1
|
Metellus P, Camilla C, Bialecki E, Beaufils N, Vellutini C, Pellegrino E, Tomasini P, Ahluwalia MS, Mansouri A, Nanni I, Ouafik L. The landscape of cancer-associated transcript fusions in adult brain tumors: a longitudinal assessment in 140 patients with cerebral gliomas and brain metastases. Front Oncol 2024; 14:1382394. [PMID: 39087020 PMCID: PMC11288828 DOI: 10.3389/fonc.2024.1382394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Background Oncogenic fusions of neurotrophic receptor tyrosine kinase NTRK1, NTRK2, or NTRK3 genes have been found in different types of solid tumors. The treatment of patients with TRK fusion cancer with a first-generation TRK inhibitor (such as larotrectinib or entrectinib) is associated with high response rates (>75%), regardless of tumor histology and presence of metastases. Due to the efficacy of TRK inhibitor therapy of larotrectinib and entrectinib, it is clinically important to identify patients accurately and efficiently with TRK fusion cancer. In this retrospective study, we provide unique data on the incidence of oncogenic NTRK gene fusions in patients with brain metastases (BM) and gliomas. Methods 140 samples fixed and paraffin-embedded tissue (FFPE) of adult patients (59 of gliomas [17 of WHO grade II, 20 of WHO grade III and 22 glioblastomas] and 81 of brain metastasis (BM) of different primary tumors) are analyzed. Identification of NTRK gene fusions is performed using next-generation sequencing (NGS) technology using Focus RNA assay kit (Thermo Fisher Scientific). Results We identified an ETV6 (5)::NTRK3 (15) fusion event using targeted next-generation sequencing (NGS) in one of 59 glioma patient with oligodendroglioma-grade II, IDH-mutated and 1p19q co-deleted at incidence of 1.69%. Five additional patients harboring TMPRSS (2)::ERG (4) were identified in pancreatic carcinoma brain metastasis (BM), prostatic carcinoma BM, endometrium BM and oligodendroglioma (grade II), IDH-mutated and 1p19q co-deleted. A FGFR3 (17)::TACC3 (11) fusion was identified in one carcinoma breast BM. Aberrant splicing to produce EGFR exons 2-7 skipping mRNA, and MET exon 14 skipping mRNA were identified in glioblastoma and pancreas carcinoma BM, respectively. Conclusions This study provides data on the incidence of NTRK gene fusions in brain tumors, which could strongly support the relevance of innovative clinical trials with specific targeted therapies (larotrectinib, entrectinib) in this population of patients. FGFR3 (17)::TACC3 (11) rearrangement was detected in breast carcinoma BM with the possibility of using some specific targeted therapies and TMPRSS (2)::ERG (4) rearrangements occur in a subset of patients with, prostatic carcinoma BM, endometrium BM, and oligodendroglioma (grade II), IDH-mutated and 1p19q co-deleted, where there are yet no approved ERG-directed therapies.
Collapse
Affiliation(s)
- Philippe Metellus
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Ramsay Santé, Hôpital Privé Clairval, Département de Neurochirurgie, Marseille, France
| | - Clara Camilla
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Emilie Bialecki
- Ramsay Santé, Hôpital Privé Clairval, Département de Neurochirurgie, Marseille, France
| | - Nathalie Beaufils
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Christine Vellutini
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
| | - Eric Pellegrino
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Pascale Tomasini
- Aix Marseille Univ, APHM, Oncologie multidisciplinaire et innovations thérapeutiques, Marseille, France
- Aix-Marseille Univ, Centre national de Recherche Scientifique (CNRS), Inserm, CRCM, Marseille, France
| | - Manmeet S. Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Cancer Institute, Hershey, PA, United States
| | - Isabelle Nanni
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - L’Houcine Ouafik
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| |
Collapse
|
2
|
Ahmed J, Torrado C, Chelariu A, Kim SH, Ahnert JR. Fusion Challenges in Solid Tumors: Shaping the Landscape of Cancer Care in Precision Medicine. JCO Precis Oncol 2024; 8:e2400038. [PMID: 38986029 PMCID: PMC11371109 DOI: 10.1200/po.24.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024] Open
Abstract
Targeting actionable fusions has emerged as a promising approach to cancer treatment. Next-generation sequencing (NGS)-based techniques have unveiled the landscape of actionable fusions in cancer. However, these approaches remain insufficient to provide optimal treatment options for patients with cancer. This article provides a comprehensive overview of the actionability and clinical development of targeted agents aimed at driver fusions. It also highlights the challenges associated with fusion testing, including the evaluation of patients with cancer who could potentially benefit from testing and devising an effective strategy. The implementation of DNA NGS for all tumor types, combined with RNA sequencing, has the potential to maximize detection while considering cost effectiveness. Herein, we also present a fusion testing strategy aimed at improving outcomes in patients with cancer.
Collapse
Affiliation(s)
- Jibran Ahmed
- Developmental Therapeutics Clinic, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, Bethesda, MD
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anca Chelariu
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center, German Cancer Consortium (DKTK), Munich, Germany
| | - Sun-Hee Kim
- Precision Oncology Decision Support, Khalifa Institute for Personalized Cancer Therapy, University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
3
|
Perkins IU, Tan SY, McCalmont TH, Chou PM, Mully TW, Gerami P, Pomerantz JH, Reyes-Múgica M, Balkin DM, Kruse LL, Huang B, Reichek JL, Gangopadhyay N, Chiosea S, Green JR, Chamlin SL, Frieden IJ, Bastian BC, Yeh I. Melanoma in infants, caused by a gene fusion involving the anaplastic lymphoma kinase (ALK). Pigment Cell Melanoma Res 2024; 37:6-14. [PMID: 37475109 DOI: 10.1111/pcmr.13115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
We describe the first cases of pediatric melanoma with ALK fusion gene arising within giant congenital melanocytic nevi. Two newborn boys presented with large pigmented nodular plaques and numerous smaller satellite nevi. Additional expansile nodules developed within both nevi and invasive melanomas were diagnosed before 10 months of age in both boys. Oncogenic driver mutations in NRAS and BRAF were absent in both cases. Instead, oncogenic ZEB2::ALK fusion genes were identified in both the nevus and melanoma developing within the nevus. In both cases, tumors were noted by ultrasound in utero, demonstrated significant nodularity at birth, and progressed to melanoma in the first year of life suggesting that congenital nevi with ALK fusion genes may behave more aggressively than those with other mutations. As ALK kinase inhibitors are effective against a range of tumors with similar ALK fusion kinases, identifying ALK fusion genes in congenital melanocytic nevi may provide an opportunity for targeted therapy.
Collapse
Affiliation(s)
- Ifeoma U Perkins
- Department of Pathology, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Serena Y Tan
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Timothy H McCalmont
- Department of Dermatology, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
- GS Dermatology Associates, Walnut Creek, California, USA
| | - Pauline M Chou
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thaddeus W Mully
- Department of Dermatology, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| | - Pedram Gerami
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jason H Pomerantz
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, San Francisco, California, USA
- Department of Orofacial Sciences, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, California, USA
| | - Miguel Reyes-Múgica
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel M Balkin
- Department of Plastic & Oral Surgery, Boston's Children's Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Lacey L Kruse
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Benjamin Huang
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Jennifer L Reichek
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Noopur Gangopadhyay
- Division of Plastic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Simon Chiosea
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jared R Green
- Envision Radiology Associates of Hollywood, Joe DiMaggio Children's Hospital, Hollywood, Florida, USA
| | - Sarah L Chamlin
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ilona J Frieden
- Department of Dermatology, University of California, San Francisco, California, USA
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Boris C Bastian
- Department of Dermatology, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| | - Iwei Yeh
- Department of Dermatology, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| |
Collapse
|
4
|
Chen X, Wang W, Yeh J, Wu Y, Oehler VG, Naresh KN, Liu YJ. Clinical Validation of FusionPlex RNA Sequencing and Its Utility in the Diagnosis and Classification of Hematologic Neoplasms. J Mol Diagn 2023; 25:932-944. [PMID: 37813298 DOI: 10.1016/j.jmoldx.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023] Open
Abstract
Recurrent gene rearrangements result in gene fusions that encode chimeric proteins, driving the pathogenesis of many hematologic neoplasms. The fifth edition World Health Organization classification and International Consensus Classification 2022 include an expanding list of entities defined by such gene rearrangements. Therefore, sensitive and rapid methods are needed to identify a broad range of gene fusions for precise diagnosis and prognostication. In this study, we validated the FusionPlex Pan-Heme panel analysis using anchored multiplex PCR/targeted RNA next-generation sequencing for routine clinical testing. Furthermore, we assessed its utility in detecting gene fusions in myeloid and lymphoid neoplasms. The validation cohort of 61 cases demonstrated good concordance between the FusionPlex Pan-Heme panel and other methods, including chromosome analysis, fluorescence in situ hybridization, RT-PCR, and Sanger sequencing, with an analytic sensitivity and specificity of 95% and 100%, respectively. In an independent cohort of 28 patients indicated for FusionPlex testing, gene fusions were detected in 21 patients. The FusionPlex Pan-Heme panel analysis reliably detected fusion partners and patient-specific fusion sequences, allowing accurate classification of hematologic neoplasms and the discovery of new fusion partners, contributing to a better understanding of the pathogenesis of the diseases.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Wenjing Wang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Jeffrey Yeh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Yu Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Vivian G Oehler
- Department of Medicine, University of Washington, Seattle, Washington
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Yajuan J Liu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
5
|
Chiosea S, Hodak SP, Yip L, Abraham D, Baldwin C, Baloch Z, Gulec SA, Hannoush ZC, Haugen BR, Joseph L, Kargi AY, Khanafshar E, Livhits MJ, McIver B, Patel K, Patel SG, Randolph GW, Shaha AR, Sharma J, Stathatos N, van Zante A, Carty SE, Nikiforov YE, Nikiforova MN. Molecular Profiling of 50 734 Bethesda III-VI Thyroid Nodules by ThyroSeq v3: Implications for Personalized Management. J Clin Endocrinol Metab 2023; 108:2999-3008. [PMID: 37071871 PMCID: PMC10583990 DOI: 10.1210/clinem/dgad220] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
CONTEXT Comprehensive genomic analysis of thyroid nodules for multiple classes of molecular alterations detected in a large series of fine needle aspiration (FNA) samples has not been reported. OBJECTIVE To determine the prevalence of clinically relevant molecular alterations in Bethesda categories III-VI (BCIII-VI) thyroid nodules. METHODS This retrospective analysis of FNA samples, tested by ThyroSeq v3 using Genomic Classifier and Cancer Risk Classifier at UPMC Molecular and Genomic Pathology laboratory, analyzed the prevalence of diagnostic, prognostic, and targetable genetic alterations in a total of 50 734 BCIII-VI nodules from 48 225 patients. RESULTS Among 50 734 informative FNA samples, 65.3% were test-negative, 33.9% positive, 0.2% positive for medullary carcinoma, and 0.6% positive for parathyroid. The benign call rate in BCIII-IV nodules was 68%. Among test-positive samples, 73.3% had mutations, 11.3% gene fusions, and 10.8% isolated copy number alterations. Comparing BCIII-IV nodules with BCV-VI nodules revealed a shift from predominantly RAS-like alterations to BRAF V600E-like alterations and fusions involving receptor tyrosine kinases (RTK). Using ThyroSeq Cancer Risk Classifier, a high-risk profile, which typically included TERT or TP53 mutations, was found in 6% of samples, more frequently BCV-VI. RNA-Seq confirmed ThyroSeq detection of novel RTK fusions in 98.9% of cases. CONCLUSION In this series, 68% of BCIII-IV nodules were classified as negative by ThyroSeq, potentially preventing diagnostic surgery in this subset of patients. Specific genetic alterations were detected in most BCV-VI nodules, with a higher prevalence of BRAF and TERT mutations and targetable gene fusions compared to BCIII-IV nodules, offering prognostic and therapeutic information for patient management.
Collapse
Affiliation(s)
- Simion Chiosea
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Steven P Hodak
- NYU Robert I. Grossman School of Medicine, NYU Langone Health, New York, NY 12297, USA
| | - Linwah Yip
- Division of Endocrine Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Devaprabu Abraham
- Division of Endocrinology, Department of Internal Medicine, University of Utah Health, Salt Lake City, UT 84112, USA
| | - Chelsey Baldwin
- Division of Endocrinology & Metabolism, George Washington University, Washington, DC 20037, USA
| | - Zubair Baloch
- Perelman School of Medicine Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA 19103, USA
| | - Seza A Gulec
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Zeina C Hannoush
- Division of Endocrinology, Diabetes and Metabolism. University of Miami, Miller School of Medicine, Miami, FL 33146, USA
| | - Bryan R Haugen
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lija Joseph
- Lowell General Hospital, Boston University and Tufts University, Lowell, MA 01854, USA
| | - Atil Y Kargi
- Division of Endocrinology, Diabetes and Metabolism. University of Miami, Miller School of Medicine, Miami, FL 33146, USA
| | - Elham Khanafshar
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Masha J Livhits
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | - Kepal Patel
- NYU Robert I. Grossman School of Medicine, NYU Langone Health, New York, NY 12297, USA
| | - Snehal G Patel
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30342, USA
| | | | - Ashok R Shaha
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jyotirmay Sharma
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30342, USA
| | | | - Annemieke van Zante
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sally E Carty
- Division of Endocrine Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Yuri E Nikiforov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Marina N Nikiforova
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Nikiforova MN, Wald AI, Spagnolo DM, Melan MA, Grupillo M, Lai YT, Brand RE, O’Broin-Lennon AM, McGrath K, Park WG, Pfau PR, Polanco PM, Kubiliun N, DeWitt J, Easler JJ, Dam A, Mok SR, Wallace MB, Kumbhari V, Boone BA, Marsh W, Thakkar S, Fairley KJ, Afghani E, Bhat Y, Ramrakhiani S, Nasr J, Skef W, Thiruvengadam NR, Khalid A, Fasanella K, Chennat J, Das R, Singh H, Sarkaria S, Slivka A, Gabbert C, Sawas T, Tielleman T, Vanderveldt HD, Tavakkoli A, Smith LM, Smith K, Bell PD, Hruban RH, Paniccia A, Zureikat A, Lee KK, Ongchin M, Zeh H, Minter R, He J, Nikiforov YE, Singhi AD. A Combined DNA/RNA-based Next-Generation Sequencing Platform to Improve the Classification of Pancreatic Cysts and Early Detection of Pancreatic Cancer Arising From Pancreatic Cysts. Ann Surg 2023; 278:e789-e797. [PMID: 37212422 PMCID: PMC10481930 DOI: 10.1097/sla.0000000000005904] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
OBJECTIVE We report the development and validation of a combined DNA/RNA next-generation sequencing (NGS) platform to improve the evaluation of pancreatic cysts. BACKGROUND AND AIMS Despite a multidisciplinary approach, pancreatic cyst classification, such as a cystic precursor neoplasm, and the detection of high-grade dysplasia and early adenocarcinoma (advanced neoplasia) can be challenging. NGS of preoperative pancreatic cyst fluid improves the clinical evaluation of pancreatic cysts, but the recent identification of novel genomic alterations necessitates the creation of a comprehensive panel and the development of a genomic classifier to integrate the complex molecular results. METHODS An updated and unique 74-gene DNA/RNA-targeted NGS panel (PancreaSeq Genomic Classifier) was created to evaluate 5 classes of genomic alterations to include gene mutations (e.g., KRAS, GNAS, etc.), gene fusions and gene expression. Further, CEA mRNA ( CEACAM5 ) was integrated into the assay using RT-qPCR. Separate multi-institutional cohorts for training (n=108) and validation (n=77) were tested, and diagnostic performance was compared to clinical, imaging, cytopathologic, and guideline data. RESULTS Upon creation of a genomic classifier system, PancreaSeq GC yielded a 95% sensitivity and 100% specificity for a cystic precursor neoplasm, and the sensitivity and specificity for advanced neoplasia were 82% and 100%, respectively. Associated symptoms, cyst size, duct dilatation, a mural nodule, increasing cyst size, and malignant cytopathology had lower sensitivities (41-59%) and lower specificities (56-96%) for advanced neoplasia. This test also increased the sensitivity of current pancreatic cyst guidelines (IAP/Fukuoka and AGA) by >10% and maintained their inherent specificity. CONCLUSIONS PancreaSeq GC was not only accurate in predicting pancreatic cyst type and advanced neoplasia but also improved the sensitivity of current pancreatic cyst guidelines.
Collapse
Affiliation(s)
- Marina N. Nikiforova
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Abigail I. Wald
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Daniel M. Spagnolo
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Melissa A. Melan
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Maria Grupillo
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Yi-Tak Lai
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Randall E. Brand
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Anne Marie O’Broin-Lennon
- The Sol Goldman Pancreatic Cancer Research Center, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Kevin McGrath
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Walter G. Park
- Department of Medicine, Stanford University, Stanford, CA
| | - Patrick R. Pfau
- Department of Medicine, University of Wisconsin, Madison, WI
| | - Patricio M. Polanco
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nisa Kubiliun
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - John DeWitt
- Department of Gastroenterology and Hepatology, Indiana University Health Medical Center, Indianapolis, IN
| | - Jeffrey J. Easler
- Department of Gastroenterology and Hepatology, Indiana University Health Medical Center, Indianapolis, IN
| | - Aamir Dam
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL
| | - Shaffer R. Mok
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL
| | - Michael B. Wallace
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Jacksonville, FL
- Sheikh Shakhbout Medical City, Abu Dhabi, UAE
| | - Vivek Kumbhari
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Brian A. Boone
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, WV
| | - Wallis Marsh
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, WV
| | - Shyam Thakkar
- Department of Medicine, Section of Gastroenterology & Hepatology, West Virginia University Health Sciences Center, Morgantown, WV
| | - Kimberly J. Fairley
- Department of Medicine, Section of Gastroenterology & Hepatology, West Virginia University Health Sciences Center, Morgantown, WV
| | - Elham Afghani
- The Sol Goldman Pancreatic Cancer Research Center, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Yasser Bhat
- Department of Gastroenterology, Palo Alto Medical Foundation (PAMF), Mountain View, CA
| | - Sanjay Ramrakhiani
- Department of Gastroenterology, Palo Alto Medical Foundation (PAMF), Mountain View, CA
| | - John Nasr
- Department of Medicine, Wheeling Hospital, West Virginia University Health Sciences Center, Morgantown, WV
| | - Wasseem Skef
- Division of Gastroenterology and Hepatology, Department of Medicine, Loma Linda University Medical Center, Loma Linda, CA
| | - Nikhil R. Thiruvengadam
- Division of Gastroenterology and Hepatology, Department of Medicine, Loma Linda University Medical Center, Loma Linda, CA
| | - Asif Khalid
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Kenneth Fasanella
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Jennifer Chennat
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Rohit Das
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Harkirat Singh
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Savreet Sarkaria
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Adam Slivka
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Charles Gabbert
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Tarek Sawas
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Thomas Tielleman
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Anna Tavakkoli
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lynette M. Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| | - Katelyn Smith
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Phoenix D. Bell
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ralph H. Hruban
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Alessandro Paniccia
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Amer Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Kenneth K. Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Melanie Ongchin
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Herbert Zeh
- Department of Clinical Sciences, Surgery, University of Texas Southwestern, Dallas, TX
| | - Rebecca Minter
- Department of Surgery, University of Wisconsin, Madison, WI
| | - Jin He
- The Sol Goldman Pancreatic Cancer Research Center, Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Yuri E. Nikiforov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Aatur D. Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
7
|
Phillips WJ, Lo B, Corredor ALG, Gomes M, Wheatley-Price P. A rare case of false negative ROS1 fusion in metastatic pulmonary adenocarcinoma: Case report and lessons learned. Clin Lung Cancer 2023:S1525-7304(23)00056-6. [PMID: 37100730 DOI: 10.1016/j.cllc.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
|
8
|
Ma Y, Zhang Q, Zhang K, Liang Y, Ren F, Zhang J, Kan C, Han F, Sun X. NTRK fusions in thyroid cancer: Pathology and clinical aspects. Crit Rev Oncol Hematol 2023; 184:103957. [PMID: 36907364 DOI: 10.1016/j.critrevonc.2023.103957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Thyroid cancer is the most common endocrine cancer. Neurotrophic tyrosine receptor kinase (NTRK) fusions are oncogenic drivers in multiple solid tumors, including thyroid cancer. NTRK fusion thyroid cancer has unique pathological features such as mixed structure, multiple nodes, lymph node metastasis, and a background of chronic lymphocytic thyroiditis. Currently, RNA-based next-generation sequencing is the gold standard for the detection of NTRK fusions. Tropomyosin receptor kinase inhibitors have shown promising efficacy in patients with NTRK fusion-positive thyroid cancer. Efforts to overcome acquired drug resistance are the focus of research concerning next-generation TRK inhibitors. However, there are no authoritative recommendations or standardized procedures for the diagnosis and treatment of NTRK fusions in thyroid cancer. This review discusses current research progress regarding NTRK fusion-positive thyroid cancer, summarizes the clinicopathological features of the disease, and outlines the current statuses of NTRK fusion detection and targeted therapeutic agents.
Collapse
Affiliation(s)
- Yanhui Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Qi Zhang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yunzi Liang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fangbing Ren
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
9
|
Li T, Yang WY, Liu TT, Li Y, Liu L, Zheng X, Zhao L, Zhang F, Hu Y. Advances in the Diagnosis and Treatment of a Driving Target: RET Rearrangements in non-Small-Cell Lung Cancer (NSCLC) Especially in China. Technol Cancer Res Treat 2023; 22:15330338221148802. [PMID: 36628459 PMCID: PMC9837270 DOI: 10.1177/15330338221148802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the era of precision medicine, with the deepening of the research on malignant tumor driving genes, clinical oncology has fully entered the era of targeted therapy. For non-small-cell lung cancer (NSCLC), the development of targeted drugs targeting driver genes, such as epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK), has successfully opened up a new model of targeted therapy. At present, proto-oncogene rearranged during transfection (RET) fusion gene is an important novel oncogenic driving target, and specific receptor tyrosine kinase inhibitors (TKIs) targeting RET fusion have been approved. This article will review the latest research about the molecular characteristics, pathogenesis, detection, and clinical treatment strategies of RET rearrangements especially in China.
Collapse
Affiliation(s)
- Tao Li
- Department of Oncology, The First Medical Center of PLA General Hospital, Graduate School, Medical College of Chinese PLA, Beijing, China,Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs (Ministry of Education), China,Tao Li, MD, Department of Oncology, The First Medical Center of PLA General Hospital, Graduate School, Medical College of Chinese PLA, Beijing 100029, China.
| | - Wen-Yu Yang
- Department of Oncology, The First Medical Center of PLA General Hospital, Graduate School, Medical College of Chinese PLA, Beijing, China,Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs (Ministry of Education), China,School of Medicine, Nankai University, Tianjin, China
| | - Ting-Ting Liu
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center of PLA General Hospital, Beijing, China,Graduate School, Medical College of Chinese PLA, Beijing, China
| | - Yao Li
- Department of Oncology, The First Medical Center of PLA General Hospital, Graduate School, Medical College of Chinese PLA, Beijing, China,Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs (Ministry of Education), China
| | - Lu Liu
- Department of Nutriology, The First Medical Center of PLA General Hospital, Graduate School, Medical College of Chinese PLA, Beijing, China
| | - Xuan Zheng
- Department of Oncology, The First Medical Center of PLA General Hospital, Graduate School, Medical College of Chinese PLA, Beijing, China,Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs (Ministry of Education), China
| | - Lei Zhao
- Institute of Translational Medicine, PLA General Hospital, Beijing, China
| | - Fan Zhang
- Department of Oncology, The First Medical Center of PLA General Hospital, Graduate School, Medical College of Chinese PLA, Beijing, China,Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs (Ministry of Education), China
| | - Yi Hu
- Department of Oncology, The First Medical Center of PLA General Hospital, Graduate School, Medical College of Chinese PLA, Beijing, China,Chinese PLA Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs (Ministry of Education), China
| |
Collapse
|
10
|
FFPE-Based NGS Approaches into Clinical Practice: The Limits of Glory from a Pathologist Viewpoint. J Pers Med 2022; 12:jpm12050750. [PMID: 35629172 PMCID: PMC9146170 DOI: 10.3390/jpm12050750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/02/2023] Open
Abstract
The introduction of next-generation sequencing (NGS) in the molecular diagnostic armamentarium is deeply changing pathology practice and laboratory frameworks. NGS allows for the comprehensive molecular characterization of neoplasms, in order to provide the best treatment to oncologic patients. On the other hand, NGS raises technical issues and poses several challenges in terms of education, infrastructures and costs. The aim of this review is to give an overview of the main NGS sequencing platforms that can be used in current molecular diagnostics and gain insights into the clinical applications of NGS in precision oncology. Hence, we also focus on the preanalytical, analytical and interpretative issues raised by the incorporation of NGS in routine pathology diagnostics.
Collapse
|
11
|
Peng L, Zhu L, Sun Y, Stebbing J, Selvaggi G, Zhang Y, Yu Z. Targeting ALK Rearrangements in NSCLC: Current State of the Art. Front Oncol 2022; 12:863461. [PMID: 35463328 PMCID: PMC9020874 DOI: 10.3389/fonc.2022.863461] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) alterations in non-small cell lung cancer (NSCLC) can be effectively treated with a variety of ALK-targeted drugs. After the approval of the first-generation ALK inhibitor crizotinib which achieved better results in prolonging the progression-free survival (PFS) compared with chemotherapy, a number of next-generation ALK inhibitors have been developed including ceritinib, alectinib, brigatinib, and ensartinib. Recently, a potent, third-generation ALK inhibitor, lorlatinib, has been approved by the Food and Drug Administration (FDA) for the first-line treatment of ALK-positive (ALK+) NSCLC. These drugs have manageable toxicity profiles. Responses to ALK inhibitors are however often not durable, and acquired resistance can occur as on-target or off-target alterations. Studies are underway to explore the mechanisms of resistance and optimal treatment options beyond progression. Efforts have also been undertaken to develop further generations of ALK inhibitors. This review will summarize the current situation of targeting the ALK signaling pathway.
Collapse
Affiliation(s)
- Ling Peng
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liping Zhu
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Yilan Sun
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Justin Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | | | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
12
|
Conde E, Rojo F, Gómez J, Enguita AB, Abdulkader I, González A, Lozano D, Mancheño N, Salas C, Salido M, Salido-Ruiz E, de Álava E. Molecular diagnosis in non-small-cell lung cancer: expert opinion on ALK and ROS1 testing. J Clin Pathol 2022; 75:145-153. [PMID: 33875457 PMCID: PMC8862096 DOI: 10.1136/jclinpath-2021-207490] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/09/2023]
Abstract
The effectiveness of targeted therapies with tyrosine kinase inhibitors in non-small-cell lung cancer (NSCLC) depends on the accurate determination of the genomic status of the tumour. For this reason, molecular analyses to detect genetic rearrangements in some genes (ie, ALK, ROS1, RET and NTRK) have become standard in patients with advanced disease. Since immunohistochemistry is easier to implement and interpret, it is normally used as the screening procedure, while fluorescence in situ hybridisation (FISH) is used to confirm the rearrangement and decide on ambiguous immunostainings. Although FISH is considered the most sensitive method for the detection of ALK and ROS1 rearrangements, the interpretation of results requires detailed guidelines. In this review, we discuss the various technologies available to evaluate ALK and ROS1 genomic rearrangements using these techniques. Other techniques such as real-time PCR and next-generation sequencing have been developed recently to evaluate ALK and ROS1 gene rearrangements, but some limitations prevent their full implementation in the clinical setting. Similarly, liquid biopsies have the potential to change the treatment of patients with advanced lung cancer, but further research is required before this technology can be applied in routine clinical practice. We discuss the technical requirements of laboratories in the light of quality assurance programmes. Finally, we review the recent updates made to the guidelines for the determination of molecular biomarkers in patients with NSCLC.
Collapse
Affiliation(s)
- Esther Conde
- Department of Pathology and Laboratory of Therapeutic Targets & CIBERONC, HM Hospitales, Madrid, Spain
| | - Federico Rojo
- Department of Pathology, Hospital Universitario Fundacion Jiménez Díaz, Madrid, Spain
| | - Javier Gómez
- Department of Pathology, Hospital Universitario Marques de Valdecilla, Santander, Cantabria, Spain
- Instituto de Investigación Sanitaria Valdecilla IDIVAL, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Ana Belén Enguita
- Department of Pathology, Clínica Dermatológica Internacional, Madrid, Spain
| | - Ihab Abdulkader
- Department of Pathology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Ana González
- Department of Pathology, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Dolores Lozano
- Department of Pathology, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Nuria Mancheño
- Department of Pathology, La Fe University and Polytechnic Hospital, Valencia, Comunidad Valenciana, Spain
| | - Clara Salas
- Department of Pathology, Hospital Universitario Puerta del Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Marta Salido
- Department of Pathology, Hospital del Mar, Barcelona, Spain
| | - Eduardo Salido-Ruiz
- Department of Pathology, Hospital Universitario de Canarias, La Laguna, Canarias, Spain
| | - Enrique de Álava
- Department of Pathology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
13
|
Hechtman JF. NTRK insights: best practices for pathologists. Mod Pathol 2022; 35:298-305. [PMID: 34531526 PMCID: PMC8860742 DOI: 10.1038/s41379-021-00913-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022]
Abstract
Since the discovery of an oncogenic tropomyosin-receptor kinase (TRK) fusion protein in the early 1980s, our understanding of neurotrophic tropomyosin-receptor kinase (NTRK) fusions, their unique patterns of frequency in different tumor types, and methods to detect them have grown in scope and depth. Identification of these molecular alterations in the management of patients with cancer has become increasingly important with the emergence of histology-agnostic, US Food and Drug Administration-approved, effective TRK protein inhibitors. Herein, we review the biology of TRK in normal and malignant tissues, as well as the prevalence and enrichment patterns of these fusions across tumor types. Testing methods currently used to identify NTRK1-3 fusions will be reviewed in detail, with attention to newer assays including RNA-based next-generation sequencing. Recently proposed algorithms for NTRK fusion testing will be compared, and practical insights provided on how testing can best be implemented and communicated within the multidisciplinary healthcare team.
Collapse
Affiliation(s)
- Jaclyn F Hechtman
- Molecular Pathologist, Neogenomics 9490 NeoGenomics Way, Fort Myers, FL, 33912, USA.
| |
Collapse
|
14
|
Davis JL, Al‐Ibraheemi A, Rudzinski ER, Surrey LF. Mesenchymal neoplasms with NTRK and other kinase gene alterations. Histopathology 2021; 80:4-18. [DOI: 10.1111/his.14443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Jessica L Davis
- Department of Pathology Oregon Health & Science University Portland OregonUSA
| | - Alyaa Al‐Ibraheemi
- Department of Pathology Boston Children’s Hospital Boston MassachusettsUSA
| | - Erin R Rudzinski
- Department of Laboratories Seattle Children’s Hospital Seattle WashingtonUSA
| | - Lea F Surrey
- Department of Pathology and Laboratory Medicine The Children’s Hospital of Philadelphia Philadelphia Pennsylvania USA
| |
Collapse
|
15
|
Surrey LF, Davis JL. NTRK-Rearranged soft tissue neoplasms: A review of evolving diagnostic entities and algorithmic detection methods. Cancer Genet 2021; 260-261:6-13. [PMID: 34794069 DOI: 10.1016/j.cancergen.2021.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/08/2021] [Accepted: 10/31/2021] [Indexed: 12/12/2022]
Abstract
The spectrum of tumors with NTRK1/2/3 rearrangements has expanded with widespread use of next generation sequencing (NGS) technology. For many years it was known that a majority of infantile fibrosarcomas (IFS), and their counterpart in the kidney, cellular congenital mesoblastic nephroma, contain the recurrent ETV6-NTRK3 fusion. Sequencing RNA transcripts from IFS and their morphologically similar counterparts in older children and adults has shown rearrangements with other 5' partners combined with NTRK1, NTRK2, and NTRK3 can also occur. For those tumors occurring outside of the infant age group, this has resulted in a proposed new diagnostic entity of "NTRK-rearranged spindle cell neoplasm." The clinical behavior of NTRK rearranged soft tissue tumors varies, though most show localized disease with rare metastases. The pathology of NTRK rearranged tumors exists on a spectrum, with overlapping features of classic infantile fibrosarcoma, lipofibromatosis, and malignant peripheral nerve sheath tumor. In this tumor spectrum, clinical and pathologic predictive factors are largely still to be determined, with no clear association between histologic grade and severity of disease. Of critical importance is detection of the NTRK rearrangement in order to guide treatment in patients with unresectable and metastatic disease. While resection is the definitive treatment, these tumors do show response to targeted TRK kinase inhibitors. Multiple detection methods are available, including immunohistochemistry, FISH, and next generation sequencing, which each have their merits and potential pitfalls. We aim to review the clinical characteristics and histomorphology of mesenchymal tumors with NTRK rearrangements as well as discuss molecular detection methods and diagnostic algorithms specific for soft tissue tumors.
Collapse
Affiliation(s)
- Lea F Surrey
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jessica L Davis
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
16
|
Aref-Eshghi E, Lin F, Li MM, Zhong Y. The oncogenic roles of NTRK fusions and methods of molecular diagnosis. Cancer Genet 2021; 258-259:110-119. [PMID: 34710798 DOI: 10.1016/j.cancergen.2021.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
The NTRK gene family is composed of NTRK1, NTRK2, and NTRK3, which encode three tropomyosin-receptor kinases, belonging to a class of tyrosine kinase receptors. These proteins are known to play roles in cell proliferation, differentiation, apoptosis, and survival. Fusions involving the NTRK genes are long known as drivers in many tumors. Although they occur in less than 5% of all malignancies, their occurrence in a great diversity of tumors has been documented. Several rare tumors including infantile fibrosarcoma, secretory breast carcinoma, and mammary analogue secretory carcinoma are accompanied by NTRK fusions in more than 90% of cases, demonstrating a diagnostic value for the NTRK fusion testing in these tumors. More recently, the development of effective targeted therapies has created a demand for their detection in all malignancies. A variety of approaches are available for testing including immunohistochemistry, fluorescence in situ hybridization (FISH), reverse transcription polymerase chain reaction (RT-PCR), and DNA- and RNA-based next-generation sequencing (NGS). This article reviews the molecular biology and tumorigenesis of NTRK fusions, their prevalence and clinical significance with a focus on available methods for fusion detection. The advantages and limitations of different technologies, the best practice algorithms for NTRK fusion detection, and the future direction of NTRK testing are also discussed.
Collapse
Affiliation(s)
- Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Fumin Lin
- Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marilyn M Li
- Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Yiming Zhong
- Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
17
|
Chung CB, Lee J, Barritault M, Bringuier PP, Xu Z, Huang WY, Beharry A, Castillo J, Christiansen J, Lin JC, Sheffield BS. Evaluating Targeted Next-Generation Sequencing Assays and Reference Materials for NTRK Fusion Detection. J Mol Diagn 2021; 24:18-32. [PMID: 34656759 DOI: 10.1016/j.jmoldx.2021.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 01/11/2023] Open
Abstract
Neurotrophic tyrosine receptor kinase (NTRK1/2/3) gene fusions are oncogenic drivers in approximately 0.3% of solid tumors. High-quality testing to identify patients with NTRK fusion-positive tumors who could benefit from TRK inhibitors is recommended, but the current NTRK testing landscape, including next-generation sequencing (NGS), is fragmented and availability of assays varies widely. The analytical and clinical performance of four commonly available RNA-based NGS assays, Archer's FusionPlex Lung panel (AFL), Illumina's TruSight Oncology 500 (TSO500), as well as Thermo Fisher's Oncomine Precision Assay and Oncomine Focus Assay (OFA), were evaluated. Experiments were conducted using contrived samples [formalin-fixed, paraffin-embedded cell lines (n = 3) and SeraSeq formalin-fixed, paraffin-embedded reference material (three lots)], NTRK fusion-negative clinical samples (n = 30), and NTRK fusion-positive clinical samples (n = 14), according to local assays. Estimated limit of detection varied across the four assays: 30 to 620 fusion copies for AFL (in cell lines), versus approximately 30 to 290 copies for TSO500 and approximately 1 to 28 copies for OFA and Oncomine Precision Assay. All assays showed 100% specificity for NTRK fusions detection, but quality control pass rate was variable (AFL, 43%; TSO500, 77%; and OFA, 83%). The NTRK fusion detection rate in quality control-validated clinical samples was 100% for all assays. This comparison of the strengths and limitations of four RNA-based NGS assays will inform physicians and pathologists regarding optimal assay selection to support identification of patients with NTRK fusion-positive tumors.
Collapse
Affiliation(s)
- Christina B Chung
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, California.
| | - Jeeyun Lee
- Division of Hematology/Oncology, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Marc Barritault
- Department of Molecular Biopathology, Pathological Anatomy and Cytology, East Group Hospital, Hospices Civils de Lyon, Bron, France
| | - Pierre-Paul Bringuier
- Department of Molecular Biopathology, Pathological Anatomy and Cytology, East Group Hospital, Hospices Civils de Lyon, Bron, France; Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Zhaolin Xu
- Department of Pathology, QE II Health Sciences Center, Halifax, Nova Scotia, Canada
| | - Weei-Yuarn Huang
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Beharry
- Department of Laboratory Medicine, William Osler Health System, Brampton, Ontario, Canada
| | - Joseph Castillo
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, California
| | - Jason Christiansen
- Assay Development, Roche Sequencing Solutions, Inc., Pleasanton, California
| | - Jennifer C Lin
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, California
| | - Brandon S Sheffield
- Department of Laboratory Medicine, William Osler Health System, Brampton, Ontario, Canada
| |
Collapse
|
18
|
Ratti M, Grizzi G, Passalacqua R, Lampis A, Cereatti F, Grassia R, Hahne JC. NTRK fusions in colorectal cancer: clinical meaning and future perspective. Expert Opin Ther Targets 2021; 25:677-683. [PMID: 34488530 DOI: 10.1080/14728222.2021.1978070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Despite the efforts of the scientific community, the prognosis of metastatic colorectal cancer (mCRC) remains poor. Actionable gene fusions such as Neurotrophic Tropomyosin Receptor Kinases (NTRK) rearrangements are rare but might represent a new target to improve outcomes in this setting. The first-generation TRK inhibitors, larotrectinib and entrectinib, have demonstrated efficacy and safety in mCRC cancer patients exhibiting NTRK pathogenic fusions. Moreover, second-generation molecules are emerging, able to overcome the acquired resistance to NTRK blocking. AREAS COVERED This review aims to report the current knowledge and the available evidence on NTRK fusion in mCRC, with a focus on molecular bases, clinical characteristics, prognostic meaning, and new therapeutic approaches, from the perspective of the clinical oncologist. EXPERT OPINION Considering the limited options associated with the treatment of mCRC patients, the possibility of identifying new molecular biomarkers is an urgent clinical need. The availability of new molecular targets and the combinations of different agents might represent the true breakthrough point, allowing for change in the clinical course of colorectal cancer patients.
Collapse
Affiliation(s)
- Margherita Ratti
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Giulia Grizzi
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Rodolfo Passalacqua
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Fabrizio Cereatti
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Roberto Grassia
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Jens Claus Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
19
|
Next Generation Sequencing Technology in Lung Cancer Diagnosis. BIOLOGY 2021; 10:biology10090864. [PMID: 34571741 PMCID: PMC8467994 DOI: 10.3390/biology10090864] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022]
Abstract
Simple Summary Lung cancer is still one of the most commonly diagnosed and deadliest cancers in the world. Its diagnosis at an early stage is highly necessary and will improve the standard of care of this disease. The aim of this article is to review the importance and applications of next generation sequencing in lung cancer diagnosis. As observed in many studies, next generation sequencing has been proven as a very helpful tool in the early detection of different types of cancers, including lung cancer, and has been used in the clinic, mainly due to its many advantages, such as low cost, speed, efficacy, low quantity usage of biological samples, and diversity. Abstract Lung cancer is still one of the most commonly diagnosed cancers, and one of the deadliest. The high death rate is mainly due to the late stage of diagnosis and low response rate to therapy. Previous and ongoing research studies have tried to discover new reliable and useful cbiomarkers for the diagnosis and prognosis of lung cancer. Next generation sequencing has become an essential tool in cancer diagnosis, prognosis, and evaluation of the treatment response. This article aims to review the leading research and clinical applications in lung cancer diagnosis using next generation sequencing. In this scope, we identified the most relevant articles that present the successful use of next generation sequencing in identifying biomarkers for early diagnosis correlated to lung cancer diagnosis and treatment. This technique can be used to evaluate a high number of biomarkers in a short period of time and from small biological samples, which makes NGS the preferred technique to develop clinical tests for personalized medicine using liquid biopsy, the new trend in oncology.
Collapse
|
20
|
Novel BRAF gene fusions and activating point mutations in spindle cell sarcomas with histologic overlap with infantile fibrosarcoma. Mod Pathol 2021; 34:1530-1540. [PMID: 33850302 DOI: 10.1038/s41379-021-00806-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Infantile fibrosarcoma (IFS)/cellular congenital mesoblastic nephroma (cCMN) commonly harbors the classic ETV6-NTRK3 translocation. However, there are recent reports of mesenchymal tumors with IFS-like morphology harboring fusions of other receptor tyrosine kinases or downstream effectors, including NTRK1/2/3, MET, RET, and RAF1 fusions as well as one prior series with BRAF fusions. Discovery of these additional molecular drivers contributes to a more integrated diagnostic approach and presents important targets for therapy. Here we report the clinicopathologic and molecular features of 14 BRAF-altered tumors, of which 5 had BRAF point mutations and 10 harbored one or more BRAF fusions. Of the BRAF fusion-positive tumors, one harbored two BRAF fusions (FOXN3-BRAF, TRIP11-BRAF) and another harbored three unique alternative splice variants of EPB41L2-BRAF. Tumors occurred in ten males and four females, aged from birth to 32 years (median 6 months). Twelve were soft tissue based; two were visceral including one located in the kidney (cCMN). All neoplasms demonstrated ovoid to short spindle cells most frequently arranged haphazardly or in intersecting fascicles, often with collagenized stroma and a chronic inflammatory infiltrate. No specific immunophenotype was observed; expression of CD34, S100, and SMA was variable. To date, this is the largest cohort of BRAF-altered spindle cell neoplasms with IFS-like morphology, including not only seven novel BRAF fusion partners but also the first description of oncogenic BRAF point mutations in these tumors.
Collapse
|
21
|
TRK Inhibitors: Tissue-Agnostic Anti-Cancer Drugs. Pharmaceuticals (Basel) 2021; 14:ph14070632. [PMID: 34209967 PMCID: PMC8308490 DOI: 10.3390/ph14070632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Recently, two tropomycin receptor kinase (Trk) inhibitors, larotrectinib and entrectinib, have been approved for Trk fusion-positive cancer patients. Clinical trials for larotrectinib and entrectinib were performed with patients selected based on the presence of Trk fusion, regardless of cancer type. This unique approach, called tissue-agnostic development, expedited the process of Trk inhibitor development. In the present review, the development processes of larotrectinib and entrectinib have been described, along with discussion on other Trk inhibitors currently in clinical trials. The on-target effects of Trk inhibitors in Trk signaling exhibit adverse effects on the central nervous system, such as withdrawal pain, weight gain, and dizziness. A next generation sequencing-based method has been approved for companion diagnostics of larotrectinib, which can detect various types of Trk fusions in tumor samples. With the adoption of the tissue-agnostic approach, the development of Trk inhibitors has been accelerated.
Collapse
|
22
|
Choi YJ, Choi JY, Kim JW, Lim AR, Lee Y, Chang WJ, Lee S, Sung JS, Chung HJ, Lee JW, Kang EJ, Kim JS, Lim T, Kim HS, Kim YJ, Ahn MS, Kim YS, Park JH, Lim S, Cho SS, Cho JH, Shin SW, Park KH, Kim YH. Comparison of the Data of a Next-Generation Sequencing Panel from K-MASTER Project with that of Orthogonal Methods for Detecting Targetable Genetic Alterations. Cancer Res Treat 2021; 54:30-39. [PMID: 34015890 PMCID: PMC8756135 DOI: 10.4143/crt.2021.218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose K-MASTER project is a Korean national precision medicine platform that screened actionable mutations by analyzing next-generation sequencing (NGS) of solid tumor patients. We compared gene analyses between NGS panel from the K-MASTER project and orthogonal methods. Materials and Methods Colorectal, breast, non–small cell lung, and gastric cancer patients were included. We compared NGS results from K-MASTER projects with those of non-NGS orthogonal methods (KRAS, NRAS, and BRAF mutations in colorectal cancer [CRC]; epidermal growth factor receptor [EGFR], anaplastic lymphoma kinase [ALK] fusion, and reactive oxygen species 1 [ROS1] fusion in non–small cell lung cancer [NSCLC], and Erb-B2 receptor tyrosine kinase 2 (ERBB2) positivity in breast and gastric cancers). Results In the CRC cohort (n=225), the sensitivity and specificity of NGS were 87.4% and 79.3% (KRAS); 88.9% and 98.9% (NRAS); and 77.8% and 100.0% (BRAF), respectively. In the NSCLC cohort (n=109), the sensitivity and specificity of NGS for EGFR were 86.2% and 97.5%, respectively. The concordance rate for ALK fusion was 100%, but ROS1 fusion was positive in only one of three cases that were positive in orthogonal tests. In the breast cancer cohort (n=260), ERBB2 amplification was detected in 45 by NGS. Compared with orthogonal methods that integrated immunohistochemistry and in situ hybridization, sensitivity and specificity were 53.7% and 99.4%, respectively. In the gastric cancer cohort (n=64), ERBB2 amplification was detected in six by NGS. Compared with orthogonal methods, sensitivity and specificity were 62.5% and 98.2%, respectively. Conclusion The results of the K-MASTER NGS panel and orthogonal methods showed a different degree of agreement for each genetic alteration, but generally showed a high agreement rate.
Collapse
Affiliation(s)
- Yoon Ji Choi
- Division of Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.,Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Seoul, Korea
| | - Jung Yoon Choi
- Division of Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.,Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Seoul, Korea
| | - Ju Won Kim
- Division of Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.,Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Seoul, Korea
| | - Ah Reum Lim
- Division of Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.,Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Seoul, Korea
| | - Youngwoo Lee
- Division of Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Won Jin Chang
- Division of Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.,Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Seoul, Korea
| | - Soohyeon Lee
- Division of Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.,Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Seoul, Korea
| | - Jae Sook Sung
- Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Seoul, Korea
| | - Hee-Joon Chung
- Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Seoul, Korea
| | - Jong Won Lee
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Eun Joo Kang
- Division of Oncology, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jung Sun Kim
- Division of Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Taekyu Lim
- Division of Hematology-Oncology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Hye Sook Kim
- Department of Internal Medicine, Inje University Ilsan Hospital, Goyang, Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Mi Sun Ahn
- Ajou University Medical Center, Suwon, Korea
| | - Young Saing Kim
- Division of Medical Oncology, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Ji Hyun Park
- Department of Hemato-Oncology, Konkuk Medical Center, University of Konkuk College of Medicine, Seoul, Korea
| | - Seungtaek Lim
- Department of Oncology, Wonju Severance Christianity Hospital, Wonju, Korea
| | - Sung Shim Cho
- Division of Medical Oncology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Jang Ho Cho
- Division of Oncology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Sang Won Shin
- Division of Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Kyong Hwa Park
- Division of Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.,Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Seoul, Korea
| | - Yeul Hong Kim
- Division of Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.,Cancer Precision Medicine Diagnosis and Treatment Enterprise, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|
23
|
Lu C, Zhou Q. Diagnostics, therapeutics and RET inhibitor resistance for RET fusion-positive non-small cell lung cancers and future perspectives. Cancer Treat Rev 2021; 96:102153. [PMID: 33773204 DOI: 10.1016/j.ctrv.2021.102153] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/08/2020] [Accepted: 01/02/2021] [Indexed: 12/17/2022]
Abstract
Selective RET inhibitors is the current hot topic, making multikinase inhibitors a thing of the past. However, the limitation of various test approaches, coupled with lack of knowledge of acquired resistance mechanisms, and specific patient groups that bear special consideration, remains a challenge. Herein, we outline utility of various diagnostic techniques, provide evidence to guide management of RET-fusion-positive Non-Small Cell Lung Cancer (NSCLC) patients, including specific patient groups, such as EGFR-mutant NSCLC patients who acquired RET fusions after resisting EGFR TKIs, and offer a compendium of mechanisms of acquired resistance to RET targeted therapies. This review further provides a list of ongoing clinical trials and summarizes perspectives to guide future development of drugs and trials for this population.
Collapse
Affiliation(s)
- Chang Lu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, and Guangdong Academy of Medical Sciences, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, and Guangdong Academy of Medical Sciences, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Bebb DG, Banerji S, Blais N, Desmeules P, Gill S, Grin A, Feilotter H, Hansen AR, Hyrcza M, Krzyzanowska M, Melosky B, Noujaim J, Purgina B, Ruether D, Simmons CE, Soulieres D, Torlakovic EE, Tsao MS. Canadian Consensus for Biomarker Testing and Treatment of TRK Fusion Cancer in Adults. Curr Oncol 2021; 28:523-548. [PMID: 33467570 PMCID: PMC7903287 DOI: 10.3390/curroncol28010053] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The tyrosine receptor kinase (TRK) inhibitors larotrectinib and entrectinib were recently approved in Canada for the treatment of solid tumours harbouring neurotrophic tyrosine receptor kinase (NTRK) gene fusions. These NTRK gene fusions are oncogenic drivers found in most tumour types at a low frequency (<5%), and at a higher frequency (>80%) in a small number of rare tumours (e.g., secretory carcinoma of the salivary gland and of the breast). They are generally mutually exclusive of other common oncogenic drivers. Larotrectinib and entrectinib have demonstrated impressive overall response rates and tolerability in Phase I/II trials in patients with TRK fusion cancer with no other effective treatment options. Given the low frequency of TRK fusion cancer and the heterogeneous molecular testing landscape in Canada, identifying and optimally managing such patients represents a new challenge. We provide a Canadian consensus on when and how to test for NTRK gene fusions and when to consider treatment with a TRK inhibitor. We focus on five tumour types: thyroid carcinoma, colorectal carcinoma, non-small cell lung carcinoma, soft tissue sarcoma, and salivary gland carcinoma. Based on the probability of the tumour harbouring an NTRK gene fusion, we also suggest a tumour-agnostic consensus for NTRK gene fusion testing and treatment. We recommend considering a TRK inhibitor in all patients with TRK fusion cancer with no other effective treatment options.
Collapse
Affiliation(s)
- D. Gwyn Bebb
- Tom Baker Cancer Centre and University of Calgary, Calgary, AB T2N 4N2, Canada
| | - Shantanu Banerji
- Research Institute in Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Normand Blais
- Centre Hospitalier Universitaire de Montreal, Department of Medicine, University of Montreal, Montreal, QC H2X 3E4, Canada; (N.B.); (D.S.)
| | - Patrice Desmeules
- Service D’Anatomopathologie et de Cytologie, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Sharlene Gill
- BC Cancer, Vancouver, BC V5Z 4E6, Canada; (S.G.); (B.M.); (C.E.S.)
| | - Andrea Grin
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.G.); (H.F.)
| | - Harriet Feilotter
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.G.); (H.F.)
| | - Aaron R. Hansen
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; (A.R.H.); (M.K.)
| | - Martin Hyrcza
- Department of Pathology and Laboratory Medicine, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada;
| | - Monika Krzyzanowska
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; (A.R.H.); (M.K.)
| | - Barbara Melosky
- BC Cancer, Vancouver, BC V5Z 4E6, Canada; (S.G.); (B.M.); (C.E.S.)
| | | | - Bibiana Purgina
- The Ottawa Hospital, Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Dean Ruether
- Department of Oncology, Tom Baker Cancer Centre, Calgary, AB T2N 4N2, Canada;
| | | | - Denis Soulieres
- Centre Hospitalier Universitaire de Montreal, Department of Medicine, University of Montreal, Montreal, QC H2X 3E4, Canada; (N.B.); (D.S.)
| | - Emina Emilia Torlakovic
- Department of Pathology and Laboratory Medicine, Saskatchewan Health Authority and University of Saskatchewan, Saskatoon, SK S7N 5B5, Canada;
| | - Ming-Sound Tsao
- Department of Pathology, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
25
|
Perreault S, Chami R, Deyell RJ, El Demellawy D, Ellezam B, Jabado N, Morgenstern DA, Narendran A, Sorensen PHB, Wasserman JD, Yip S. Canadian Consensus for Biomarker Testing and Treatment of TRK Fusion Cancer in Pediatric Patients. Curr Oncol 2021; 28:346-366. [PMID: 33435412 PMCID: PMC7903261 DOI: 10.3390/curroncol28010038] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Neurotrophic tyrosine receptor kinase gene fusions (NTRK) are oncogenic drivers present at a low frequency in most tumour types (<5%), and at a higher frequency (>80%) in a small number of rare tumours (e.g., infantile fibrosarcoma [IFS]) and considered mutually exclusive with other common oncogenic drivers. Health Canada recently approved two tyrosine receptor kinase (TRK) inhibitors, larotrectinib (for adults and children) and entrectinib (for adults), for the treatment of solid tumours harbouring NTRK gene fusions. In Phase I/II trials, these TRK inhibitors have demonstrated promising overall response rates and tolerability in patients with TRK fusion cancer who have exhausted other treatment options. In these studies, children appear to have similar responses and tolerability to adults. In this report, we provide a Canadian consensus on when and how to test for NTRK gene fusions and when to consider treatment with a TRK inhibitor for pediatric patients with solid tumours. We focus on three pediatric tumour types: non-rhabdomyosarcoma soft tissue sarcoma/unspecified spindle cell tumours including IFS, differentiated thyroid carcinoma, and glioma. We also propose a tumour-agnostic consensus based on the probability of the tumour harbouring an NTRK gene fusion. For children with locally advanced or metastatic TRK fusion cancer who have either failed upfront therapy or lack satisfactory treatment options, TRK inhibitor therapy should be considered.
Collapse
Affiliation(s)
- Sébastien Perreault
- Department of Neurosciences, Division of Child Neurology CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Rose Chami
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rebecca J. Deyell
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, British Columbia Children’s Hospital and Research Institute, Vancouver, BC V6H 3N1, Canada;
| | - Dina El Demellawy
- Pathology Department, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada;
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Nada Jabado
- Department of Pediatric Hematology-Oncology, MUHC, Montreal, QC H4A 3J1, Canada;
| | - Daniel A. Morgenstern
- Division of Pediatric Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Aru Narendran
- Departments of Pediatrics, Oncology and, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Poul H. B. Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
| | - Jonathan D. Wasserman
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Genetic aberrations resulting in tropomyosin receptor kinase (TRK) fusion proteins can drive oncogenesis and are postulated to occur in up to 1% of solid tumours. However, TRK fusions in adult sarcomas are rare and there is a significant challenge in identifying patients with sarcomas harbouring TRK fusions in the clinical setting. Despite a recent European Society of Medical Oncology consensus article regarding screening of tumours for TRK fusions, economical and practical limitations present a barrier to widespread screening of sarcomas. RECENT FINDINGS Larotrectinib and entrectinib are pan-TRK inhibitors which have both received FDA approval for the management of solid tumours harbouring NTRK fusions. Initial results of a number of clinical trials have demonstrated promising efficacy and safety data, including dramatic and durable responses in patients with sarcomas. As such, TRK inhibitors represent a promising treatment option in a small cohort of adult sarcoma patients, where currently treatment options are limited. The emergence of acquired resistance is a concern associated with TRK inhibitor therapy and a number of second-generation agents targeting TRK kinase mutations driving acquired resistance have entered early-phase clinical trials. SUMMARY With the growing appreciation of the implications of TRK fusions, this review will summarize the emerging clinical trial data of TRK inhibitors in sarcomas. Although in their infancy, clinical trial results are encouraging, and as further results and analyses are released, we will have a greater understanding of their impact on clinical practice and the management of patients with sarcomas.
Collapse
|
27
|
Matter MS, Chijioke O, Savic S, Bubendorf L. Narrative review of molecular pathways of kinase fusions and diagnostic approaches for their detection in non-small cell lung carcinomas. Transl Lung Cancer Res 2020; 9:2645-2655. [PMID: 33489824 PMCID: PMC7815372 DOI: 10.21037/tlcr-20-676] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
The discovery of actionable oncogenic driver alterations has significantly improved treatment options for patients with advanced non-small cell lung cancer (NSCLC). In lung adenocarcinoma (LUAD), approved drugs or drugs in clinical development can target more than half of these altered oncogenic driver genes. In particular, several gene fusions have been discovered in LUAD, including ALK, ROS1, NTRK, RET, NRG1 and FGFR. All these fusions involve tyrosine kinases (TK), which are activated due to structural rearrangements on the DNA level. Although the overall prevalence of these fusions in LUAD is rare, their detection is extremely important, as they are linked to an excellent response to TK inhibitors. Therefore, reliable screening methods applicable to small tumor samples (biopsies and cytology specimens) are required in the diagnostic workup of advanced NSCLC. Several methods are at disposal in a routine laboratory to demonstrate, directly or indirectly, the presence of a gene fusion. These methods include immunohistochemistry (IHC), fluorescence in-situ hybridization (FISH), reverse transcriptase-polymerase chain reaction (RT-PCR), multiplex digital color-coded barcode technology or next-generation sequencing (NGS) either on DNA or RNA level. In our review, we will summarize the increasing number of relevant fusion genes in NSCLC, point out their underlining molecular mechanisms and discuss different methods for the detection of fusion genes.
Collapse
Affiliation(s)
| | - Obinna Chijioke
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Spasenija Savic
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Lukas Bubendorf
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Somaschini A, Di Bella S, Cusi C, Raddrizzani L, Leone A, Carapezza G, Mazza T, Isacchi A, Bosotti R. Mining potentially actionable kinase gene fusions in cancer cell lines with the KuNG FU database. Sci Data 2020; 7:420. [PMID: 33257674 PMCID: PMC7705673 DOI: 10.1038/s41597-020-00761-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/29/2020] [Indexed: 12/02/2022] Open
Abstract
Inhibition of kinase gene fusions (KGFs) has proven successful in cancer treatment and continues to represent an attractive research area, due to kinase druggability and clinical validation. Indeed, literature and public databases report a remarkable number of KGFs as potential drug targets, often identified by in vitro characterization of tumor cell line models and confirmed also in clinical samples. However, KGF molecular and experimental information can sometimes be sparse and partially overlapping, suggesting the need for a specific annotation database of KGFs, conveniently condensing all the molecular details that can support targeted drug development pipelines and diagnostic approaches. Here, we describe KuNG FU (KiNase Gene FUsion), a manually curated database collecting detailed annotations on KGFs that were identified and experimentally validated in human cancer cell lines from multiple sources, exclusively focusing on in-frame KGF events retaining an intact kinase domain, representing potentially active driver kinase targets. To our knowledge, KuNG FU represents to date the largest freely accessible homogeneous and curated database of kinase gene fusions in cell line models.
Collapse
Affiliation(s)
- Alessio Somaschini
- NMS Oncology, Nerviano Medical Sciences, NMS Group, 20014, Nerviano, Milan, Italy
| | - Sebastiano Di Bella
- NMS Oncology, Nerviano Medical Sciences, NMS Group, 20014, Nerviano, Milan, Italy
| | - Carlo Cusi
- NMS Oncology, Nerviano Medical Sciences, NMS Group, 20014, Nerviano, Milan, Italy
| | - Laura Raddrizzani
- NMS Oncology, Nerviano Medical Sciences, NMS Group, 20014, Nerviano, Milan, Italy
| | - Antonella Leone
- NMS Oncology, Nerviano Medical Sciences, NMS Group, 20014, Nerviano, Milan, Italy
| | - Giovanni Carapezza
- NMS Oncology, Nerviano Medical Sciences, NMS Group, 20014, Nerviano, Milan, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS "Casa Sollievo della Sofferenza", Research Hospital, San Giovanni Rotondo, Italy
| | - Antonella Isacchi
- NMS Oncology, Nerviano Medical Sciences, NMS Group, 20014, Nerviano, Milan, Italy
| | - Roberta Bosotti
- NMS Oncology, Nerviano Medical Sciences, NMS Group, 20014, Nerviano, Milan, Italy.
| |
Collapse
|
29
|
Mok T, Peters S, Camidge DR, Noé J, Gadgeel S, Ignatius Ou SH, Kim DW, Konopa K, Pozzi E, Liu T, Loftin IR, Williams C, Shaw AT. Outcomes According to ALK Status Determined by Central IHC or FISH in Patients with ALK-Positive NSCLC Enrolled in the Phase III ALEX Study. J Thorac Oncol 2020; 16:S1556-0864(20)30815-7. [PMID: 34756882 DOI: 10.1016/j.jtho.2020.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/18/2020] [Accepted: 10/04/2020] [Indexed: 01/05/2023]
Abstract
INTRODUCTION We retrospectively examined progression-free survival (PFS) and response by ALK fluorescence in-situ hybridization (FISH) status in patients with advanced ALK immunohistochemistry (IHC)-positive non-small-cell lung cancer (NSCLC) in the ALEX study. METHODS 303 treatment-naïve patients were randomized to receive twice-daily alectinib 600 mg or crizotinib 250 mg. ALK status was assessed centrally using Ventana ALK (D5F3) CDx IHC and Vysis ALK Break Apart FISH Probe Kit. Primary endpoint: investigator-assessed PFS. Secondary endpoints of interest: objective response rate (ORR) and duration. RESULTS Investigator-assessed PFS was significantly prolonged with alectinib versus crizotinib in ALK IHC-positive/FISH-positive tumors (n = 203, 67%) (HR 0.37, 95% CI: 0.25-0.56) and ALK IHC-positive/FISH-uninformative tumors (n = 61, 20%) (HR 0.39, 95% CI: 0.20-0.78), but not ALK IHC-positive/FISH-negative tumors (n = 39, 13%) (HR 1.33, 95% CI: 0.6-3.2). ORRs were higher with alectinib versus crizotinib in ALK IHC-positive/FISH-positive tumors 90.6% versus 81.4%; stratified odds ratio [OR] 2.22, 95% CI: 0.97-5.07) and ALK IHC-positive/FISH-uninformative tumors (96.0% versus 75.0%; OR 9.29, 95% CI: 1.05-81.88), but not ALK IHC-positive/FISH-negative tumors (28.6% versus 44.4%; OR 0.45, 95% CI: 0.12-1.74). Next-generation sequencing (NGS) was performed in 35/39 patients with ALK IHC-positive/FISH-negative tumors; no ALK fusion was identified in 20/35 (57.1%) patients by NGS, but 10/20 (50.0%) had partial response/stable disease. CONCLUSION Outcomes of patients with ALK IHC-positive/FISH-positive and ALK IHC-positive/FISH-uninformative NSCLC were similar to the overall ALEX population. These results suggest that Ventana ALK IHC is a standard testing method for selecting patients for treatment with alectinib.
Collapse
Affiliation(s)
- Tony Mok
- State Key Laboratory of Translational Oncology, Chinese University of Hong Kong, Hong Kong.
| | | | | | | | - Shirish Gadgeel
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - Dong-Wan Kim
- Seoul National University Hospital, Seoul, South Korea
| | - Krzysztof Konopa
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | | | - Ting Liu
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | - Alice T Shaw
- Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
30
|
A customized scaffolds approach for the detection and phasing of complex variants by next-generation sequencing. Sci Rep 2020; 10:15060. [PMID: 32929119 PMCID: PMC7490669 DOI: 10.1038/s41598-020-71471-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Next-generation sequencing (NGS) is widely used in genetic testing for the highly sensitive detection of single nucleotide changes and small insertions or deletions. However, detection and phasing of structural variants, especially in repetitive or homologous regions, can be problematic due to uneven read coverage or genome reference bias, resulting in false calls. To circumvent this challenge, a computational approach utilizing customized scaffolds as supplementary reference sequences for read alignment was developed, and its effectiveness demonstrated with two CBS gene variants: NM_000071.2:c.833T>C and NM_000071.2:c.[833T>C; 844_845ins68]. Variant c.833T>C is a known causative mutation for homocystinuria, but is not pathogenic when in cis with the insertion, c.844_845ins68, because of alternative splicing. Using simulated reads, the custom scaffolds method resolved all possible combinations with 100% accuracy and, based on > 60,000 clinical specimens, exceeded the performance of current approaches that only align reads to GRCh37/hg19 for the detection of c.833T>C alone or in cis with c.844_845ins68. Furthermore, analysis of two 1000 Genomes Project trios revealed that the c.[833T>C; 844_845ins68] complex variant had previously been undetected in these datasets, likely due to the alignment method used. This approach can be configured for existing workflows to detect other challenging and potentially underrepresented variants, thereby augmenting accurate variant calling in clinical NGS testing.
Collapse
|
31
|
Solomon JP, Benayed R, Hechtman JF, Ladanyi M. Identifying patients with NTRK fusion cancer. Ann Oncol 2020; 30 Suppl 8:viii16-viii22. [PMID: 31738428 PMCID: PMC6859817 DOI: 10.1093/annonc/mdz384] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Due to the efficacy of tropomyosin receptor kinase (TRK) inhibitor therapy and the recent Food and Drug Administration approval of larotrectinib, it is now clinically important to accurately and efficiently identify patients with neurotrophic TRK (NTRK) fusion-driven cancer. These oncogenic fusions occur when the kinase domain of NTRK1, NTRK2 or NTRK3 fuse with any of a number of N-terminal partners. NTRK fusions are characteristic of a few rare types of cancer, such as secretory carcinoma of the breast or salivary gland and infantile fibrosarcoma, but they are also infrequently seen in some common cancers, such as melanoma, glioma and carcinomas of the thyroid, lung and colon. There are multiple methods for identifying NTRK fusions, including pan-TRK immunohistochemistry, fluorescence in situ hybridisation and sequencing methods, and the advantages and drawbacks of each are reviewed here. While testing algorithms will obviously depend on availability of various testing modalities and economic considerations for each individual laboratory, we propose triaging specimens based on histology and other molecular findings to most efficiently identify tumours harbouring these treatable oncogenic fusions.
Collapse
Affiliation(s)
- J P Solomon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - R Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - J F Hechtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - M Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
32
|
Zito Marino F, Pagliuca F, Ronchi A, Cozzolino I, Montella M, Berretta M, Errico ME, Donofrio V, Bianco R, Franco R. NTRK Fusions, from the Diagnostic Algorithm to Innovative Treatment in the Era of Precision Medicine. Int J Mol Sci 2020; 21:E3718. [PMID: 32466202 PMCID: PMC7279365 DOI: 10.3390/ijms21103718] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
In the era of precision medicine, the identification of several predictive biomarkers and the development of innovative therapies have dramatically increased the request of tests to identify specific targets on cytological or histological samples, revolutionizing the management of the tumoral biomaterials. The Food and Drug Administration (FDA) has recently approved a selective neurotrophic tyrosine receptor kinase (NTRK) inhibitor, larotrectinib. Contemporarily, the development of multi-kinase inhibitors with activity in tumors carrying TRK fusions is ongoing. Chromosomal translocations involving the NTRK1, NTRK2, and NTRK3 genes result in constitutive activation and aberrant expression of TRK kinases in numerous cancer types. In this context, the identification of tumors harboring TRK fusions is crucial. Several methods of detection are currently available. We revise the advantages and disadvantages of different techniques used for identifying TRK alterations, including immunohistochemistry, fluorescence in situ hybridization, reverse transcriptase polymerase chain reaction, and next generation sequencing-based approaches. Finally, we propose a diagnostic algorithm based on histology and the relative frequency of TRK fusions in each specific tumor, considering also the economic feasibility in the clinical practice.
Collapse
Affiliation(s)
- Federica Zito Marino
- Pathology Unit, Department of Mental and Physic Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’ Complesso di Santa Patrizia, Via Luciano Armanni, 580131 Naples, Italy; (F.Z.M.); (F.P.); (A.R.); (I.C.); (M.M.)
| | - Francesca Pagliuca
- Pathology Unit, Department of Mental and Physic Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’ Complesso di Santa Patrizia, Via Luciano Armanni, 580131 Naples, Italy; (F.Z.M.); (F.P.); (A.R.); (I.C.); (M.M.)
| | - Andrea Ronchi
- Pathology Unit, Department of Mental and Physic Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’ Complesso di Santa Patrizia, Via Luciano Armanni, 580131 Naples, Italy; (F.Z.M.); (F.P.); (A.R.); (I.C.); (M.M.)
| | - Immacolata Cozzolino
- Pathology Unit, Department of Mental and Physic Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’ Complesso di Santa Patrizia, Via Luciano Armanni, 580131 Naples, Italy; (F.Z.M.); (F.P.); (A.R.); (I.C.); (M.M.)
| | - Marco Montella
- Pathology Unit, Department of Mental and Physic Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’ Complesso di Santa Patrizia, Via Luciano Armanni, 580131 Naples, Italy; (F.Z.M.); (F.P.); (A.R.); (I.C.); (M.M.)
| | - Massimiliano Berretta
- Department of Medical Oncology, Istituto Nazionale Tumori (IRCCS), Centro di Riferimento Oncologico di Aviano, Via Franco Gallini 2, 33081 Aviano (PN) Italy;
| | - Maria Elena Errico
- Pathology Unit Department of Pathology, Santobono-Pausilipon Children’s Hospital, Via Posillipo, 80123 Naples, Italy; (M.E.E.); (V.D.)
| | - Vittoria Donofrio
- Pathology Unit Department of Pathology, Santobono-Pausilipon Children’s Hospital, Via Posillipo, 80123 Naples, Italy; (M.E.E.); (V.D.)
| | - Roberto Bianco
- Oncology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini, 80131 Naples, Italy;
| | - Renato Franco
- Pathology Unit, Department of Mental and Physic Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’ Complesso di Santa Patrizia, Via Luciano Armanni, 580131 Naples, Italy; (F.Z.M.); (F.P.); (A.R.); (I.C.); (M.M.)
| |
Collapse
|
33
|
Li AY, McCusker MG, Russo A, Scilla KA, Gittens A, Arensmeyer K, Mehra R, Adamo V, Rolfo C. RET fusions in solid tumors. Cancer Treat Rev 2019; 81:101911. [PMID: 31715421 DOI: 10.1016/j.ctrv.2019.101911] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
The RET proto-oncogene has been well-studied. RET is involved in many different physiological and developmental functions. When altered, RET mutations influence disease in a variety of organ systems from Hirschsprung's disease and multiple endocrine neoplasia 2 (MEN2) to papillary thyroid carcinoma (PTC) and non-small cell lung cancer (NSCLC). Changes in RET expression have been discovered in 30-70% of invasive breast cancers and 50-60% of pancreatic ductal adenocarcinomas in addition to colorectal adenocarcinoma, melanoma, small cell lung cancer, neuroblastoma, and small intestine neuroendocrine tumors. RET mutations have been associated with tumor proliferation, invasion, and migration. RET fusions or rearrangements are somatic juxtapositions of 5' sequences from other genes with 3' RET sequences encoding tyrosine kinase. RET rearrangements occur in approximately 2.5-73% of sporadic PTC and 1-3% of NSCLC patients. The most common RET fusions are CDCC6-RET and NCOA4-RET in PTC and KIF5B-RET in NSCLC. Tyrosine kinase inhibitors are drugs that target kinases such as RET in RET-driven (RET-mutation or RET-fusion-positive) disease. Multikinase inhibitors (MKI) target various kinases and other receptors. Several MKIs are FDA-approved for cancer therapy (sunitinib, sorafenib, vandetanib, cabozantinib, regorafenib, ponatinib, lenvatinib, alectinib) and non-oncologic disease (nintedanib). Selective RET inhibitor drugs LOXO-292 (selpercatinib) and BLU-667 (pralsetinib) are also undergoing phase I/II and I clinical trials, respectively, with preliminary results demonstrating partial response and low incidence of serious adverse events. RET fusions provide a viable therapeutic target for oncologic treatment, and further study is warranted into the prevalence and pathogenesis of RET fusions as well as development of current and new tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Andrew Y Li
- Department of Medicine, Division of General Internal Medicine, University of Maryland Medical Center, Baltimore, United States
| | - Michael G McCusker
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alessandro Russo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA; Medical Oncology Unit, A.O. Papardo & Department of Human Pathology, University of Messina, Italy
| | - Katherine A Scilla
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allison Gittens
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katherine Arensmeyer
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ranee Mehra
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vincenzo Adamo
- Medical Oncology Unit, A.O. Papardo & Department of Human Pathology, University of Messina, Italy
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
34
|
Abstract
Oncogenic somatic chromosomal rearrangements involving the NTRK1, NTRK2 or NTRK3 genes (NTRK gene fusions) occur in up to 1% of all solid tumors, and have been reported across a wide range of tumor types. The fusion proteins encoded by such rearranged sequences have constitutively activated TRK tyrosine kinase domains, providing novel therapeutic anticancer targets. The potential clinical effectiveness of TRK inhibition in patients with tumors harboring NTRK gene fusions is being assessed in phase I and II trials of TRK inhibitors, such as larotrectinib and entrectinib. Clinical trial results have demonstrated that larotrectinib is generally well tolerated and has shown high response rates that are durable across tumor types. These data validate NTRK gene fusions as actionable genomic alterations. In this review, we present the clinical data, discuss the different approaches that might be used to routinely screen tumors to indicate the presence of NTRK gene fusions, explore the issue of acquired resistance to TRK inhibition, and reflect on the wider regulatory considerations for tumor site agnostic TRK inhibitor drug development.
Collapse
Affiliation(s)
- Shivaani Kummar
- Division of Medical Oncology, Stanford University School of Medicine, 780 Welch Road, Rm CJ250L, Palo Alto, CA, 94305, USA.
| | - Ulrik N Lassen
- Department of Oncology, Rigshospitalet, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
35
|
Abstract
OPINION STATEMENT There has been rapid progress in the use of targeted therapies for ALK-positive which has led to improve dramatically PFS and OS in the metastatic ALK-rearranged NSCLC patients. There are several molecules now available (crizotinib, ceritinib, brigatinib, alectinib, and lorlatinib) and others in development. Such an improvement in treatment efficacy has even more highlighted the importance of an adequate identification of ALK alterations. Efficient and easily accessible testing tools are required to identify eligible patients in a timely fashion. Different methods for detecting ALK+ NSCLC patients are now available, with fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) currently representing validated diagnostic techniques for the initial assessment of ALK status. Furthermore the widespread use of next-generation sequencing to detect other possible different activating mutations has allowed to identify individual ALK fusion variants. Several more expensive and time-consuming methods are also available nowadays which have the advantage to detect even rarer uncommon ALK fusion variants and mutations in tumour or blood samples. A review of the evolving testing-treatment landscape is needed to highlight the importance of properly diagnosing and treating this group of patients.
Collapse
|
36
|
Marchiò C, Scaltriti M, Ladanyi M, Iafrate AJ, Bibeau F, Dietel M, Hechtman JF, Troiani T, López-Rios F, Douillard JY, Andrè F, Reis-Filho JS. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann Oncol 2019; 30:1417-1427. [PMID: 31268127 DOI: 10.1093/annonc/mdz204] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND NTRK1, NTRK2 and NTRK3 fusions are present in a plethora of malignancies across different histologies. These fusions represent the most frequent mechanism of oncogenic activation of these receptor tyrosine kinases, and biomarkers for the use of TRK small molecule inhibitors. Given the varying frequency of NTRK1/2/3 fusions, crucial to the administration of NTRK inhibitors is the development of optimal approaches for the detection of human cancers harbouring activating NTRK1/2/3 fusion genes. MATERIALS AND METHODS Experts from several Institutions were recruited by the European Society for Medical Oncology (ESMO) Translational Research and Precision Medicine Working Group (TR and PM WG) to review the available methods for the detection of NTRK gene fusions, their potential applications, and strategies for the implementation of a rational approach for the detection of NTRK1/2/3 fusion genes in human malignancies. A consensus on the most reasonable strategy to adopt when screening for NTRK fusions in oncologic patients was sought, and further reviewed and approved by the ESMO TR and PM WG and the ESMO leadership. RESULTS The main techniques employed for NTRK fusion gene detection include immunohistochemistry, fluorescence in situ hybridization (FISH), RT-PCR, and both RNA-based and DNA-based next generation sequencing (NGS). Each technique has advantages and limitations, and the choice of assays for screening and final diagnosis should also take into account the resources and clinical context. CONCLUSION In tumours where NTRK fusions are highly recurrent, FISH, RT-PCR or RNA-based sequencing panels can be used as confirmatory techniques, whereas in the scenario of testing an unselected population where NTRK1/2/3 fusions are uncommon, either front-line sequencing (preferentially RNA-sequencing) or screening by immunohistochemistry followed by sequencing of positive cases should be pursued.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/isolation & purification
- High-Throughput Nucleotide Sequencing
- Humans
- Immunohistochemistry/standards
- In Situ Hybridization, Fluorescence/standards
- Medical Oncology/standards
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/isolation & purification
- Neoplasms/diagnosis
- Neoplasms/drug therapy
- Neoplasms/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/isolation & purification
- Precision Medicine/standards
- Protein Kinase Inhibitors/therapeutic use
- Receptor, trkA/genetics
- Receptor, trkA/isolation & purification
- Receptor, trkB/genetics
- Receptor, trkB/isolation & purification
- Receptor, trkC/genetics
- Receptor, trkC/isolation & purification
- Translational Research, Biomedical/standards
Collapse
Affiliation(s)
- C Marchiò
- Department of Medical Sciences, University of Turin, Turin; Division of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - M Scaltriti
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York; Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York
| | - M Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - A J Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston; Department of Pathology, Harvard Medical School, Boston, USA
| | - F Bibeau
- Department of Pathology, Caen University Hospital, Caen, France
| | - M Dietel
- Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany
| | - J F Hechtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - T Troiani
- Medical Oncology, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - F López-Rios
- Pathology & Targeted Therapies Laboratory, HM Sanchinarro University Hospital, Madrid, Spain
| | - J-Y Douillard
- European Society for Medical Oncology, Lugano, Switzerland
| | - F Andrè
- Department of Medical Oncology, INSERM Unit 981, Institut Gustave Roussy, Villejuif, France.
| | - J S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| |
Collapse
|
37
|
Is secretory breast carcinoma underdiagnosed? In the era of targeted therapy should there be a low threshold to screen for NTRK immunohistochemistry in triple negative breast cancers? Pathology 2019; 51:653-655. [PMID: 31470990 DOI: 10.1016/j.pathol.2019.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022]
|
38
|
Park CK, Kim JE, Kim MS, Kho BG, Park HY, Kim TO, Shin HJ, Cho HJ, Choi YD, Oh IJ, Kim YC. Feasibility of liquid biopsy using plasma and platelets for detection of anaplastic lymphoma kinase rearrangements in non-small cell lung cancer. J Cancer Res Clin Oncol 2019; 145:2071-2082. [PMID: 31154543 PMCID: PMC6658417 DOI: 10.1007/s00432-019-02944-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/27/2019] [Indexed: 01/25/2023]
Abstract
PURPOSE Fluorescence in situ hybridization (FISH) using tumor tissue is the gold standard for detection of anaplastic lymphoma kinase (ALK) rearrangement in non-small cell lung cancer (NSCLC). However, this method often is not repeatable due to difficulties in the acquisition of tumor tissues. Blood-based liquid biopsy using reverse transcription polymerase chain reaction (RT-PCR) is expected to be useful to overcome this limitation. Here, we investigated the feasibility of liquid biopsy using plasma and platelets for detection of ALK rearrangement and prediction of ALK inhibitor treatment outcomes. METHODS ALK-FISH assays were performed in 1128 tumor specimens of NSCLC between January 2015 and June 2018. We retrospectively analyzed formalin-fixed paraffin-embedded (FFPE) tissues from previously confirmed FISH-positive (n = 199) and -negative (n = 920) cases. We recruited patients who had available tissue specimens and agreed to venous sampling. RNA was extracted from FFPE blocks, plasma, and platelets. Fusion RNA of echinoderm microtubule-associated protein-like 4 (EML4)-ALK was detected by quantitative PCR. RESULTS Thirty-three FISH-positive and 28 FISH-negative patients were enrolled. In validation, data compared with FISH, RT-PCR using FFPE tissues showed 54.5% sensitivity, 78.6% specificity, and 75.5% accuracy. Liquid biopsy had higher sensitivity (78.8%), specificity (89.3%) and accuracy (83.6%). Higher positivity for liquid biopsy was shown in subgroups with delayed (≥ 6 months from diagnosis) blood sampling (plasma, 85.7%; platelets, 87.0%). In 26 patients treated with crizotinib, the platelet-positive subgroup showed longer median duration of treatment (7.2 versus 1.5 months), longer median progression-free survival (5.7 months versus 1.7 months), a higher overall response rate (70.6% versus 11.1%), and a higher disease control rate (88.2% versus 44.4%) than the platelet-negative subgroup. CONCLUSION Liquid biopsy could have applications in the diagnosis of ALK-positive NSCLC, even when using RT-PCR, and platelets can be useful for predicting treatment outcomes of ALK inhibitors.
Collapse
Affiliation(s)
- Cheol-Kyu Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| | - Ji-Eun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| | - Min-Seok Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| | - Bo-Gun Kho
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| | - Ha-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| | - Tae-Ok Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| | - Hong-Joon Shin
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| | - Hyun-Joo Cho
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| | - Yoo-Duk Choi
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
- Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea.
| | - Young-Chul Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Republic of Korea
| |
Collapse
|
39
|
Seager M, Aisner DL, Davies KD. Oncogenic Gene Fusion Detection Using Anchored Multiplex Polymerase Chain Reaction Followed by Next Generation Sequencing. J Vis Exp 2019. [PMID: 31329176 DOI: 10.3791/59895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Gene fusions frequently contribute to the oncogenic phenotype of many different types of cancer. Additionally, the presence of certain fusions in samples from cancer patients often directly influences diagnosis, prognosis, and/or therapy selection. As a result, the accurate detection of gene fusions has become a critical component of clinical management for many disease types. Until recently, clinical gene fusion detection was predominantly accomplished through the use of single-gene assays. However, the ever-growing list of gene fusions with clinical significance has created a need for assessing fusion status of multiple genes simultaneously. Next generation sequencing (NGS)-based testing has met this demand through the ability to sequence nucleic acid in massively parallel fashion. Multiple NGS-based approaches that employ different strategies for gene target enrichment are now available for use in clinical molecular diagnostics, each with its own strengths and weaknesses. This article describes the use of anchored multiplex PCR (AMP)-based target enrichment and library preparation followed by NGS to assess for gene fusions in clinical solid tumor specimens. AMP is unique among amplicon-based enrichment approaches in that it identifies gene fusions regardless of the identity of the fusion partner. Detailed here are both the wet-bench and data analysis steps that ensure accurate gene fusion detection from clinical samples.
Collapse
Affiliation(s)
- Michael Seager
- Department of Pathology, University of Colorado - Anschutz Medical Campus
| | - Dara L Aisner
- Department of Pathology, University of Colorado - Anschutz Medical Campus
| | - Kurtis D Davies
- Department of Pathology, University of Colorado - Anschutz Medical Campus;
| |
Collapse
|
40
|
Methods for Identifying Patients with Tropomyosin Receptor Kinase (TRK) Fusion Cancer. Pathol Oncol Res 2019; 26:1385-1399. [PMID: 31256325 PMCID: PMC7297824 DOI: 10.1007/s12253-019-00685-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/11/2019] [Indexed: 11/01/2022]
Abstract
NTRK gene fusions affecting the tropomyosin receptor kinase (TRK) protein family have been found to be oncogenic drivers in a broad range of cancers. Small molecule inhibitors targeting TRK activity, such as the recently Food and Drug Administration-approved agent larotrectinib (Vitrakvi®), have shown promising efficacy and safety data in the treatment of patients with TRK fusion cancers. NTRK gene fusions can be detected using several different approaches, including fluorescent in situ hybridization, reverse transcription polymerase chain reaction, immunohistochemistry, next-generation sequencing, and ribonucleic acid-based multiplexed assays. Identifying patients with cancers that harbor NTRK gene fusions will optimize treatment outcomes by providing targeted precision therapy.
Collapse
|
41
|
Solomon JP, Hechtman JF. Detection of NTRK Fusions: Merits and Limitations of Current Diagnostic Platforms. Cancer Res 2019; 79:3163-3168. [PMID: 31196931 DOI: 10.1158/0008-5472.can-19-0372] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/15/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
Oncogenic fusions involving NTRK1, NTRK2, and NTRK3 with various partners are diagnostic of infantile fibrosarcoma and secretory carcinoma yet also occur in lower frequencies across many types of malignancies. Recently, targeted small molecular inhibitor therapy has been shown to induce a durable response in a high percentage of patients with NTRK fusion-positive cancers, which has made the detection of NTRK fusions critical. Several techniques for NTRK fusion diagnosis exist, including pan-Trk IHC, FISH, reverse transcription PCR, DNA-based next-generation sequencing (NGS), and RNA-based NGS. Each of these assays has unique features, advantages, and limitations, and familiarity with these assays is critical to appropriately screen for NTRK fusions. Here, we review the details of each existing methodology.
Collapse
Affiliation(s)
- James P Solomon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jaclyn F Hechtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
42
|
Haynes BC, Blidner RA, Cardwell RD, Zeigler R, Gokul S, Thibert JR, Chen L, Fujimoto J, Papadimitrakopoulou VA, Wistuba II, Latham GJ. An Integrated Next-Generation Sequencing System for Analyzing DNA Mutations, Gene Fusions, and RNA Expression in Lung Cancer. Transl Oncol 2019; 12:836-845. [PMID: 30981944 PMCID: PMC6463765 DOI: 10.1016/j.tranon.2019.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/21/2019] [Indexed: 12/25/2022] Open
Abstract
We developed and characterized a next-generation sequencing (NGS) technology for streamlined analysis of DNA and RNA using low-input, low-quality cancer specimens. A single-workflow, targeted NGS panel for non-small cell lung cancer (NSCLC) was designed covering 135 RNA and 55 DNA disease-relevant targets. This multiomic panel was used to assess 219 formalin-fixed paraffin-embedded NSCLC surgical resections and core needle biopsies. Mutations and expression phenotypes were identified consistent with previous large-scale genomic studies, including mutually exclusive DNA and RNA oncogenic driver events. Evaluation of a second cohort of low cell count fine-needle aspirate smears from the BATTLE-2 trial yielded 97% agreement with an independent, validated NGS panel that was used with matched surgical specimens. Collectively, our data indicate that broad, clinically actionable insights that previously required independent assays, workflows, and analyses to assess both DNA and RNA can be conjoined in a first-tier, highly multiplexed NGS test, thereby providing faster, simpler, and more economical results.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vassiliki A Papadimitrakopoulou
- Department of Thoracic/Head and Neck Medical Oncology, Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
43
|
Penault-Llorca F, Rudzinski ER, Sepulveda AR. Testing algorithm for identification of patients with TRK fusion cancer. J Clin Pathol 2019; 72:460-467. [PMID: 31072837 PMCID: PMC6589488 DOI: 10.1136/jclinpath-2018-205679] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022]
Abstract
The neurotrophic tyrosine receptor kinase (NTRK) gene family encodes three tropomyosin receptor kinases (TRKA, TRKB, TRKC) that contribute to central and peripheral nervous system development and function. NTRK gene fusions are oncogenic drivers of various adult and paediatric tumours. Several methods have been used to detect NTRK gene fusions including immunohistochemistry, fluorescence in situ hybridisation, reverse transcriptase polymerase chain reaction, and DNA- or RNA-based next-generation sequencing. For patients with TRK fusion cancer, TRK inhibition is an important therapeutic target. Following the FDA approval of the selective TRK inhibitor, larotrectinib, as well as the ongoing development of multi-kinase inhibitors with activity in TRK fusion cancer, testing for NTRK gene fusions should become part of the standard diagnostic process. In this review we discuss the biology of NTRK gene fusions, and we present a testing algorithm to aid detection of these gene fusions in clinical practice and guide treatment decisions.
Collapse
Affiliation(s)
- Frédérique Penault-Llorca
- Department of Pathology and Molecular Pathology, Centre Jean Perrin, Clermont-Ferrand, France .,UMR INSERM 1240, Universite Clermont Auvergne, Clermont-Ferrand, France
| | - Erin R Rudzinski
- Department of Laboratories, Seattle Children's Hospital and University of Washington Medical Center, Seattle, Washington, USA
| | - Antonia R Sepulveda
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
44
|
Mantilla JG, Ricciotti RW, Chen E, Hoch BL, Liu YJ. Detecting disease‐defining gene fusions in unclassified round cell sarcomas using anchored multiplex PCR/targeted RNA next‐generation sequencing—Molecular and clinicopathological characterization of 16 cases. Genes Chromosomes Cancer 2019; 58:713-722. [DOI: 10.1002/gcc.22763] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jose G. Mantilla
- Department of PathologyUniversity of Washington Seattle Washington
| | | | - Eleanor Chen
- Department of PathologyUniversity of Washington Seattle Washington
| | - Benjamin L. Hoch
- Department of PathologyUniversity of New Mexico Albuquerque New Mexico
| | - Yajuan J. Liu
- Department of PathologyUniversity of Washington Seattle Washington
| |
Collapse
|
45
|
Carapezza G, Cusi C, Rizzo E, Raddrizzani L, Di Bella S, Somaschini A, Leone A, Lupi R, Mutarelli M, Nigro V, di Bernardo D, Magni P, Isacchi A, Bosotti R. Comprehensive kinome NGS targeted expression profiling by KING-REX. BMC Genomics 2019; 20:307. [PMID: 31014245 PMCID: PMC6480677 DOI: 10.1186/s12864-019-5676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/08/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Protein kinases are enzymes controlling different cellular functions. Genetic alterations often result in kinase dysregulation, making kinases a very attractive class of druggable targets in several human diseases. Existing approved drugs still target a very limited portion of the human 'kinome', demanding a broader functional knowledge of individual and co-expressed kinase patterns in physiologic and pathologic settings. The development of novel rapid and cost-effective methods for kinome screening is therefore highly desirable, potentially leading to the identification of novel kinase drug targets. RESULTS In this work, we describe the development of KING-REX (KINase Gene RNA EXpression), a comprehensive kinome RNA targeted custom assay-based panel designed for Next Generation Sequencing analysis, coupled with a dedicated data analysis pipeline. We have conceived KING-REX for the gene expression analysis of 512 human kinases; for 319 kinases, paired assays and custom analysis pipeline features allow the evaluation of 3'- and 5'-end transcript imbalances as readout for the prediction of gene rearrangements. Validation tests on cell line models harboring known gene fusions demonstrated a comparable accuracy of KING-REX gene expression assessment as in whole transcriptome analyses, together with a robust detection of transcript portion imbalances in rearranged kinases, even in complex RNA mixtures or in degraded RNA. CONCLUSIONS These results support the use of KING-REX as a rapid and cost effective kinome investigation tool in the field of kinase target identification for applications in cancer biology and other human diseases.
Collapse
Affiliation(s)
| | - Carlo Cusi
- NMS Oncology, Nerviano Medical Sciences Srl, Nerviano, MI Italy
| | - Ettore Rizzo
- Department of Electrical, Computer, and Biomedical Engineering, University of Pavia, Pavia, Italy
- enGenome s.r.l., Pavia, Italy
| | | | | | | | - Antonella Leone
- NMS Oncology, Nerviano Medical Sciences Srl, Nerviano, MI Italy
| | - Rosita Lupi
- NMS Oncology, Nerviano Medical Sciences Srl, Nerviano, MI Italy
| | | | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA Italy
- Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Paolo Magni
- Department of Electrical, Computer, and Biomedical Engineering, University of Pavia, Pavia, Italy
| | | | - Roberta Bosotti
- NMS Oncology, Nerviano Medical Sciences Srl, Nerviano, MI Italy
| |
Collapse
|
46
|
Lin C, Shi X, Yang S, Zhao J, He Q, Jin Y, Yu X. Comparison of ALK detection by FISH, IHC and NGS to predict benefit from crizotinib in advanced non-small-cell lung cancer. Lung Cancer 2019; 131:62-68. [PMID: 31027700 DOI: 10.1016/j.lungcan.2019.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/28/2018] [Accepted: 03/19/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE Anaplastic lymphoma kinase (ALK) is now a validated kinase target in non-small cell lung cancer (NSCLC). We implemented three ALK laboratory methodologies: fluorescence in situ hybridization (FISH), immunohistochemistry (IHC) and next-generation sequencing (NGS) to detect EML4-ALK fusions and compared the predictive value for Crizotinib efficacy in ALK-positive patients. METHODS 55 ALK positive patients confirmed by at least one method were enrolled in the present study, of whom 45 cases were assessed by FISH, IHC and NGS concurrently, and another 10 cases only received IHC and NGS assessment for ALK status. RESULTS IHC presented the uppermost positive rate (94.5%), followed by NGS (92.7%) and FISH(82.4%), among which IHC and NGS had the highest concordance rate of 87.3%. No difference was detected in ORR, DCR and PFS of ALK positive cases defined in three groups. Notably, NGS positive patients were correlated with a higher DCR and longer PFS compared to NGS negative cases (P = 0.02 and P = 0.09), while FISH and IHC status were not distinguishing in predicting the outcome of Crizotinib. TP53 concurrent mutation might reduce responsiveness to Crizotinib and worsen prognosis in ALK-rearranged NSCLC. CONCLUSION FISH present a certain false-negative rate although considered the gold standard. Ventana-D5F3 IHC is qualified as a screening tool, while NGS positive may predict clinical benefit of Crizotinib more accurately, allowing efficient test for specific variants and concurrent genomic alterations.
Collapse
Affiliation(s)
- Chen Lin
- Department of Medical Oncology, Zhejiang Cancer Hospital, China
| | - Xun Shi
- Department of Medical Oncology, Zhejiang Cancer Hospital, China
| | - Shao Yang
- Nanjing Geneseeq Technology Inc., Nangjing, China
| | - Jun Zhao
- Department of Medical Oncology, Zhejiang Cancer Hospital, China
| | - Qiong He
- Department of Medical Oncology, Zhejiang Cancer Hospital, China
| | - Ying Jin
- Department of Medical Oncology, Zhejiang Cancer Hospital, China; Zhejiang Key Laboratory of Radiation Oncology, China.
| | - Xinmin Yu
- Department of Medical Oncology, Zhejiang Cancer Hospital, China; Zhejiang Key Laboratory of Diagnosis and Treatment Technology of Thoracic Oncology, China.
| |
Collapse
|
47
|
Blidner RA, Haynes BC, Hyter S, Schmitt S, Pessetto ZY, Godwin AK, Su D, Hurban P, van Kempen LC, Aguirre ML, Gokul S, Cardwell RD, Latham GJ. Design, Optimization, and Multisite Evaluation of a Targeted Next-Generation Sequencing Assay System for Chimeric RNAs from Gene Fusions and Exon-Skipping Events in Non-Small Cell Lung Cancer. J Mol Diagn 2019; 21:352-365. [PMID: 30529127 PMCID: PMC7057224 DOI: 10.1016/j.jmoldx.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Lung cancer accounts for approximately 14% of all newly diagnosed cancers and is the leading cause of cancer-related deaths. Chimeric RNA resulting from gene fusions (RNA fusions) and other RNA splicing errors are driver events and clinically addressable targets for non-small cell lung cancer (NSCLC). The reliable assessment of these RNA markers by next-generation sequencing requires integrated reagents, protocols, and interpretive software that can harmonize procedures and ensure consistent results across laboratories. We describe the development and verification of a system for targeted RNA sequencing for the analysis of challenging, low-input solid tumor biopsies that includes reagents for nucleic acid quantification and library preparation, run controls, and companion bioinformatics software. Assay development reconciled sequence discrepancies in public databases, created predictive formalin-fixed, paraffin-embedded RNA qualification metrics, and eliminated read misidentification attributable to index hopping events on the next-generation sequencing flow cell. The optimized and standardized system was analytically verified internally and in a multiphase study conducted at five independent laboratories. The results show accurate, reproducible, and sensitive detection of RNA fusions, alternative splicing events, and other expression markers of NSCLC. This comprehensive approach, combining sample quantification, quality control, library preparation, and interpretive bioinformatics software, may accelerate the routine implementation of targeted RNA sequencing of formalin-fixed, paraffin-embedded samples relevant to NSCLC.
Collapse
Affiliation(s)
| | | | - Stephen Hyter
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Sarah Schmitt
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ziyan Y Pessetto
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas; University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Dan Su
- Q Squared Solutions Expression Analysis LLC, Morrisville, North Carolina
| | - Patrick Hurban
- Q Squared Solutions Expression Analysis LLC, Morrisville, North Carolina
| | - Léon C van Kempen
- The Molecular Pathology Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Maria L Aguirre
- The Molecular Pathology Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
48
|
Albert CM, Davis JL, Federman N, Casanova M, Laetsch TW. TRK Fusion Cancers in Children: A Clinical Review and Recommendations for Screening. J Clin Oncol 2019; 37:513-524. [DOI: 10.1200/jco.18.00573] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chromosomal translocations involving the NTRK1, NTRK2, and NTRK3 genes (TRK fusions), which encode the neurotrophin tyrosine kinase receptors TRKA, TRKB, and TRKC, can result in constitutive activation and aberrant expression of TRK kinase. Certain cancers almost universally harbor TRK fusions, including infantile fibrosarcoma, cellular congenital mesoblastic nephroma, secretory breast cancer, and mammary analog secretory carcinoma of the salivary gland. TRK fusions have also been identified at lower frequencies across a broad range of other pediatric cancers, including undifferentiated sarcomas, gliomas, papillary thyroid cancers, spitzoid neoplasms, inflammatory myofibroblastic tumors, and acute leukemias. Here we review the prevalence and diseases associated with TRK fusions and methods of detection of these fusions in light of the recent development of selective TRK inhibitors, such as larotrectinib, which demonstrated a 75% response rate across children and adults with TRK fusion cancers. We provide recommendations for screening pediatric tumors for the presence of TRK fusions, including the use of immunohistochemistry or fluorescence in situ hybridization for patients with tumors likely to harbor TRK fusions. Further, we recommend next-generation sequencing for tumors that have a relatively low prevalence of TRK fusions, both to identify patients who may benefit from TRK inhibition and to identify other targetable oncogenic drivers that exist in the same tumor types.
Collapse
|
49
|
Lorentzian A, Uzozie A, Lange PF. Origins and clinical relevance of proteoforms in pediatric malignancies. Expert Rev Proteomics 2019; 16:185-200. [PMID: 30700156 DOI: 10.1080/14789450.2019.1575206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Cancer changes the proteome in complex ways that reach well beyond simple changes in protein abundance. Genomic and transcriptional variations and post-translational protein modification create functional variants of a protein, known as proteoforms. Childhood cancers have fewer genomic alterations but show equally dramatic phenotypic changes as malignant cells in adults. Therefore, unraveling the complexities of the proteome is even more important in pediatric malignancies. Areas covered: In this review, the biological origins of proteoforms and technological advancements in the study of proteoforms are discussed. Particular emphasis is given to their implication in childhood malignancies and the critical role of cancer-specific proteoforms for the next generation of cancer therapies and diagnostics. Expert opinion: Recent advancements in technology have led to a better understanding of the underlying mechanisms of tumorigenesis. This has been critical for the development of more effective and less harmful treatments that are based on direct targeting of altered proteins and deregulated pathways. As proteome coverage and the ability to detect complex proteoforms increase, the most need for change is in data compilation and database availability to mediate high-level data analysis and allow for better functional annotation of proteoforms.
Collapse
Affiliation(s)
- Amanda Lorentzian
- a Department of Cell and Developmental Biology , University of British Columbia , Vancouver , BC , Canada.,b Michael Cuccione Childhood Cancer Research Program , BC Children's Hospital Research Institute , Vancouver , BC , Canada
| | - Anuli Uzozie
- b Michael Cuccione Childhood Cancer Research Program , BC Children's Hospital Research Institute , Vancouver , BC , Canada.,c Department of Pathology and Laboratory Medicine , University of British Columbia , Vancouver , BC , Canada
| | - Philipp F Lange
- a Department of Cell and Developmental Biology , University of British Columbia , Vancouver , BC , Canada.,b Michael Cuccione Childhood Cancer Research Program , BC Children's Hospital Research Institute , Vancouver , BC , Canada.,c Department of Pathology and Laboratory Medicine , University of British Columbia , Vancouver , BC , Canada
| |
Collapse
|
50
|
Ritterhouse LL. Targeted RNA Sequencing in Non-Small Cell Lung Cancer. J Mol Diagn 2019; 21:183-185. [PMID: 30664939 DOI: 10.1016/j.jmoldx.2019.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/06/2019] [Indexed: 11/16/2022] Open
Abstract
This commentary highlights the article by Blidner et al that describes a novel assay for detection of chimeric RNAs from gene fusions and exon-skipping events in non-small-cell lung cancer.
Collapse
Affiliation(s)
- Lauren L Ritterhouse
- Division of Genomic and Molecular Pathology, Department of Pathology, University of Chicago, Chicago, Illinois.
| |
Collapse
|