1
|
Ma X, Li J, Li Z, Chen B, Ling Z, Feng S, Zhong Z, Peng G, Wang Y, Jiang Y, Gu Y. Analysis of fungal diversity in the feces of Arborophila rufipectus. Front Vet Sci 2024; 11:1430518. [PMID: 39469585 PMCID: PMC11514364 DOI: 10.3389/fvets.2024.1430518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Background Intestinal fungal composition plays a crucial role in modulating host health, and thus is of great significance in the conservation of endangered bird species. However, research on gut fungal composition in birds is limited. Therefore, in this study, we aimed to examine gut fungal community and potential fecal pathogen composition in wild Arborophila rufipectus. Methods Fecal samples were collected from the habitats of wild A. rufipectus and Lophura nycthemera (a widely distributed species belonging to the same family as A. rufipectus) in summer and autumn. Thereafter, RNA was collected and the internal transcribed spacer rRNA gene was sequenced via high-throughput sequencing to investigate seasonal variations in intestinal core fungi, microbial fungi, and potential pathogenic fungi. Results The gut microbiota of A. rufipectus and L. nycthemera were highly similar and mainly consisted of three phyla, Ascomycota (58.46%), Basidiomycota (28.80%), and Zygomycota (3.56%), which accounted for 90.82% of the fungal community in all the samples. Further, the predominant genera were Ascomycota_unclassified (12.24%), Fungi_unclassified (8.37%), Davidiella (5.18%), Helotiales_unclassified (2.76%), Wickerhamomyces (1.84%), and Pleosporales_unclassified (1.14%), and the potential fecal pathogens identified included Candida, Cryptococcus, Trichosporon, and Malassezia. Conclusion Our results provide evidence that the diversity of intestinal fungi in the endangered species, A. rufipectus, is similar to that in the common species, L. nycthemera, and may serve as a basis for monitoring the status of A. rufipectus and for developing conservation measures.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junshu Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiguo Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Benping Chen
- Sichuan Laojunshan National Nature Reserve, Yibin, China
| | - Zhenwen Ling
- Sichuan Laojunshan National Nature Reserve, Yibin, China
| | - Shenglin Feng
- Sichuan Laojunshan National Nature Reserve, Yibin, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaozhang Jiang
- Bioengineering Department, Sichuan Water Conservancy Vocational College, Chengdu, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Kushner LE, Schwenk HT, Qin F, Boothroyd D, Aftandilian C. Application of cell-free DNA fungal polymerase chain reaction for invasive fungal disease evaluation in pediatric oncology and stem cell transplant patients. Pediatr Blood Cancer 2024; 71:e31133. [PMID: 38943234 DOI: 10.1002/pbc.31133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/19/2024] [Accepted: 05/21/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Molecular diagnostics may enable early, noninvasive detection of invasive fungal disease (IFD) in immunocompromised patients. Cell-free deoxyribonucleic acid (cfDNA) fungal polymerase chain reaction (PCR) assays were recently incorporated into institutional prolonged febrile neutropenia pathways. We aimed to evaluate the performance of plasma cfDNA PCR panels (mold and Candida panels) in pediatric oncology and hematopoietic stem cell transplant (HSCT) patients with clinical concern for IFD. METHODS This single-center, observational study assessed plasma cfDNA fungal PCR performance for noninvasive IFD detection in hospitalized pediatric oncology and HSCT patients. The primary outcome was IFD diagnosis per published consensus definitions within 1 month. Positive and negative agreement between plasma cfDNA fungal PCR and consensus definitions were calculated. We also described test turnaround time and patient survival. RESULTS From October 2021 to 2022, 54 patients underwent 60 evaluations with 11 proven/probable IFD cases. Comparing plasma cfDNA fungal PCRs to consensus definitions for proven/probable IFD, there was 73% positive agreement and 96% negative agreement. Two proven/probable cases with negative PCRs were caused by organisms not included on either panel. Median time to cfDNA fungal PCR result was 35 hours (interquartile range: 19-69) in eight proven/probable cases detected by cfDNA fungal PCR. There were 17 deaths among 54 patients, and IFD contributed to 45% of deaths in patients with proven/probable IFD. CONCLUSIONS Plasma cfDNA fungal PCRs detected relevant molds or yeast in most cases classified as proven/probable IFD. However, this targeted approach missed some cases. More studies are required to determine optimal utilization of molecular diagnostics in pediatric patients.
Collapse
Affiliation(s)
- Lauren E Kushner
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Stanford University School of Medicine, Palo Alto, California, USA
| | - Hayden T Schwenk
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Stanford University School of Medicine, Palo Alto, California, USA
| | - FeiFei Qin
- Quantitative Sciences Unit, Stanford University, Palo Alto, California, USA
| | - Derek Boothroyd
- Quantitative Sciences Unit, Stanford University, Palo Alto, California, USA
| | - Catherine Aftandilian
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
3
|
O'Neal HR, Sheybani R, Kraus CK, Self WH, Shah AM, Thomas CB, Tse HTK, Scoggins R. Cellular host response sepsis test for risk stratification of patients in the emergency department: A pooled analysis. Acad Emerg Med 2024. [PMID: 38643433 DOI: 10.1111/acem.14923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/06/2024] [Accepted: 03/31/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVES Sepsis is one of the most common, costly, and misdiagnosed conditions in U.S. emergency departments (EDs). ED providers often treat on nonspecific signs, subjective suspicion, or presumption of infection, resulting in over- and undertreatment. An increased understanding of host response has opened a new direction for sepsis diagnostics. The IntelliSep test is a U.S. Food and Drug Administration-cleared cellular host response diagnostic that could help distinguish sepsis in ED settings. Our objective was to evaluate the potential of the cellular host response test to expedite appropriate care for patients who present with signs of infection. METHODS We performed a pooled analysis of five adult (≥18 years) cohorts enrolled at seven geographically diverse U.S. sites in separate studies. Structured blinded adjudication was used to classify presence or absence of sepsis, and only patients with high confidence in the adjudicated label were included (n = 1002), defined as patients for whom there was consensus in the determination of sepsis per the Sepsis-3 and severe sepsis per the Sepsis-2 definitions between both the independent adjudication panel and the site-level physician. RESULTS Among patients with signs or suspicion of infection, the test achieved similar or better performance compared to other indicators in identifying patients at high risk for sepsis (specificity > 83%) and significantly superior performance in identifying those at low risk (sensitivity > 92%; 0% sepsis-associated mortality). The test also stratified severity of illness, as shown by 30-day in-hospital mortality (p < 0.001), hospital length of stay (p < 0.01), and use of hospital resources (p < 0.001). CONCLUSIONS Our data suggest that the cellular host response test provides clinically actionable results for patients at both high and low risk for sepsis and provides a rapid, objective means for risk stratification of patients with signs of infection. If integrated into standard of care, the test may help improve outcomes and reduce unnecessary antibiotic use.
Collapse
Affiliation(s)
- Hollis R O'Neal
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Our Lady of the Lake Regional Medical Center, Baton Rouge, Louisiana, USA
| | | | - Chadd K Kraus
- Department of Emergency and Hospital Medicine, Lehigh Valley Health Network, Allentown, Pennsylvania, USA
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Wesley H Self
- Department of Emergency Medicine, Vanderbilt Institute for Clinical and Translational Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ajay M Shah
- Cytovale, Inc., San Francisco, California, USA
| | - Christopher B Thomas
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Franciscan Missionaries of Our Lady Health System, Baton Rouge, Louisiana, USA
| | | | - Robert Scoggins
- Cytovale, Inc., San Francisco, California, USA
- Pulmonary & Critical Care, Kootenai Health, Coeur d'Alene, Idaho, USA
| |
Collapse
|
4
|
Andrew A, Citartan M, Wong KA, Tang TH, Magdline Sia Henry S, Ch'ng ES. Analytical and Clinical Evaluation of a TaqMan Real-Time PCR Assay for the Detection of Chikungunya Virus. Microbiol Spectr 2023; 11:e0008823. [PMID: 37272795 PMCID: PMC10433969 DOI: 10.1128/spectrum.00088-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Due to the general symptoms presented by the Chikungunya virus (CHIKV)-infected patients, a laboratory test is needed to differentiate CHIKV from other viral infections. The reverse transcription-quantitative real-time PCR (RT-qPCR) is a rapid and sensitive diagnostic tool, and several assays have been developed for detecting and quantifying CHIKV. Since real-time amplification efficiency varies within and between laboratories, an assay must be validated before being used on patient samples. In this study, the diagnostic performance of a TaqMan RT-qPCR assay was evaluated using synthetic RNA and archived patient samples. The cutoff quantification cycle (Cq) value for the assay was determined by experimental evidence. We found the in-house assay was highly sensitive, with a detection limit of 3.95 RNA copies/reaction. The analytical specificity of the assay was 100%. The analytical cutoff Cq value was 37, corresponding to the mean Cq value of the detection limit. Using archived samples characterized previously, the sensitivity and specificity of the assay were 76% and 100%, respectively. The in-house assay was also compared with a commercial assay, and we found that the in-house assay had higher sensitivity. Although further evaluation with prospective patient samples is needed in the future, this validated RT-qPCR was sensitive and specific, which shows its potential to detect CHIKV in clinical samples. IMPORTANCE Chikungunya virus causes chikungunya fever, a disease characterized by fever, rash, and joint pain. In the early phase of infection, chikungunya fever is always misdiagnosed as other arbovirus infections, such as dengue. Laboratory tests such as RT-qPCR are therefore necessary to confirm CHIKV infection. We evaluated the performance of an in-house RT-qPCR assay, and our study shows that the assay could detect CHIKV in clinical samples. We also show the cutoff determination of the assay, which provides important guidance to scientists or researchers when implementing a new RT-qPCR assay in a laboratory.
Collapse
Affiliation(s)
- Anna Andrew
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Kiing Aik Wong
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Thean Hock Tang
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Sum Magdline Sia Henry
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Ewe Seng Ch'ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| |
Collapse
|
5
|
Hailu S, Kinde S, Cross M, Tsegaye A, Kelemu T, Seifu D, Alemayehu D, Tarekegn A, Jabessa G, Abeje D, Abebe M, Sherif A, Tadesse F, Platzbecker U, Howe R, Gebremedhin A. Estimating prognostic relevant cutoff values for a multiplex PCR detecting BCR::ABL1 in chronic myeloid leukemia patients on tyrosine kinase inhibitor therapy in resource-limited settings. Ann Hematol 2023:10.1007/s00277-023-05254-x. [PMID: 37212909 DOI: 10.1007/s00277-023-05254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/23/2023] [Indexed: 05/23/2023]
Abstract
The prognosis of chronic myeloid leukemia (CML) on tyrosine kinase inhibitor (TKI) treatment is based on the quantification of BCR::ABL1 fusion gene transcript copy number, harmonized by an international scale (IS) based on TaqMan-based real-time quantitative PCR (qRT-PCR). In Ethiopia, as in most low- and middle-income countries (LMICs), access to standard diagnostic, follow-up, and prognostic tools is very limited, and it has been challenging to strictly follow international guidelines. This seriously compromises clinical outcome, despite the availability of TKIs through the Glivec International Patient Assistance Program (GIPAP). Multiplex PCR (mpx-PCR), conventionally regarded as a "screening tool," offers a potential solution to this problem. A total of 219 samples from confirmed CML patients were assayed. In reference to qRT-PCR, the AUC of ROC curve for mpx-PCR was 0.983 (95% CI: 0.957 to 0.997). At the optimum cut-off value, equivalent to BCR::ABL1 (IS) transcript copy number of 0.6%, the specificity and sensitivity were 93% and 95%, respectively, with 94% accuracy. Albeit the sensitivity and accuracy of mpx-PCR decrease below the optimum cutoff of 0.6% (IS), the specificity at 0.1% (IS) was 100%, making it an attractive means to rule-out relapse and drug non-adherence at later stages of treatment, which is particularly an issue in a low income setting. We conclude that the relative simplicity and low cost of mpx-PCR and prognostic relevant cutoff values (0.1-0.6% IS) should allow its use in peripheral clinics and thus maximize the positive impact of TKIs made available through GIPAP in most LMICs.
Collapse
Affiliation(s)
- Saifu Hailu
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Madda Walabu University, Bale Robe, Ethiopia
| | - Samuel Kinde
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Leipzig University Hospital, Leipzig, Germany.
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | | | - Aster Tsegaye
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Seifu
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Azeb Tarekegn
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Gutema Jabessa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Desalegn Abeje
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Markos Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abdulaziz Sherif
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | - Rawleigh Howe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Amha Gebremedhin
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Gauthier NPG, Chorlton SD, Krajden M, Manges AR. Agnostic Sequencing for Detection of Viral Pathogens. Clin Microbiol Rev 2023; 36:e0011922. [PMID: 36847515 PMCID: PMC10035330 DOI: 10.1128/cmr.00119-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The advent of next-generation sequencing (NGS) technologies has expanded our ability to detect and analyze microbial genomes and has yielded novel molecular approaches for infectious disease diagnostics. While several targeted multiplex PCR and NGS-based assays have been widely used in public health settings in recent years, these targeted approaches are limited in that they still rely on a priori knowledge of a pathogen's genome, and an untargeted or unknown pathogen will not be detected. Recent public health crises have emphasized the need to prepare for a wide and rapid deployment of an agnostic diagnostic assay at the start of an outbreak to ensure an effective response to emerging viral pathogens. Metagenomic techniques can nonspecifically sequence all detectable nucleic acids in a sample and therefore do not rely on prior knowledge of a pathogen's genome. While this technology has been reviewed for bacterial diagnostics and adopted in research settings for the detection and characterization of viruses, viral metagenomics has yet to be widely deployed as a diagnostic tool in clinical laboratories. In this review, we highlight recent improvements to the performance of metagenomic viral sequencing, the current applications of metagenomic sequencing in clinical laboratories, as well as the challenges that impede the widespread adoption of this technology.
Collapse
Affiliation(s)
- Nick P. G. Gauthier
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Mel Krajden
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Amee R. Manges
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Metagenomic features of bioburden serve as outcome indicators in combat extremity wounds. Sci Rep 2022; 12:13816. [PMID: 35970993 PMCID: PMC9378645 DOI: 10.1038/s41598-022-16170-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
Battlefield injury management requires specialized care, and wound infection is a frequent complication. Challenges related to characterizing relevant pathogens further complicates treatment. Applying metagenomics to wounds offers a comprehensive path toward assessing microbial genomic fingerprints and could indicate prognostic variables for future decision support tools. Wound specimens from combat-injured U.S. service members, obtained during surgical debridements before delayed wound closure, were subjected to whole metagenome analysis and targeted enrichment of antimicrobial resistance genes. Results did not indicate a singular, common microbial metagenomic profile for wound failure, instead reflecting a complex microenvironment with varying bioburden diversity across outcomes. Genus-level Pseudomonas detection was associated with wound failure at all surgeries. A logistic regression model was fit to the presence and absence of antimicrobial resistance classes to assess associations with nosocomial pathogens. A. baumannii detection was associated with detection of genomic signatures for resistance to trimethoprim, aminoglycosides, bacitracin, and polymyxin. Machine learning classifiers were applied to identify wound and microbial variables associated with outcome. Feature importance rankings averaged across models indicated the variables with the largest effects on predicting wound outcome, including an increase in P. putida sequence reads. These results describe the microbial genomic determinants in combat wound bioburden and demonstrate metagenomic investigation as a comprehensive tool for providing information toward aiding treatment of combat-related injuries.
Collapse
|
8
|
Vaugon E, Mircescu A, Caya C, Yao M, Gore G, Dendukuri N, Papenburg J. Diagnostic accuracy of rapid one-step PCR assays for detection of herpes Simplex virus -1 and -2 in cerebrospinal fluid: A systematic Review and meta-analysis. Clin Microbiol Infect 2022; 28:1547-1557. [PMID: 35718347 DOI: 10.1016/j.cmi.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/26/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Rapid and accurate diagnosis of HSV-1 and -2 (HSV1/2) in cerebrospinal fluid (CSF) is important for patient management. OBJECTIVES Summarize the diagnostic accuracy of commercial rapid sample-to-answer PCR assays (results in <90 minutes, without a separate nucleic acid extraction step) for HSV1/2 detection in CSF. DATA SOURCES Four databases (MEDLINE, EMBASE, Scopus and CENTRAL) and five conference abstract datasets from January 2012 to March 2022. STUDY ELIGIBILITY CRITERIA Diagnostic accuracy studies of FilmArray Meningitis-Encephalitis Panel™ and Simplexa™ HSV 1&2 Direct Kit compared to a PCR reference standard were included. Eligible studies provided sufficient data for the construction of a standard diagnostic accuracy two-by-two table. PARTICIPANTS Patients with suspected meningitis and/or encephalitis. ASSESSMENT OF RISK OF BIAS Two investigators independently extracted data, rated risk of bias and assessed quality using QUADAS-2. METHODS Accuracy estimates were pooled using Bayesian random effects models. RESULTS Thirty-one studies were included (27 FilmArray; 4 Simplexa), comprising 9,924 samples, with 95 HSV-1 and 247 HSV-2 infections. Pooled FilmArray sensitivities were 84.3% (95% credible interval 72.3%-93.0%) and 92.9% (95%CrI, 82.0%-98.5%) for HSV-1 and HSV-2, respectively; specificities were 99.8% (95%CrI, 99.6%-99.9%) and 99.9% (95%CrI, 99.9%-100%). Pooled Simplexa sensitivities were 97.1% (95%CrI, 88.1%-99.6%) and 97.9% (95%CrI, 89.6%-99.9%), respectively; specificities were 98.9% (95%CrI, 96.8%-99.7%) and 98.9% (95%CrI, 97.1%-99.7%). Pooled FilmArray sensitivities favored industry-sponsored studies by 10.0 and 13.0 percentage points for HSV-1 and HSV-2, respectively. Incomplete reporting frequently led to unclear risk of bias. Several FilmArray studies did not fully report true negative data leading to their exclusion. CONCLUSION Our results suggest Simplexa is accurate for HSV1/2 detection in CSF. Moderate FilmArray sensitivity for HSV-1 suggests additional testing and/or repeat CSF sampling is required for suspected HSV encephalitis when the HSV-1 result is negative. Low prevalence of HSV-1 infections limited summary estimates' precision. Underreporting of covariates limited exploration of heterogeneity.
Collapse
Affiliation(s)
- Esther Vaugon
- Division of Paediatric Infectious Diseases, Department of Paediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Chelsea Caya
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Mandy Yao
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Genevieve Gore
- Schulich Library of Physical Sciences, Life Sciences, and Engineering, McGill University Montreal, Quebec, Canada
| | - Nandini Dendukuri
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada; Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Jesse Papenburg
- Division of Paediatric Infectious Diseases, Department of Paediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada; Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Division of Microbiology, Department of Clinical Laboratory Medicine, McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Lin S, Song X, Zhu K, Shao Q, Chen Y, Cheng W, Lei Z, Chen Y, Luo Y, Jin D. Performance Evaluation of a Novel Ultrafast Molecular Diagnostic Device Integrated With Microfluidic Chips and Dual Temperature Modules. Front Bioeng Biotechnol 2022; 10:895236. [PMID: 35662850 PMCID: PMC9162139 DOI: 10.3389/fbioe.2022.895236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Ultrafast, portable, and inexpensive molecular diagnostic platforms are critical for clinical diagnosis and on-site detection. There are currently no available real-time polymerase chain reaction (PCR) devices able to meet the demands of point-of-care testing, as the heating and cooling processes cannot be avoided. In this study, the dual temperature modules were first designed to process microfluidic chips automatically circulating between them. Thus, a novel ultrafast molecular diagnostic real-time PCR device (approximately 18 and 23 min for DNA and RNA detection, respectively) with two channels (FAM and Cy5) for the detection of 12 targets was developed. The device contained three core functional components, including temperature control, optics, and motion, which were integrated into a portable compact box. The temperature modules accurately control temperature in rapid thermal cycles with less than ±0.1 °C, ±1 °C and ±0.5 °C for the temperature fluctuation, uniformity, and error of indication, respectively. The average coefficient of variation (CV) of the fluorescence intensity (FI) for all 12 wells was 2.3% for FAM and 2.7% for Cy5. There was a good linear relationship between the concentrations of fluorescent dye and the FIs of FAM and Cy5(R2 = 0.9990 and 0.9937), and the average CVs of the Ct values calculated by the embedded software were 1.4% for FAM and Cy5, respectively. The 100 double-blind mocked sputum and 249 clinical stool samples were analyzed by the ultrafast real-time PCR device in comparison with the DAAN Gene SARS-CoV-2 kit run on the ABI 7500 instrument and Xpert C. difficile/Epi, respectively. Among the 249 stool samples, the ultrafast real-time PCR device detected toxigenic C. difficile in 54 samples (54/249, 21.7%) with a specificity and positive predictive values of 99.0 and 96.3%, which were higher than the Xpert C. difficile/Epi values of 94.4 and 88.1% (p > 0.05). The ultrafast real-time PCR device detected 15 SARS-CoV-2 positive samples, which has a 100% concordance with that obtained by the DAAN Gene SARS-CoV-2 kit. This study demonstrated that the ultrafast real-time PCR device integrated with microfluidic chips and dual temperature modules is an ultrafast, reliable, easy-to-use, and cost-effective molecular diagnostic platform for clinical diagnosis and on-site testing, especially in resource-limited settings.
Collapse
Affiliation(s)
- Shan Lin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Xiaojun Song
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Kun Zhu
- Hangzhou Biochip for Diagnosis Technology Co., Ltd., Hangzhou, China
| | - Quanyu Shao
- Hangzhou Biochip for Diagnosis Technology Co., Ltd., Hangzhou, China
| | - Yinhang Chen
- Hangzhou Biochip for Diagnosis Technology Co., Ltd., Hangzhou, China
| | - Wei Cheng
- Hangzhou Biochip for Diagnosis Technology Co., Ltd., Hangzhou, China
| | - Zhijing Lei
- Hangzhou Biochip for Diagnosis Technology Co., Ltd., Hangzhou, China
| | - Yu Chen
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Yun Luo, ; Dazhi Jin,
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Yun Luo, ; Dazhi Jin,
| |
Collapse
|
10
|
de Faria VCS, Gonçalves DU, Soares ARC, Barbosa PH, Saliba JW, de Souza CSA, Cota GF, de Avelar DM. Impact assessment of different DNA extraction methods for non-invasive molecular diagnosis of tegumentary leishmaniasis. Acta Trop 2022; 227:106275. [PMID: 34906549 DOI: 10.1016/j.actatropica.2021.106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/01/2022]
Abstract
The aim of this study was to evaluate two methods of nucleic acid extraction (spin-column-based method - commercial kit and direct boil - DB) from swab sampling compared to biopsy sampling for the diagnosis of tegumentary leishmaniasis (TL), (cutaneous - CL and mucocutaneous - MCL forms). The impact of these nucleic acid extraction protocols on different types of PCR and LAMP techniques were compared regarding nucleic acid quality, molecular assays accuracy, indirect quantitation, and costs. The evaluated patients were 57 TL cases (36 CL and 21 MCL) and 34 non-cases. Swab samples extracted by the DB method showed a higher DNA degradation rate and worse DNA quality in comparison to the commercial kit. Molecular tests performed on biopsy samples showed identical or higher performance in all analysis, as compared to their own performance on swab samples for TL (CL and MCL). However, only the SSU rRNA TaqMan™ RT-PCR test showed a significant difference between the performance of biopsy and swab samples extracted by commercial kit. The kDNA-cPCR coupled with swab extracted by commercial kit showed the highest accuracy (95.6%) for TL diagnosis. The sensitivity of the LAMP-RT 18S method in swab samples extracted with a commercial kit (82.5%) was close to that found in biopsy samples (86%) for TL diagnosis. The DB extraction method presented the lowest cost. The use of swab as a minimally-invasive sampling method, associated with an efficient nucleic acid extraction protocol, may represent a low-cost alternative for the diagnosis of CL and MCL.
Collapse
|
11
|
SALOU M, ZIDA-COMPAORÉ WIC, GBEASOR-KOMLANVI FA, FOLLY-GBOGBOE M, KONOU AA, DOSSIM S, MAMA Z, M. DOUFFAN, EKOUEVI DK, Y. DAGNRA A. [Prevalence of dengue fever in patients with febrile syndrome at the Sylvanus Olympio Teaching Hospital of Lomé (Togo) in 2017]. MEDECINE TROPICALE ET SANTE INTERNATIONALE 2021; 1:mtsi.2021.183. [PMID: 35685859 PMCID: PMC9128494 DOI: 10.48327/mtsi.2021.183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/25/2021] [Indexed: 11/21/2022]
Abstract
Aims Dengue is the most common arbovirus in the world. In Africa, dengue virus is endemic in almost every country; however, in Togo few data are available. The aim of this study was to estimate the prevalence of dengue fever among patients with febrile syndrome at the Centre hospitalier universitaire Sylvanus Olympio of Lomé. Procedure. A cross sectional study was conducted in the Centre hospitalier universitaire Sylvanus Olympio of Lomé. Results One hundred forty-seven patients with a median age of 36 years, interquartile range: [23.5-51.5], were included in the study. The prevalence of malaria in the sample was 10.2% (95% CI: [5.8-16.3]) and the prevalence of dengue fever by ELISA was 17% (95% CI: [11.3-24.1]). The overall percent agreement between the RDT Dengue NS1 and ELISA for dengue was 80.9% (95% CI: [73.7-86.9]). The positive percent agreement (PPA) between the RDT assay and the ELISA assay considered as the reference was 36%, 95% CI: [17.9-57.5]), while the negative percent agreement (NPA) between the two assays was 90.2% (95% CI: [83.4-94.8]). Conclusion This study shows that dengue is as much as malaria responsible of febrile syndromes and that it is present in Togo.
Collapse
Affiliation(s)
- Mounerou SALOU
- Faculté des sciences de la santé (FSS), Département des sciences pharmaceutiques, Laboratoire de biologie et d'immunologie (BIOLIM), Département des sciences fondamentales, Université de Lomé, Togo,*
| | | | | | - Messan FOLLY-GBOGBOE
- Faculté des sciences de la santé (FSS), Département des sciences pharmaceutiques, Laboratoire de biologie et d'immunologie (BIOLIM), Département des sciences fondamentales, Université de Lomé, Togo
| | - Abla Ahouefa KONOU
- Faculté des sciences de la santé (FSS), Département des sciences pharmaceutiques, Laboratoire de biologie et d'immunologie (BIOLIM), Département des sciences fondamentales, Université de Lomé, Togo
| | - Sika DOSSIM
- Faculté des sciences de la santé (FSS), Département des sciences pharmaceutiques, Laboratoire de biologie et d'immunologie (BIOLIM), Département des sciences fondamentales, Université de Lomé, Togo
| | - Zouberou MAMA
- Faculté des sciences de la santé (FSS), Département des sciences pharmaceutiques, Laboratoire de biologie et d'immunologie (BIOLIM), Département des sciences fondamentales, Université de Lomé, Togo
| | - DOUFFAN M.
- Faculté des sciences de la santé (FSS), Département des sciences pharmaceutiques, Laboratoire de biologie et d'immunologie (BIOLIM), Département des sciences fondamentales, Université de Lomé, Togo
| | - Didier Koumavi EKOUEVI
- Faculté des sciences de la santé (FSS), Département de santé publique, Université de Lomé, Togo
| | - Anoumou Y. DAGNRA
- Faculté des sciences de la santé (FSS), Département des sciences pharmaceutiques, Laboratoire de biologie et d'immunologie (BIOLIM), Département des sciences fondamentales, Université de Lomé, Togo
| |
Collapse
|
12
|
Karabulut M, Karabulut S, Karalezli A. Refractive outcomes of table-mounted and hand-held auto-refractometers in children: an observational cross-sectional study. BMC Ophthalmol 2021; 21:424. [PMID: 34879852 PMCID: PMC8656057 DOI: 10.1186/s12886-021-02199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND To compare the refractive results of hand-held and table-mounted autorefractors. METHODS We designed this study as an observational, cross-sectional study. We compared the mean spheric and cylinder power, spherical equivalent, Jackson cross-cylinder values, determined the limits of agreement (LoA), and evaluated the reliability of two autorefractors. RESULTS We evaluated 256 eyes of 256 pediatric patients (mean age, 9.12 ± 2.26 years; range, 5-16 years). 49% of the patients were female, and 51% were male. The Nidek HandyRef-K autorefractor measured relatively more astigmatism (P < 0.001) and less hyperopia (P = 0.024). The mean differences and 95% LoA were 0.06 D ± 0.47 D (- 0.82 D to 0.98 D) in spherical power, 0.08 D ± 0.28 D (- 0.47 D to 0.64 D) in cylindrical power, 0.11 D ± 0.47 D (- 0.81 D to 1.01 D) in spherical equivalent, 0.02 D ± 0.36 D (- 0.73 D to 0.69 D) in Jackson cross-cylinder power at 0°, 0.005 D ± 0.54 D (- 1.07 D to 1.06 D) in Jackson cross-cylinder power at 45°. We found the difference within 0.50 D in 244 (95%) eyes for spherical power, in 245 (96%) eyes for cylindrical power, 228 (89%) eyes for spherical equivalent, 224 (87%) eyes for Jackson cross-cylinder power at 0°, 213 (83%) eyes for Jackson cross-cylinder power at 45°. When comparing devices, there were strong correlations for spherical power (Spearman's rho = 0.99, P < 0.001), cylindrical power (Spearman's rho = 0.88, P < 0.001), and spherical equivalent (Spearman's rho = 0.98, P < 0.001). CONCLUSION Two autorefractors showed clinically applicable agreement limits; excellent reliability for spherical power and spherical equivalent and good reliability for cylindrical power; high positive percent agreement for spherical and cylindrical power, spherical equivalent, Jackson cross-cylinder power at 0°and 45°. These results showed that both devices might be used interchangeably for screening of refractive error in children.
Collapse
Affiliation(s)
- Müjdat Karabulut
- Department of Ophthalmology, Mugla Sıtkı Koçman University Medical School, 48300, Mugla, Turkey.
| | - Sinem Karabulut
- Department of Ophthalmology, Mugla Sıtkı Koçman University Medical School, 48300, Mugla, Turkey
| | - Aylin Karalezli
- Department of Ophthalmology, Mugla Sıtkı Koçman University Medical School, 48300, Mugla, Turkey
| |
Collapse
|
13
|
Tsalik EL, Henao R, Montgomery JL, Nawrocki JW, Aydin M, Lydon EC, Ko ER, Petzold E, Nicholson BP, Cairns CB, Glickman SW, Quackenbush E, Kingsmore SF, Jaehne AK, Rivers EP, Langley RJ, Fowler VG, McClain MT, Crisp RJ, Ginsburg GS, Burke TW, Hemmert AC, Woods CW. Discriminating Bacterial and Viral Infection Using a Rapid Host Gene Expression Test. Crit Care Med 2021; 49:1651-1663. [PMID: 33938716 PMCID: PMC8448917 DOI: 10.1097/ccm.0000000000005085] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Host gene expression signatures discriminate bacterial and viral infection but have not been translated to a clinical test platform. This study enrolled an independent cohort of patients to describe and validate a first-in-class host response bacterial/viral test. DESIGN Subjects were recruited from 2006 to 2016. Enrollment blood samples were collected in an RNA preservative and banked for later testing. The reference standard was an expert panel clinical adjudication, which was blinded to gene expression and procalcitonin results. SETTING Four U.S. emergency departments. PATIENTS Six-hundred twenty-three subjects with acute respiratory illness or suspected sepsis. INTERVENTIONS Forty-five-transcript signature measured on the BioFire FilmArray System (BioFire Diagnostics, Salt Lake City, UT) in ~45 minutes. MEASUREMENTS AND MAIN RESULTS Host response bacterial/viral test performance characteristics were evaluated in 623 participants (mean age 46 yr; 45% male) with bacterial infection, viral infection, coinfection, or noninfectious illness. Performance of the host response bacterial/viral test was compared with procalcitonin. The test provided independent probabilities of bacterial and viral infection in ~45 minutes. In the 213-subject training cohort, the host response bacterial/viral test had an area under the curve for bacterial infection of 0.90 (95% CI, 0.84-0.94) and 0.92 (95% CI, 0.87-0.95) for viral infection. Independent validation in 209 subjects revealed similar performance with an area under the curve of 0.85 (95% CI, 0.78-0.90) for bacterial infection and 0.91 (95% CI, 0.85-0.94) for viral infection. The test had 80.1% (95% CI, 73.7-85.4%) average weighted accuracy for bacterial infection and 86.8% (95% CI, 81.8-90.8%) for viral infection in this validation cohort. This was significantly better than 68.7% (95% CI, 62.4-75.4%) observed for procalcitonin (p < 0.001). An additional cohort of 201 subjects with indeterminate phenotypes (coinfection or microbiology-negative infections) revealed similar performance. CONCLUSIONS The host response bacterial/viral measured using the BioFire System rapidly and accurately discriminated bacterial and viral infection better than procalcitonin, which can help support more appropriate antibiotic use.
Collapse
Affiliation(s)
- Ephraim L. Tsalik
- Durham Veterans Affairs Health Care System, Durham, NC, USA
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Ricardo Henao
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Informatics, Duke University, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | | | | | - Mert Aydin
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Emily C. Lydon
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Emily R. Ko
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Regional Hospital, Durham, NC, USA
| | - Elizabeth Petzold
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
| | | | - Charles B. Cairns
- University of North Carolina Medical Center, Chapel Hill, NC, USA
- Drexel University, Philadelphia, PA, USA
| | - Seth W. Glickman
- University of North Carolina Medical Center, Chapel Hill, NC, USA
| | | | | | | | | | | | - Vance G. Fowler
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Micah T. McClain
- Durham Veterans Affairs Health Care System, Durham, NC, USA
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | | | - Geoffrey S. Ginsburg
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Thomas W. Burke
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
| | | | - Christopher W. Woods
- Durham Veterans Affairs Health Care System, Durham, NC, USA
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
14
|
Rigor, Reproducibility, and the P Value. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:805-808. [PMID: 33689793 DOI: 10.1016/j.ajpath.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 11/23/2022]
|
15
|
Comparison of Abbott ID Now, DiaSorin Simplexa, and CDC FDA Emergency Use Authorization Methods for the Detection of SARS-CoV-2 from Nasopharyngeal and Nasal Swabs from Individuals Diagnosed with COVID-19. J Clin Microbiol 2020; 58:JCM.00760-20. [PMID: 32303564 PMCID: PMC7383529 DOI: 10.1128/jcm.00760-20] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Design and Reporting Considerations for Genetic Screening Tests. J Mol Diagn 2020; 22:599-609. [DOI: 10.1016/j.jmoldx.2020.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/16/2020] [Accepted: 01/30/2020] [Indexed: 11/20/2022] Open
|
17
|
Shi Y, Li C, Yang G, Xia X, Mao X, Fang Y, Zhang AM, Song Y. A rapid and accurate method for the detection of four aminoglycoside modifying enzyme drug resistance gene in clinical strains of Escherichia coli by a multiplex polymerase chain reaction. PeerJ 2020; 8:e8944. [PMID: 32309051 PMCID: PMC7153551 DOI: 10.7717/peerj.8944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/18/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Antibiotics are highly effective drugs used in the treatment of infectious diseases. Aminoglycoside antibiotics are one of the most common antibiotics in the treatment of bacterial infections. However, the development of drug resistance against those medicines is becoming a serious concern. AIM This study aimed to develop an efficient, rapid, accurate, and sensitive detection method that is applicable for routine clinical use. METHODS Escherichia coli was used as a model organism to develop a rapid, accurate, and reliable multiplex polymerase chain reaction (M-PCR) for the detection of four aminoglycoside modifying enzyme (AME) resistance genes Aac(6')-Ib, Aac(3)-II, Ant(3″)-Ia, and Aph(3')-Ia. M-PCR was used to detect the distribution of AME resistance genes in 237 clinical strains of E. coli. The results were verified by simplex polymerase chain reaction (S-PCR). RESULTS Results of M-PCR and S-PCR showed that the detection rates of Aac(6')-Ib, Aac(3)-II, Ant(3″)-Ia, and Aph(3')-Ia were 32.7%, 59.2%, 23.5%, and 16.8%, respectively, in 237 clinical strains of E. coli. Compared with the traditional methods for detection and identification, the rapid and accurate M-PCR detection method was established to detect AME drug resistance genes. This technique can be used for the clinical detection as well as the surveillance and monitoring of the spread of those specific antibiotic resistance genes.
Collapse
Affiliation(s)
- Yaoqiang Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Molecular Medicine Center of Yunnan Province, Kunming, Yunnan, China
| | - Chao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Molecular Medicine Center of Yunnan Province, Kunming, Yunnan, China
| | - Guangying Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Molecular Medicine Center of Yunnan Province, Kunming, Yunnan, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Molecular Medicine Center of Yunnan Province, Kunming, Yunnan, China
| | - Xiaoqin Mao
- The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yue Fang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Molecular Medicine Center of Yunnan Province, Kunming, Yunnan, China
| | - A-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Molecular Medicine Center of Yunnan Province, Kunming, Yunnan, China
| | - Yuzhu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Molecular Medicine Center of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
18
|
Zehnbauer BA. The Journal of Molecular Diagnostics: 20 Years Defining Professional Practice. J Mol Diagn 2019; 21:938-942. [PMID: 31635797 DOI: 10.1016/j.jmoldx.2019.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/09/2023] Open
Abstract
This editorial highlights 20 years of JMD defining professional practice.
Collapse
Affiliation(s)
- Barbara A Zehnbauer
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia (Editor-in-Chief).
| |
Collapse
|
19
|
Evaluation of the reverse transcription strand invasion based amplification (RT-SIBA) RSV assay, a rapid molecular assay for the detection of respiratory syncytial virus. Diagn Microbiol Infect Dis 2019; 95:55-58. [DOI: 10.1016/j.diagmicrobio.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 02/03/2023]
|
20
|
Simarro J, Murria R, Pérez-Simó G, Llop M, Mancheño N, Ramos D, Juan ID, Barragán E, Laiz B, Cases E, Ansótegui E, Gómez-Codina J, Aparicio J, Salvador C, Juan Ó, Palanca S. Development, Implementation and Assessment of Molecular Diagnostics by Next Generation Sequencing in Personalized Treatment of Cancer: Experience of a Public Reference Healthcare Hospital. Cancers (Basel) 2019; 11:E1196. [PMID: 31426418 PMCID: PMC6721584 DOI: 10.3390/cancers11081196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
The establishment of precision medicine in cancer patients requires the study of several biomarkers. Single-gene testing approaches are limited by sample availability and turnaround time. Next generation sequencing (NGS) provides an alternative for detecting genetic alterations in several genes with low sample requirements. Here we show the implementation to routine diagnostics of a NGS assay under International Organization for Standardization (UNE-EN ISO 15189:2013) accreditation. For this purpose, 106 non-small cell lung cancer (NSCLC) and 102 metastatic colorectal cancer (mCRC) specimens were selected for NGS analysis with Oncomine Solid Tumor (ThermoFisher). In NSCLC the most prevalently mutated gene was TP53 (49%), followed by KRAS (31%) and EGFR (13%); in mCRC, TP53 (50%), KRAS (48%) and PIK3CA (16%) were the most frequently mutated genes. Moreover, NGS identified actionable genetic alterations in 58% of NSCLC patients, and 49% of mCRC patients did not harbor primary resistance mechanisms to anti-EGFR treatment. Validation with conventional approaches showed an overall agreement >90%. Turnaround time and cost analysis revealed that NGS implementation is feasible in the public healthcare context. Therefore, NGS is a multiplexed molecular diagnostic tool able to overcome the limitations of current molecular diagnosis in advanced cancer, allowing an improved and economically sustainable molecular profiling.
Collapse
Affiliation(s)
- Javier Simarro
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Rosa Murria
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Gema Pérez-Simó
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Marta Llop
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Nuria Mancheño
- Department of Pathology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - David Ramos
- Department of Pathology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Inmaculada de Juan
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Eva Barragán
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Begoña Laiz
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Enrique Cases
- Department of Pulmonology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Emilio Ansótegui
- Department of Pulmonology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - José Gómez-Codina
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medical Oncology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Jorge Aparicio
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medical Oncology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Carmen Salvador
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medical Oncology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Óscar Juan
- Department of Medical Oncology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Sarai Palanca
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain.
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain.
| |
Collapse
|
21
|
Abstract
Diagnosing fungal infections poses a number of unique problems, including a decline in expertise needed for identifying fungi, and a reduced number of instruments and assays specific for fungal identification compared to that of bacteria and viruses.These problems are exacerbated by the fact that patients with fungal infections are often immunosuppressed, which predisposes to infections from both commonly and rarely seen fungi. In this review, we discuss current and future molecular technologies used for fungal identification, and some of the problems associated with development and implementation of these technologies in today’s clinical microbiology laboratories. Diagnosing fungal infections poses a number of unique problems. In this Review, Wickes and Wiederhold discuss molecular technologies used for fungal identification, and the problems associated with their development and implementation in today’s clinical microbiology laboratories.
Collapse
|
22
|
Dias-Lopes C, Paiva AL, Guerra-Duarte C, Molina F, Felicori L. Venomous Arachnid Diagnostic Assays, Lessons from Past Attempts. Toxins (Basel) 2018; 10:toxins10090365. [PMID: 30201918 PMCID: PMC6162545 DOI: 10.3390/toxins10090365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Diagnostic tests for arachnid accidents remain unavailable for patients and clinicians. Together with snakes, these accidents are still a global medical concern, and are recognized as neglected tropical issues. Due to arachnid toxins’ fast mechanism of action, quick detection and quantification of venom is required to accelerate treatment decisions, rationalize therapy, and reduce costs and patient risks. This review aims to understand the current limitations for arachnid venom identification and quantification in biological samples. We benchmarked the already existing initiatives regarding test requirements (sample or biomarkers of choice), performances (time, detection limit, sensitivity and specificity) and their validation (on animal models or on samples from envenomed humans). Our analysis outlines unmet needs for improving diagnosis and consequently treatment of arachnid accidents. Hence, based on lessons from past attempts, we propose a road map for raising best practice guidelines, leading to recommendations for future progress in the development of arachnid diagnostic assays.
Collapse
Affiliation(s)
- Camila Dias-Lopes
- Departamento de Bioquímica e Imunologia, UFMG, Belo Horizonte 31270901, Brazil.
- Colégio Técnico (COLTEC), UFMG, Belo Horizonte 31270901, Brazil.
| | - Ana Luiza Paiva
- Fundação Ezequiel Dias (FUNED), Belo Horizonte 30510010, Brazil.
| | | | - Franck Molina
- Sys2Diag UMR 9005 CNRS Alcediag, 34000 Montpellier, France.
| | - Liza Felicori
- Departamento de Bioquímica e Imunologia, UFMG, Belo Horizonte 31270901, Brazil.
| |
Collapse
|