a crucial role in maintaining a variety of critical biological processes, including development, differentiation and proliferation. In the present study, the role of Let-7 as a tumor suppressor gene and oncogene is reviewed, and the complex regulatory functions of several Let-7 family members in different subtypes of leukemia are described. The current body of knowledge thus far indicates that Let-7 is not only a potential diagnostic and prognostic marker of leukemia, but also a potential therapeutic target for the treatment of affected patients, with particular potential when targeted by adjuvant treatments alongside traditional treatment to improve their survival rate.
Collapse
Affiliation(s)
- Hao Chen
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jiewei Wang
- Department of Transfusion, Jinan Zhangqiu District Maternal and Child Health Care Hospital, Jinan, Shandong 250200, P.R. China
| | - Huan Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jingru Liang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jinhua Dong
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Houqiao Bai
- Department of Hematology, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, P.R. China
| | - Guosheng Jiang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China.,Institute of Immunology and Biotechnology Transformation, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
14
|
Circulating microRNAs Correlate with Multiple Myeloma and Skeletal Osteolytic Lesions. Cancers (Basel) 2021; 13:cancers13215258. [PMID: 34771422 PMCID: PMC8582565 DOI: 10.3390/cancers13215258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Molecular biomarkers for the diagnosis of multiple myeloma and for the early detection of the associated osteolytic lesions are needed. MicroRNAs are a class of small non-coding RNAs that regulate gene expression post-transcriptionally and have been explored as circulating (extracellular) biomarkers for distinct diseases. Results show that miR-16-5p, miR-20a-5p, and miR-21-5p levels are differently expressed in the plasma of multiple myeloma patients compared with the control group and suggest that their combined expression could be used as a potential circulating biomarker. Furthermore, the expression of plasma microRNAs significantly correlates with myeloma bone disease and with bone lesions in the spine. Abstract Multiple myeloma (MM) is the second most frequent hematological disease and can cause skeletal osteolytic lesions. This study aims to evaluate the expression of circulating microRNAs (miRNAs) in MM patients and to correlate those levels with clinicopathological features, including bone lesions. A panel of miRNAs associated with MM onset and progression, or with bone remodeling, was analyzed in the plasma of 82 subjects (47 MM patients; 35 healthy controls). Results show that miR-16-5p, miR-20a-5p, and miR-21-5p are differently expressed between MM patients and healthy controls. Receiver operating characteristic analyses indicate that their combined expression has potential as a molecular marker (Area Under the Curve, AUC of 0.8249). Furthermore, significant correlations were found between the analyzed miRNAs and disease stage, treatment, β2 microglobulin, serum albumin and creatinine levels, but not with calcium levels or genetic alterations. In this cohort, 65.96% of MM patients had bone lesions, the majority of which were in the vertebrae. Additionally, miR-29c-3p was decreased in patients with osteolytic lesions compared with patients without bone disease. Interestingly, circulating levels of miR-29b-3p correlated with cervical and thoracic vertebral lesions, while miR-195-5p correlated with thoracic lesions. Our findings suggest circulating miRNAs can be promising biomarkers for MM diagnosis and that their levels correlate with myeloma bone disease and osteolytic lesions.
Collapse
|
15
|
Desantis V, Solimando AG, Saltarella I, Sacco A, Giustini V, Bento M, Lamanuzzi A, Melaccio A, Frassanito MA, Paradiso A, Montagnani M, Vacca A, Roccaro AM. MicroRNAs as a Potential New Preventive Approach in the Transition from Asymptomatic to Symptomatic Multiple Myeloma Disease. Cancers (Basel) 2021; 13:cancers13153650. [PMID: 34359551 PMCID: PMC8344971 DOI: 10.3390/cancers13153650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Multiple myeloma (MM) is the second most common haematologic malignancy, and it remains an incurable disease despite the advances of novel therapies. It is characterised by a multistep process that arises from a pre-malignant asymptomatic status-defined monoclonal gammopathy of undetermined significance (MGUS), evolves to a middle stage named smouldering myeloma phase (SMM), and culminates in the active disease (MM). Identification of early and non-invasive markers of the disease progression is currently an active field of investigation. In this review, we discuss the role and significance of microRNAs (miRNAs) as potential diagnostic biomarkers to predict the clinical transition from MGUS/SMM status to MM. Abstract Multiple myeloma (MM) is a hematological malignancy characterised by proliferation of clonal plasma cells (PCs) within the bone marrow (BM). Myelomagenesis is a multi-step process which goes from an asymptomatic phase, defined as monoclonal gammopathy of undetermined significance (MGUS), to a smouldering myeloma (SMM) stage, to a final active MM disease, characterised by hypercalcemia, renal failure, bone lesions anemia, and higher risk of infections. Overall, microRNAs (miRNAs) have shown to significantly impact on MM tumorigenesis, as a result of miRNA-dependent modulation of genes involved in pathways known to be crucial for MM pathogenesis and disease progression. We aim to revise the literature related to the role of miRNAs as potential diagnostic and prognostic biomarkers, thus highlighting their key role as novel players within the field of MM and related premalignant conditions.
Collapse
Affiliation(s)
- Vanessa Desantis
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Antonio Giovanni Solimando
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Ilaria Saltarella
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
| | - Antonio Sacco
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.S.); (V.G.)
| | - Viviana Giustini
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.S.); (V.G.)
| | - Marta Bento
- Centro Hospitalar Lisboa Norte, Department of Hematology and Transplantation, Institute of Molecular Medicine, University of Lisbon, 1649-035 Lisbon, Portugal;
| | - Aurelia Lamanuzzi
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
| | - Assunta Melaccio
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
| | - Maria Antonia Frassanito
- Unit of General Pathology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Angelo Paradiso
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Angelo Vacca
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
- Correspondence: (A.V.); (A.M.R.)
| | - Aldo M. Roccaro
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.S.); (V.G.)
- Correspondence: (A.V.); (A.M.R.)
| |
Collapse
|
16
|
Alterations in microRNA Expression during Hematopoietic Stem Cell Mobilization. BIOLOGY 2021; 10:biology10070668. [PMID: 34356523 PMCID: PMC8301406 DOI: 10.3390/biology10070668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary Lymphoproliferative disorders comprise a heterogeneous group of hematological malignancies characterized by abnormal lymphocyte proliferation. Autologous hematopoietic stem cell transplantation plays a very important role in the treatment of lymphoproliferative diseases. The key element in this process is the effective mobilization of hematopoietic cells from the marrow niche to the peripheral blood. Mobilization of HSC is regulated by many factors, out of which miRNAs present in the hematopoietic niche via targeting cytokines, and signaling pathways may play an important regulatory role. This study investigated the expression of selected miRNAs in patients with multiple myeloma, Hodgkin’s lymphomas, and non-Hodgkin’s lymphomas undergoing mobilization procedures. The aim of the study was to evaluate the expression of hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-34a-5p, hsa-miR-126-3p, hsa-miR-146a-5p, hsa-miR-155-5p, and hsa-miR-223-3p during the mobilization procedure, and to assess their role in mobilization efficacy. The level of miRNAs was tested at two time points before the initiation of mobilization and on the day of the first apheresis. Our results suggest that the investigated miRNAs, especially hsa-miR-146a-5p, may influence the efficacy of HSC mobilization. Abstract microRNAs play an important role in the regulation of gene expression, cell fate, hematopoiesis, and may influence the efficacy of CD34+ cell mobilization. The present study examines the role of hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-34a-5p, hsa-miR-126-3p, hsa-miR-146a-5p, hsa-miR-155-5p, and hsa-miR-223-3p in the course of hematopoietic stem cell mobilization. The numbers of CD34+ cells collected in patients with hematological malignancies (39 multiple myelomas, 11 lymphomas) were determined during mobilization for an autologous hematopoietic stem cell transplantation. The miRNA level was evaluated by RT-PCR. Compared to baseline, a significant decline in hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-126-3p, hsa-miR-146a-5p, and hsa-miR-155-5p was observed on the day of the first apheresis (day A). An increase was observed only in the expression of hsa-miR-34a-5p. On day A, a negative correlation was found between hsa-miR-15a-5p and hsa-miR-146a-5p levels and the number of CD34+ cells in peripheral blood. A negative correlation was observed between hsa-miR-146a-5p and the number of collected CD34+ cells after the first apheresis. Good mobilizers, defined according to GITMO criteria, demonstrated a lower hsa-miR-146a-5p level on day A than poor mobilizers. Patients from the hsa-miR-146a-5p “low expressors” collected more CD34+ cells than “high expressors”. Our results suggest that the investigated miRNAs, especially hsa-miR-146a-5p, may influence the efficacy of HSC mobilization.
Collapse
|
17
|
Katiyar A, Kaur G, Rani L, Jena L, Singh H, Kumar L, Sharma A, Kaur P, Gupta R. Genome-wide identification of potential biomarkers in multiple myeloma using meta-analysis of mRNA and miRNA expression data. Sci Rep 2021; 11:10957. [PMID: 34040057 PMCID: PMC8154993 DOI: 10.1038/s41598-021-90424-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy with diverse clinical phenotypes and molecular heterogeneity not completely understood. Differentially expressed genes (DEGs) and miRNAs (DEMs) in MM may influence disease pathogenesis, clinical presentation / drug sensitivities. But these signatures overlap meagrely plausibly due to complexity of myeloma genome, diversity in primary cells studied, molecular technologies/ analytical tools utilized. This warrants further investigations since DEGs/DEMs can impact clinical outcomes and guide personalized therapy. We have conducted genome-wide meta-analysis of DEGs/DEMs in MM versus Normal Plasma Cells (NPCs) and derived unified putative signatures for MM. 100 DEMs and 1,362 DEGs were found deranged between MM and NPCs. Signatures of 37 DEMs ('Union 37') and 154 DEGs ('Union 154') were deduced that shared 17 DEMs and 22 DEGs with published prognostic signatures, respectively. Two miRs (miR-16-2-3p, 30d-2-3p) correlated with survival outcomes. PPI analysis identified 5 topmost functionally connected hub genes (UBC, ITGA4, HSP90AB1, VCAM1, VCP). Transcription factor regulatory networks were determined for five seed DEGs with ≥ 4 biomarker applications (CDKN1A, CDKN2A, MMP9, IGF1, MKI67) and three topmost up/ down regulated DEMs (miR-23b, 195, let7b/ miR-20a, 155, 92a). Further studies are warranted to establish and translate prognostic potential of these signatures for MM.
Collapse
Affiliation(s)
- Amit Katiyar
- Bioinformatics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
- ICMR-AIIMS Computational Genomics Centre, Division of Biomedical Informatics, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Gurvinder Kaur
- Laboratory Oncology Unit, Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
- Genomics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Lata Rani
- Laboratory Oncology Unit, Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
- Genomics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Lingaraja Jena
- Laboratory Oncology Unit, Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Harpreet Singh
- ICMR-AIIMS Computational Genomics Centre, Division of Biomedical Informatics, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Lalit Kumar
- Department of Medical Oncology, Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Atul Sharma
- Department of Medical Oncology, Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Punit Kaur
- Bioinformatics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Genomics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
18
|
Peng Y, Song X, Lan J, Wang X, Wang M. Bone marrow stromal cells derived exosomal miR-10a and miR-16 may be involved in progression of patients with multiple myeloma by regulating EPHA8 or IGF1R/CCND1. Medicine (Baltimore) 2021; 100:e23447. [PMID: 33530159 PMCID: PMC7850735 DOI: 10.1097/md.0000000000023447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/23/2020] [Indexed: 11/25/2022] Open
Abstract
Interaction with bone marrow stromal cells (BMSCs) has been suggested as an important mechanism for the progression of multiple myeloma (MM) cells, while exosomes are crucial mediators for cell-to-cell communication. The study was to investigate the miRNA profile changes in exosomes released by BMSCs of MM patients and explore their possible function roles.The microarray datasets of exosomal miRNAs in BMSCs were downloaded from the Gene Expression Omnibus database (GSE110271: 6 MM patients, 2 healthy donors; GSE78865: 4 donors and 2 MM patients; GSE39571: 7 MM patients and 4 controls). The differentially expressed miRNAs (DEMs) were identified using the LIMMA method. The target genes of DEMs were predicted by the miRwalk 2.0 database and the hub genes were screened by constructing the protein-protein interaction (PPI) network, module analysis and overlapping with the differentially expressed genes (DEGs) after overexpression or knockout of miRNAs.Three downregulated DEMs were found to distinguish MM from normal and MM-MGUS controls in the GSE39571 dataset; one downregulated and one upregulated DEMs (hsa-miR-10a) could differentiate MM from normal and MM-MGUS controls in the GSE110271-GSE78865 merged dataset. Furthermore, 11 downregulated (hsa-miR-16) and 1 upregulated DEMs were shared between GSE39571 and merged dataset when comparing MM with normal samples. The target genes were predicted for these 17 DEMs. PPI with module analysis showed IGF1R and CCND1 were hub genes and regulated by hsa-miR-16. Furthermore, EPHA8 was identified as a DEG that was downregulated in MM cells when the use of has-miR-10a mimics; while IGF1R, CCND1, CUL3, and ELAVL1 were also screened as DEGs that were upregulated in MM cells when silencing of hsa-miR-16.BMSCs-derived exosomal miR-10a and miR-16 may be involved in MM progression by regulating EPHA8 or IGF1R/CCND1/CUL3/ELAVL1, respectively. These exosomal miRNAs or genes may represent potential biomarkers for diagnosis of MM and prediction of progression and targets for developing therapeutic drugs.
Collapse
|
19
|
Yang Y, Li W, Wei B, Wu K, Liu D, Zhu D, Zhang C, Wen F, Fan Y, Zhao S. MicroRNA let-7i Inhibits Histone Lysine Demethylase KDM5B to Halt Esophageal Cancer Progression. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:846-861. [PMID: 33230480 PMCID: PMC7658493 DOI: 10.1016/j.omtn.2020.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/11/2020] [Indexed: 11/25/2022]
Abstract
Recent studies have suggested that microRNA let-7i is a tumor suppressor in human cancers, including esophageal cancer, but its underlying mechanism is not yet fully understood. We investigated the role and mechanisms of let-7i in the progression of esophageal cancer. We first showed that let-7i was downregulated in esophageal cancer tissues and cells and then linked its low expression to cancer progression. Bioinformatic analysis predicted KDM5B as a target gene of let-7i, which was confirmed by a dual-luciferase reporter assay. Loss- and gain-of function approaches were adopted to examine the interactions of let-7i, KDM5B, SOX17, and GREB1 in vitro and in vivo. Overexpression of let-7i suppressed esophageal cancer cell proliferation and invasion and promoted apoptosis. Mechanistic investigation showed that let-7i targeted and inhibited KDM5B expression, whereas KDM5B enhanced H3K4me3 at the SOX17 promoter region. Overexpression of let-7i suppressed the expression of GREB1 in esophageal cancer cells by regulating the KDM5B/SOX17 axis in vivo and in vitro. Taken together, our findings reveal the tumor-suppressive properties of let-7i in esophageal cancer in association with an apparent KDM5B-dependent SOX17/GREB1 axis. This study offers a potential prognostic marker and therapeutic target for esophageal cancer.
Collapse
Affiliation(s)
- Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450015, P.R. China
| | - Wenhua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450015, P.R. China
| | - Bochong Wei
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450015, P.R. China
| | - Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450015, P.R. China
| | - Donglei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450015, P.R. China
| | - Dengyan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450015, P.R. China
| | - Chunyang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450015, P.R. China
| | - Fengbiao Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450015, P.R. China
| | - Yuxia Fan
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450015, P.R. China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450015, P.R. China
| |
Collapse
|
20
|
Epigenetic Aberrations in Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12102996. [PMID: 33076518 PMCID: PMC7602661 DOI: 10.3390/cancers12102996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Multiple Myeloma (MM) is a blood cancer characterized by an uncontrolled growth of cells named plasma cells, within the bone marrow. Patients with MM may present with anemia, bone lesions and kidney impairment. Several studies have been performed in order to provide an explanation to how this tumor may develop. Among them, the so called “epigenetic modifications” certainly represent important players that have been shown to support MM development and disease progression. The present article aims to summarize the current knowledge in the specific are of “epigenetics” in MM. Abstract Multiple myeloma (MM) is a plasma cell dyscrasia characterized by proliferation of clonal plasma cells within the bone marrow. Several advances in defining key processes responsible for MM pathogenesis and disease progression have been made; and dysregulation of epigenetics, including DNA methylation and histone modification, has emerged as a crucial regulator of MM pathogenesis. In the present review article, we will focus on the role of epigenetic modifications within the specific context of MM.
Collapse
|
21
|
Wang W, Shim YK, Michalek JE, Barber E, Saleh LM, Choi BY, Wang CP, Ketchum N, Costello R, Marti G, Vogt RF, Landgren O, Calvo KR. Serum microRNA profiles among dioxin exposed veterans with monoclonal gammopathy of undetermined significance. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:269-278. [PMID: 32285757 PMCID: PMC7908056 DOI: 10.1080/15287394.2020.1749919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Previously an increased risk for monoclonal gammopathy of undetermined significance (MGUS), a precursor of multiple myeloma (MM), was reported among Vietnam veterans exposed to Agent Orange and its contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Dysregulated expression of certain microRNAs (miRNAs) was demonstrated in MGUS and MM. Given the important role of miRNAs in cellular homeostasis, the aim of this study was to determine if there was an association between serum levels of selected miRNAs and TCDD in 47 MGUS cases identified in our previous investigation using serum specimens and exposure data archived by the Air Force Health Study (AFHS). A total of 13 miRNA levels (let-7a, let-7i, miR-16, miR-20a, miR-21, miR-34a, miR-106b, miR-146a, miR-181a, miR-192, miR-205, miR-335, and miR-361) was measured in serum stored during the 2002 AFHS follow-up and the relationship to lipid-adjusted serum TCDD levels in 1987 was determined. miR-34a showed the strongest relationship with TCDD; after age-adjustment, this positive association was more pronounced. In contrast, the other 12 miRNAs displayed absolute values of age adjusted coefficient estimates below 1.16 and non-significant p-values. The observed strong positive association between high body burdens of TCDD and miR-34a, a tumor suppressor regulated by p53, in this MGUS population warrants clarification of the TCDD-miR-34a relationship and its role in the pathogenesis of MGUS and risk for MM.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Youn K. Shim
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, GA
| | - Joel E. Michalek
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX
| | - Emily Barber
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Layla M. Saleh
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
- Hematology Section, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Byeong-Yeob Choi
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX
| | - Chen-Pin Wang
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX
| | - Norma Ketchum
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX
| | - Rene Costello
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Gerald Marti
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Robert F. Vogt
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Ola Landgren
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Katherine R. Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
22
|
Li J, Zhang M, Wang C. Circulating miRNAs as diagnostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance. J Clin Lab Anal 2020; 34:e23233. [PMID: 32039495 PMCID: PMC7307343 DOI: 10.1002/jcla.23233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/19/2022] Open
Abstract
Background Multiple myeloma (MM) is still an incurable hematological malignancy evolved from asymptomatic monoclonal gammopathy of undetermined significance (MGUS). New evidence suggests that circulating microRNAs (miRNAs) can serve as stable diagnostic biomarkers for MM and MUGS. Methods Serum miRNAs in MM patients, MUGS patients, and healthy controls (HC) were performed by Agilent Bioanalyzer 2100. MicroRNAs in MM detected as promising biomarkers were validated by using quantitative real‐time PCR (qRT‐PCR). Receiver operator characteristic (ROC) curve and multivariate logistic analysis were used to evaluate the diagnostic value of miRNAs for MM and MUGS. Results In microarray analysis, the top ten differential expressed miRNAs in MM included miR‐134‐5p, miR‐107, miR‐15a‐5p, miR‐5159‐3p, miR‐1914‐3p, miR‐4723‐3p, miR‐5588‐3p, miR‐6893‐3p, miR‐7106‐3p, and miR‐6722‐5p. Three up‐regulated miRNAs (miR‐134‐5p, miR‐107, and miR‐15a‐5p) were further validated. The elevated expression levels of miR‐134‐5p, miR‐107, and miR‐15a‐5p in qRT‐PCR were increased consistent with microarray analysis. These miRNAs distinguished MM and MUGS from HC significantly. Multivariate logistic analysis showed combination miR‐107, miR‐15a‐5p with Hb, the AUC was 0.954 (95% CI: 0.890‐1.000), sensitivity of 91.3%, and specificity of 93.7% for distinguishing MM from MUGS. Conclusions These data demonstrate that miR‐134‐5p, miR‐107, and miR‐15a‐5p are potential diagnostic biomarkers in MM and MUGS. Moreover, the combination miR‐107 and miR‐15a‐5p with Hb can distinguish MM from MUGS.
Collapse
Affiliation(s)
- Jia Li
- Medical School of Chinese PLA & Medical Laboratory CenterThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Clinical Laboratory MedicineBeijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Urinary Cellular Molecular DiagnosticsBeijingChina
| | - Man Zhang
- Clinical Laboratory MedicineBeijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Urinary Cellular Molecular DiagnosticsBeijingChina
| | - Chengbin Wang
- Medical School of Chinese PLA & Medical Laboratory CenterThe First Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
23
|
Waldschmidt JM, Vijaykumar T, Knoechel B, Lohr JG. Tracking myeloma tumor DNA in peripheral blood. Best Pract Res Clin Haematol 2020; 33:101146. [PMID: 32139012 DOI: 10.1016/j.beha.2020.101146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/09/2020] [Indexed: 01/03/2023]
Abstract
Over the past years, the emergence of liquid biopsy technologies has dramatically expanded our ability to assess multiple myeloma without the need for invasive sampling. Interrogation of cell-free DNA from the peripheral blood recapitulates the mutational landscape at excellent concordance with matching bone marrow aspirates. It can quantify disease burden and identify previously undetected resistance mechanisms which may inform clinical management in real-time. The convenience of sample acquisition and storage provides strong procedural benefits over currently available testing. Further investigations will have to define the role of cell-free DNA as a diagnostic measure by determining clinically relevant tumor thresholds in comparison to existing routine parameters. This review presents an overview of currently available assays and discusses the clinical value, potential and limitations of cell-free DNA technologies for the assessment of this challenging disease.
Collapse
Affiliation(s)
- Johannes M Waldschmidt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tushara Vijaykumar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Birgit Knoechel
- Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jens G Lohr
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
24
|
Pourhanifeh MH, Mahjoubin-Tehran M, Shafiee A, Hajighadimi S, Moradizarmehri S, Mirzaei H, Asemi Z. MicroRNAs and exosomes: Small molecules with big actions in multiple myeloma pathogenesis. IUBMB Life 2019; 72:314-333. [PMID: 31828868 DOI: 10.1002/iub.2211] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
Multiple myeloma (MM), an incurable hematologic malignancy of plasma cells increasing in the bone marrow (BM), has a complex microenvironment made to support proliferation, survival, and drug resistance of tumor cells. MicroRNAs (miRNAs), short non-coding RNAs regulating genes expression at posttranscriptional level, have been indicated to be functionally deregulated or abnormally expressed in MM cells. Moreover, by means of miRNAs, tumor microenvironment also modulates the function of MM cells. Consistently, it has been demonstrated that miRNA levels regulation impairs their interaction with the microenvironment of BM as well as create considerable antitumor feature even capable of overcoming the protective BM milieu. Communication between cancer stromal cells and cancer cells is a key factor in tumor progression. Finding out this interaction is important to develop effective approaches that reverse bone diseases. Exosomes, nano-vehicles having crucial roles in cell-to-cell communication, through targeting their cargos (i.e., miRNAs, mRNAs, DNAs, and proteins), are implicated in MM pathogenesis.
Collapse
Affiliation(s)
- Mohammad H Pourhanifeh
- Halal Research Center of IRI, FDA, Tehran, Iran.,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
25
|
Bellavia D, Salamanna F, Raimondi L, De Luca A, Carina V, Costa V, Alessandro R, Fini M, Giavaresi G. Deregulated miRNAs in osteoporosis: effects in bone metastasis. Cell Mol Life Sci 2019; 76:3723-3744. [PMID: 31147752 PMCID: PMC11105262 DOI: 10.1007/s00018-019-03162-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022]
Abstract
Starting from their role exerted on osteoblast and osteoclast differentiation and activity pathways, microRNAs (miRNAs) have been recently identified as regulators of different processes in bone homeostasis. For this purpose, in a recent review, we highlighted, as deregulated miRNAs could be involved in different bone diseases such as osteoporosis. In addition, recent studies supported the concept that osteoporosis-induced bone alterations might offer a receptive site for cancer cells to form bone metastases, However, to date, no data on specific-shared miRNAs between osteoporosis and bone metastases have been considered and described to clarify the evidence of this link. The main goal of this review is to underline as deregulated miRNAs in osteoporosis may have specific roles in the development of bone metastases. The review showed that several circulating osteoporotic miRNAs could facilitate tumor progression and bone-metastasis formation in several tumor types, i.e., breast cancer, prostate cancer, non-small-cell lung cancer, esophageal squamous cell carcinoma, and multiple myeloma. In detail, serum up-regulation of pro-osteoporotic miRNAs, as well as serum down-regulation of anti-osteoporotic miRNAs are common features of all these tumors and are able to promote bone metastasis. These results are of key importance and could help researcher and clinicians to establish new therapeutic strategies connected with deregulation of circulating miRNAs and able to interfere with pathogenic processes of osteoporosis, tumor progressions, and bone-metastasis formation.
Collapse
Affiliation(s)
| | - F Salamanna
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - L Raimondi
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - A De Luca
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - V Carina
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - V Costa
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - R Alessandro
- Section of Biology and Genetics, Department of BioMedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), University of Palermo, 90133, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - M Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - G Giavaresi
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
26
|
Ganesan S, Palani HK, Lakshmanan V, Balasundaram N, Alex AA, David S, Venkatraman A, Korula A, George B, Balasubramanian P, Palakodeti D, Vyas N, Mathews V. Stromal cells downregulate miR-23a-5p to activate protective autophagy in acute myeloid leukemia. Cell Death Dis 2019; 10:736. [PMID: 31570693 PMCID: PMC6769009 DOI: 10.1038/s41419-019-1964-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/08/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
Complex molecular cross talk between stromal cells and the leukemic cells in bone marrow is known to contribute significantly towards drug-resistance. Here, we have identified the molecular events that lead to stromal cells mediated therapy-resistance in acute myeloid leukemia (AML). Our work demonstrates that stromal cells downregulate miR-23a-5p levels in leukemic cells to protect them from the chemotherapy induced apoptosis. Downregulation of miR-23a-5p in leukemic cells leads to upregulation of protective autophagy by targeting TLR2 expression. Further, autophagy inhibitors when used as adjuvants along with conventional drugs can improve drug sensitivity in vitro as well in vivo in a mouse model of leukemia. Our work also demonstrates that this mechanism of bone marrow stromal cell mediated regulation of miR-23a-5p levels and subsequent molecular events are relevant predominantly in myeloid leukemia. Our results illustrate the critical and dynamic role of the bone marrow microenvironment in modulating miRNA expression in leukemic cells which could contribute significantly to drug resistance and subsequent relapse, possibly through persistence of minimal residual disease in this environment.
Collapse
Affiliation(s)
- Saravanan Ganesan
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Vairavan Lakshmanan
- Institute for Stem Cell Biology and Regenerative Medicine (InStem), Bengaluru, India
| | | | - Ansu Abu Alex
- Department of Haematology, Christian Medical College, Vellore, India
| | - Sachin David
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Dasaradhi Palakodeti
- Institute for Stem Cell Biology and Regenerative Medicine (InStem), Bengaluru, India
| | - Neha Vyas
- Molecular Medicine Department, St. John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, India.
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India.
| |
Collapse
|
27
|
Zhang ZY, Li YC, Geng CY, Zhou HX, Gao W, Chen WM. Serum exosomal microRNAs as novel biomarkers for multiple myeloma. Hematol Oncol 2019; 37:409-417. [PMID: 31102419 DOI: 10.1002/hon.2639] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Accumulating studies have focused on circulating microRNAs, which might be potential biomarkers for different malignancies. The aim of this study was to investigate the potential of serum exosomal microRNAs to be novel serum biomarkers for smouldering myeloma (SMM) or even multiple myeloma (MM). The levels of serum exosomal microRNAs and serum circulating microRNAs were measured in healthy individuals and patients with SMM (n = 20) or MM (n = 20). Serum exosomal microRNAs and serum circulating microRNAs were extracted from serum, and the expression levels of selected microRNAs were quantified by real-time polymerase chain reaction (PCR). The levels of serum exosome-derived miR-20a-5p, miR-103a-3p, and miR-4505 were significantly different among patients with MM, patients with SMM, and healthy individuals, while there were differences in the levels of let-7c-5p, miR-185-5p, and miR-4741 in patients with MM relative to those in SMM patients or healthy controls. Additionally, a significant correlation was rarely found between the levels of serum and exosomal microRNAs. This study shows that serum exosomal microRNAs can be used independently as novel serum biomarkers for MM.
Collapse
Affiliation(s)
- Zhi-Yao Zhang
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yan-Chen Li
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chuan-Ying Geng
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hui-Xing Zhou
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wen Gao
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wen-Ming Chen
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Expanding the repertoire of miRNAs and miRNA-offset RNAs expressed in multiple myeloma by small RNA deep sequencing. Blood Cancer J 2019; 9:21. [PMID: 30783080 PMCID: PMC6381125 DOI: 10.1038/s41408-019-0184-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/21/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
Microarray analysis of the multiple myeloma (MM) miRNome has unraveled the differential expression of miRNAs in cytogenetic subgroups, their involvement in the tumor biology and their effectiveness in prognostic models. Herein, the small RNA transcriptional landscape in MM has been investigated exploiting the possibilities offered by small RNA-seq, including accurate quantification of known mature species, discovery and characterization of isomiRs, and miRNA-offset RNAs (moRNAs). Matched small RNA-seq and miRNA GeneChip® microarray expression profiles were obtained in a representative panel of 30 primary MM tumors, fully characterized for genomic aberrations and mutations. RNA-seq and microarray gave concordant estimations of known species. Enhanced analysis of RNA-seq data with the miR&moRe pipeline led to the characterization of 655 known and 17 new mature miRNAs and of 74 moRNAs expressed in the considered cohort, 5 of which (moR-150-3p, moR-24-2-5p, moR-421-5p, moR-21-5p, and moR-6724-5p) at high level. Ectopic expression of miR-135a-3p in t(4;14) patients, upregulation of moR-150-3p and moR-21-5p in t(14;16)/t(14;20) samples, and of moR-6724-1-5p in patients overexpressing CCND1 were uncovered and validated by qRT-PCR. Overall, RNA-seq offered a more complete overview of small non-coding RNA in MM tumors, indicating specific moRNAs that demand further investigations to explore their role in MM biology.
Collapse
|
29
|
Caracciolo D, Di Martino MT, Amodio N, Morelli E, Montesano M, Botta C, Scionti F, Talarico D, Altomare E, Gallo Cantafio ME, Zuccalà V, Maltese L, Todoerti K, Rossi M, Arbitrio M, Neri A, Tagliaferri P, Tassone P. miR-22 suppresses DNA ligase III addiction in multiple myeloma. Leukemia 2019; 33:487-498. [PMID: 30120376 PMCID: PMC6365379 DOI: 10.1038/s41375-018-0238-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022]
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by high genomic instability. Here we provide evidence that hyper-activation of DNA ligase III (LIG3) is crucial for genomic instability and survival of MM cells. LIG3 mRNA expression in MM patients correlates with shorter survival and even increases with more advanced stage of disease. Knockdown of LIG3 impairs MM cells viability in vitro and in vivo, suggesting that neoplastic plasmacells are dependent on LIG3-driven repair. To investigate the mechanisms involved in LIG3 expression, we investigated the post-transcriptional regulation. We identified miR-22-3p as effective negative regulator of LIG3 in MM. Enforced expression of miR-22 in MM cells downregulated LIG3 protein, which in turn increased DNA damage inhibiting in vitro and in vivo cell growth. Taken together, our findings demonstrate that myeloma cells are addicted to LIG3, which can be effectively inhibited by miR-22, promoting a novel axis of genome stability regulation.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Eugenio Morelli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Cirino Botta
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | | | - Emanuela Altomare
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | | | | | - Katia Todoerti
- Department of Oncology and Hemato-oncology, University of Milan, and Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Mariamena Arbitrio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, and Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Zhu B, Ju S, Chu H, Shen X, Zhang Y, Luo X, Cong H. The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma. Oncol Lett 2018; 15:6094-6106. [PMID: 29731841 PMCID: PMC5920744 DOI: 10.3892/ol.2018.8157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/10/2018] [Indexed: 12/30/2022] Open
Abstract
Multiple myeloma (MM), accounting for ~1% of all types of human cancer and 13% of all hematological malignancies, is characterized by the malignant proliferation of monoclonal plasma cells (PCs) in the bone marrow. MM leads to end stage organ impairment, including bone lesions, renal dysfunction, hypercalcemia and anemia. So far, the specific pathogenesis of MM remains unclear and no early-stage sensitive biomarker of MM has been well characterized. Furthermore, treating MM is difficult, as the majority of patients eventually relapse or become refractory following treatment using presently available methods. To date, a number of studies have demonstrated that microRNAs (miRNAs) may serve crucial functions in the progression of numerous cancers, including MM. During the tumorigenesis and pathogenesis of MM, there are multiple carcinogenic events that involve the pernicious transformation from normal to malignant PCs. miRNAs, as oncogenes or tumor suppressors, regulate MM progression-related signaling pathways. In the present review, the up-to-date preliminary basic studies and associated clinical works on the underlying mechanisms of aberrant miRNA profiling in MM have been summarized, including an evaluation of its value as a potential biomarker and a novel therapeutic strategy for MM.
Collapse
Affiliation(s)
- Bingying Zhu
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Shaoqing Ju
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Haidan Chu
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xianjuan Shen
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Yan Zhang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xi Luo
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Hui Cong
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
31
|
Jiang Y, Chang H, Chen G. Effects of microRNA-20a on the proliferation, migration and apoptosis of multiple myeloma via the PTEN/PI3K/AKT signaling pathway. Oncol Lett 2018; 15:10001-10007. [PMID: 29963125 DOI: 10.3892/ol.2018.8555] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is a heterogeneous disease with a poor prognosis. Circulating microRNAs (miRNAs) have shown potential as non-invasive prognostic biomarkers for heterogeneous diseases. miR-20a has been shown involved in various human cancers, and the phosphatase and tensin homolog/phosphoinositide 3-kinase/protein kinase B (PTEN/P13K/Akt) signaling pathway plays a key role in cell proliferation, migration and apoptosis. Here, we investigated the effect of miR-20a on the PTEN/PI3K/Akt signaling pathway during MM cell proliferation, migration and apoptosis. Reverse transcription quantitative polymerase chain reaction was applied to detect miR-20a expression in plasma from 30 MM patients and MM cell lines. CCK-8 assays, Transwell assays, Annexin V/PI double-staining and western blotting were performed to examine the protein expressions of PTEN, PI3K and Akt during cellullar proliferation, migration, cycling, and apoptosis. Significant upregulation of miR-20a and deregulation of PTEN were observed in MM cells. We also identified PTEN as a downstream target gene of miR-20a, which bound to the 3'-untranslated region of PTEN. Overexpression of miR-20a was associated with decreased PTEN expression, and treatment with miR-20a inhibitors decreased cell proliferation, migration and clonogenicity and reduced the protein expressions of PI3K and p-Akt but increased PTEN protein expression compared with blank and negative control groups. Taken together, these results showed that inhibition of miR-20a suppresses MM progression by modulating the PTEN/PI3K/Akt signaling pathway. These findings suggest that miR-20a may be a novel molecular therapeutic target for the treatment of MM.
Collapse
Affiliation(s)
- Yanxia Jiang
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Hong Chang
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, ON M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Guoan Chen
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
32
|
Nowicki M, Szemraj J, Wierzbowska A, Misiewicz M, Małachowski R, Pluta A, Grzybowska-Izydorczyk O, Robak T, Szmigielska-Kapłon A. miRNA-15a, miRNA-16, miRNA-126, miRNA-146a, and miRNA-223 expressions in autologous hematopoietic stem cell transplantation and their impact on engraftment. Eur J Haematol 2018; 100:426-435. [PMID: 29380440 DOI: 10.1111/ejh.13036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE MicroRNAs engaged in angiogenesis and hematopoiesis can influence hematopoietic stem cells (HSCs) homing after transplantation by targeting bone marrow niche microenvironment. This study aimed to examine the kinetics of miRNA-15a, miRNA-16, miRNA-126, miRNA-146a, and miRNA-223 in autologous HSC transplantation settings. METHODS The study comprised of 51 patients with hematological malignancies (42 multiple myeloma, 9 lymphoma). Samples were taken at four time points: before conditioning, after chemotherapy but prior to autologous HSC transplantation (day 0), on day +7, and +14 days after HSCT. The miRNA levels were evaluated by the real-time PCR method. RESULTS A significant, steady decline of all tested microRNAs in the course of transplantation, as compared to the baseline, was found. The study revealed that higher levels of miRNA-15a, miRNA-16, miRNA-126, and miRNA-146a on day 0 correlated with longer time to engraftment. Additionally, a positive correlation between the levels of miRNA-15a, miRNA-146a, and miRNA-223 assessed on day +7 and the time to engraftment was observed. CONCLUSIONS In conclusion, all investigated microRNAs changed significantly in the course of transplantation. Our results suggest that the miRNAs may participate in hematopoietic recovery in the early post-transplant period and influence engraftment efficiency after HSCT.
Collapse
Affiliation(s)
- Mateusz Nowicki
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | | | - Roman Małachowski
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Agnieszka Pluta
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Olga Grzybowska-Izydorczyk
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland.,Department of Experimental Hematology, Medical University of Lodz, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Anna Szmigielska-Kapłon
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital in Lodz, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
33
|
Microenvironment drug resistance in multiple myeloma: emerging new players. Oncotarget 2018; 7:60698-60711. [PMID: 27474171 PMCID: PMC5312413 DOI: 10.18632/oncotarget.10849] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) drug resistance (DR) is a multistep transformation process based on a powerful interplay between bone marrow stromal cells and MM cells that allows the latter to escape anti-myeloma therapies. Here we present an overview of the role of the bone marrow microenvironment in both soluble factors-mediated drug resistance (SFM-DR) and cell adhesion-mediated drug resistance (CAM-DR), focusing on the role of new players, namely miRNAs, exosomes and cancer-associated fibroblasts.
Collapse
|
34
|
Meinzinger J, Jäck HM, Pracht K. miRNA meets plasma cells "How tiny RNAs control antibody responses". Clin Immunol 2017; 186:3-8. [PMID: 28736279 DOI: 10.1016/j.clim.2017.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 01/10/2023]
Abstract
We review the importance of small non-coding microRNAs for the generation of germinal center B cells and their differentiation in antibody-secreting plasma cells. In the last part, we briefly elucidate the role of microRNAs in some plasma cell disorders.
Collapse
Affiliation(s)
- Julia Meinzinger
- Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of MolecularMedicine, University Hospital Erlangen, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of MolecularMedicine, University Hospital Erlangen, Erlangen, Germany.
| | - Katharina Pracht
- Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of MolecularMedicine, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
35
|
Changes in plasma miR-9, miR-16, miR-205 and miR-486 levels after non-small cell lung cancer resection. Cell Oncol (Dordr) 2017. [PMID: 28634901 DOI: 10.1007/s13402-017-0334-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE The majority of non-small cell lung cancer (NSCLC) patients presents with an advanced-stage disease and, consequently, exhibits a poor overall survival rate. We aimed to assess changes in plasma miR-9, miR-16, miR-205 and miR-486 levels and their potential as biomarkers for the diagnosis and monitoring of NSCLC patients. METHODS Plasma was collected from 50 healthy donors and from NSCLC patients before surgery (n = 61), 1 month after surgery (n = 37) and 1 year after surgery (n = 14). microRNA levels were quantified using qRT-PCR. RESULTS We found in NSCLC patients before treatment, both with squamous cell carcinoma (SQCC) and adenocarcinoma (ADC), significantly higher plasma miR-16 and miR-486 levels than in healthy individuals. Pre-treatment miR-205 concentrations were found to be significantly higher in SQCC than in ADC patients, and only SQCC patients presented significantly higher circulating miR-205 levels than healthy donors. SQCC plasma miR-9 levels were not different from normal control levels, but in ADC they were found to be significantly decreased. A combination of plasma miR-16, miR-205 and miR-486 measurements was found to discriminate NSCLC patients from healthy persons, with a specificity of 95% and a sensitivity of 80%. Following tumor resection, we found that the miR-9 and miR-205 levels significantly decreased, even below the normal level, whereas the increased miR-486 level persisted up to one year after surgery, and the miR-16 level decreased to normal. After tumor resection, none of the miR levels tested was found to relate to recurrence. CONCLUSIONS Our data indicate that miR-9, miR-16, miR-205 and miR-486 may serve as NSCLC biomarkers. The observed cancer-related pre- and post-operative changes in their plasma levels may not only reflect the presence of a primary cancer, but also of a systemic response to cancer.
Collapse
|
36
|
Hocking J, Mithraprabhu S, Kalff A, Spencer A. Liquid biopsies for liquid tumors: emerging potential of circulating free nucleic acid evaluation for the management of hematologic malignancies. Cancer Biol Med 2016; 13:215-25. [PMID: 27458529 PMCID: PMC4944540 DOI: 10.20892/j.issn.2095-3941.2016.0025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circulating free nucleic acids; cell free DNA and circulating micro-RNA, are found in the
plasma of patients with hematologic and solid malignancies at levels higher than that of
healthy individuals. In patients with hematologic malignancy cell free DNA reflects the
underlying tumor mutational profile, whilst micro-RNAs reflect genetic interference
mechanisms within a tumor and potentially the surrounding microenvironment and immune
effector cells. These circulating nucleic acids offer a potentially simple, non-invasive,
repeatable analysis that can aid in diagnosis, prognosis and therapeutic decisions in
cancer treatment.
Collapse
Affiliation(s)
- Jay Hocking
- Myeloma Research Group, Australian Center for Blood Diseases, Monash University, Melbourne 3004, Australia; Malignant Haematology & Stem Cell Transplantation Service, Alfred Hospital, Melbourne 3004, Australia
| | - Sridurga Mithraprabhu
- Myeloma Research Group, Australian Center for Blood Diseases, Monash University, Melbourne 3004, Australia
| | - Anna Kalff
- Malignant Haematology & Stem Cell Transplantation Service, Alfred Hospital, Melbourne 3004, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Center for Blood Diseases, Monash University, Melbourne 3004, Australia; Malignant Haematology & Stem Cell Transplantation Service, Alfred Hospital, Melbourne 3004, Australia
| |
Collapse
|
37
|
Ibrutinib downregulates a subset of miRNA leading to upregulation of tumor suppressors and inhibition of cell proliferation in chronic lymphocytic leukemia. Leukemia 2016; 31:340-349. [PMID: 27431016 DOI: 10.1038/leu.2016.181] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/05/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023]
Abstract
The lymph node (LN) is the site of chronic lymphocytic leukemia (CLL) cell activation and proliferation. Aberrant microRNA (miRNA) expression has been shown to have a role in CLL pathogenesis; however, a comparison of miRNA expression between CLL cells in the LN and the peripheral blood (PB) has previously not been reported. On the basis of the analysis of 17 paired LN and PB samples from CLL patients, we identify a panel of miRNAs that are increased in LN CLL cells correlating with an activation phenotype. When evaluated in CLL cells from 38 patients pre and post treatment with ibrutinib, a subset of these miRNAs (miR-22, miR-34a, miR-146b and miR-181b) was significantly decreased in response to ibrutinib. A concomitant increase in putative miRNA target transcripts (ARID1B, ARID2, ATM, CYLD, FOXP1, HDAC1, IBTK, PTEN and SMAD4) was also observed. Functional studies confirmed targets of ibrutinib-responsive miRNAs to include messenger RNA transcripts of multiple tumor suppressors. Knockdown of endogenous miR-34a and miR146b resulted in increased transcription of tumor suppressors and inhibition of cell proliferation. These findings demonstrate that ibrutinib downregulates the expression of a subset of miRNAs related to B-cell activation leading to increased expression of miRNA targets including tumor suppressors and a reduction in cell proliferation.
Collapse
|