1
|
Yan H, Peng J, Zhou W, Chen H, He C. Correlation analysis of EGFR gene mutation abundance and the efficacy of targeted therapy with osimertinib in nonsmall cell lung cancer-a case control study. J Oncol Pharm Pract 2024:10781552231224372. [PMID: 38196198 DOI: 10.1177/10781552231224372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND In nonsmall cell lung cancer (NSCLC), epidermal growth factor receptor (EGFR) mutation is the primary cancer-causing mutation. But whether the practical effectiveness of EGFR tyrosine kinase inhibitors (TKIs) can be influenced by plasma EGFR mutation abundance when treating patients with advanced NSCLC remains unanswered. Therefore, this research was intended to reveal the connection between plasma EGFR mutation abundance and clinical outcomes in osimertinib-treated patients with advanced NSCLC. METHODS A total of 120 patients with advanced NSCLC were retrospectively analyzed, and 56 patients with EGFR-mutation-positive NSCLC receiving osimertinib first-line therapy were eventually screened and included. The baseline status and abundance of plasma EGFR in patients with NSCLC were detected by cSMART, and the ratio of 0.1 was the critical value. Imaging examinations were performed every 8-12 weeks for the assessment of tumor response. The relationship between baseline EGFR mutation abundance and clinical outcomes of TKI therapy was analyzed. RESULTS The objective response rates (ORR) of EGFR-mutant patients in the high-/low-abundance groups were 69.2% and 40.0%, respectively. The high abundance group had an obviously higher ORR than the low abundance group (P = 0.029). A much longer median progression-free survival (mPFS) was demonstrated in patients with high mutation abundance than in patients with low abundance (11.2 months vs 7.1 months, P = 0.0133). As for the median overall survival (mOS), it showed the same trend as mPFS in patients from different groups (15.5 vs 10.7 months, P = 0.0028). The role of plasma mutation abundance as an independent prognostic factor for both PFS (hazard ratios [HR]: 0.30, P = 0.006) and OS (HR: 0.35, P = 0.004) was demonstrated by multivariate Cox regression analysis. CONCLUSION There is a close connection between plasma EGFR mutation abundance and survival benefit in patients with NSCLC, which can be used for predicting the efficacy of EGFR-TKI targeted therapy. Our study is expected to provide a research basis for screening patients to whom the EGFR-TKI therapy is beneficial.
Collapse
Affiliation(s)
- Haiqiang Yan
- Department of Cardiothoracic Surgery, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde City, China
| | - Jigui Peng
- Department of Cardiothoracic Surgery, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde City, China
| | - Wang Zhou
- Department of Cardiothoracic Surgery, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde City, China
| | - Hui Chen
- Department of Cardiothoracic Surgery, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde City, China
| | - Changjin He
- Department of Cardiothoracic Surgery, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde City, China
| |
Collapse
|
2
|
Cai P, Yang B, Zhao J, Ye P, Yang D. Detection of KRAS mutation using plasma samples in non-small-cell lung cancer: a systematic review and meta-analysis. Front Oncol 2023; 13:1207892. [PMID: 37483491 PMCID: PMC10357383 DOI: 10.3389/fonc.2023.1207892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background The aim of this study was to investigate the diagnostic accuracy of KRAS mutation detection using plasma sample of patients with non-small cell lung cancer (NSCLC). Methods Databases of Pubmed, Embase, Cochrane Library, and Web of Science were searched for studies detecting KRAS mutation in paired tissue and plasma samples of patients with NSCLC. Data were extracted from each eligible study and analyzed using MetaDiSc and STATA. Results After database searching and screening of the studies with pre-defined criteria, 43 eligible studies were identified and relevant data were extracted. After pooling the accuracy data from 3341 patients, the pooled sensitivity, specificity and diagnostic odds ratio were 71%, 94%, and 59.28, respectively. Area under curve of summary receiver operating characteristic curve was 0.8883. Subgroup analysis revealed that next-generation sequencing outperformed PCR-based techniques in detecting KRAS mutation using plasma sample of patients with NSCLC, with sensitivity, specificity, and diagnostic odds ratio of 73%, 94%, and 82.60, respectively. Conclusion Compared to paired tumor tissue sample, plasma sample showed overall good performance in detecting KRAS mutation in patients with NSCLC, which could serve as good surrogate when tissue samples are not available.
Collapse
Affiliation(s)
- Peiling Cai
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Bofan Yang
- School of Clinical Medicine, Chengdu University, Chengdu, China
| | - Jiahui Zhao
- School of Clinical Medicine, Chengdu University, Chengdu, China
| | - Peng Ye
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Dongmei Yang
- Clinical Laboratory & Clinical Research and Translational Center, Second People’s Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, China
| |
Collapse
|
3
|
Wu T, Fan R, Bai J, Yang Z, Qian YS, Du LT, Wang CY, Wang YC, Jiang GQ, Zheng D, Fan XT, Zheng B, Liu JF, Deng GH, Shen F, Hu HP, Ye YN, Zhang QZ, Zhang J, Gao YH, Xia J, Yan HD, Liang MF, Yu YL, Sun FM, Gao YJ, Sun J, Zhong CX, Wang Y, Wang H, Kong F, Chen JM, Wen H, Wu BM, Wang CX, Wu L, Hou JL, Liu XL, Wang HY, Chen L. The development of a cSMART-based integrated model for hepatocellular carcinoma diagnosis. J Hematol Oncol 2023; 16:1. [PMID: 36600307 DOI: 10.1186/s13045-022-01396-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) generally arises from a background of liver cirrhosis (LC). Patients with cirrhosis and suspected HCC are recommended to undergo serum biomarker tests and imaging diagnostic evaluation. However, the performance of routine diagnostic methods in detecting early HCC remains unpromising. METHODS Here, we conducted a large-scale, multicenter study of 1675 participants including 490 healthy controls, 577 LC patients, and 608 HCC patients from nine clinical centers across nine provinces of China, profiled gene mutation signatures of cell-free DNA (cfDNA) using Circulating Single-Molecule Amplification and Resequencing Technology (cSMART) through detecting 931 mutation sites across 21 genes. RESULTS An integrated diagnostic model called "Combined method" was developed by combining three mutation sites and three serum biomarkers. Combined method outperformed AFP in the diagnosis of HCC, especially early HCC, with sensitivities of 81.25% for all stages and 66.67% for early HCC, respectively. Importantly, the integrated model exhibited high accuracy in differentiating AFP-negative, AFP-L3-negative, and PIVKA-II-negative HCCs from LCs.
Collapse
Affiliation(s)
- Tong Wu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Institute/hospital, Shanghai, 200438, People's Republic of China.,Department of Radiotherapy Oncology, General Hospital of Northern Theater Command, Shenyang, 110016, People's Republic of China
| | - Rong Fan
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.,Hepatology Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, People's Republic of China
| | - Jian Bai
- Berry Oncology Corporation, Beijing, 100102, People's Republic of China
| | - Zhao Yang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Yun-Song Qian
- Hepatology Department, Ningbo Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, People's Republic of China
| | - Lu-Tao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, People's Republic of China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, People's Republic of China
| | - Chun-Ying Wang
- Xuzhou Infectious Diseases Hospital, Xuzhou, 221004, People's Republic of China
| | - Ying-Chao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Guo-Qing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Dan Zheng
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, People's Republic of China
| | - Xiao-Tang Fan
- Department of Hepatology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, People's Republic of China
| | - Bo Zheng
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Institute/hospital, Shanghai, 200438, People's Republic of China
| | - Jing-Feng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Guo-Hong Deng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Feng Shen
- Department of Hepatic Surgery IV, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - He-Ping Hu
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 210822, People's Republic of China
| | - Yi-Nong Ye
- The Department of Infectious Disease, The First People's Hospital of Foshan, Foshan City, 528000, People's Republic of China
| | - Qing-Zheng Zhang
- Berry Oncology Corporation, Beijing, 100102, People's Republic of China
| | - Jing Zhang
- Berry Oncology Corporation, Beijing, 100102, People's Republic of China
| | - Yan-Hang Gao
- The First Hospital of Jilin University, Jilin, 130021, People's Republic of China
| | - Jie Xia
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Hua-Dong Yan
- Hepatology Department, Ningbo Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, People's Republic of China
| | - Min-Feng Liang
- The Department of Infectious Disease, The First People's Hospital of Foshan, Foshan City, 528000, People's Republic of China
| | - Yan-Long Yu
- Chifeng Clinical Medical School of Inner, Mongolia Medical University, Chifeng, 024000, People's Republic of China
| | - Fu-Ming Sun
- Berry Oncology Corporation, Beijing, 100102, People's Republic of China
| | - Yu-Jing Gao
- Xuzhou Infectious Diseases Hospital, Xuzhou, 221004, People's Republic of China
| | - Jian Sun
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Chun-Xiu Zhong
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yin Wang
- Berry Oncology Corporation, Beijing, 100102, People's Republic of China
| | - Hui Wang
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 210822, People's Republic of China
| | - Fei Kong
- The First Hospital of Jilin University, Jilin, 130021, People's Republic of China
| | - Jin-Ming Chen
- Chifeng Clinical Medical School of Inner, Mongolia Medical University, Chifeng, 024000, People's Republic of China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, People's Republic of China
| | - Bo-Ming Wu
- Hepatology Department, Ningbo Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, People's Republic of China
| | - Chuan-Xin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, People's Republic of China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, People's Republic of China
| | - Lin Wu
- Berry Oncology Corporation, Beijing, 100102, People's Republic of China
| | - Jin-Lin Hou
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.,Hepatology Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, People's Republic of China
| | - Xiao-Long Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Institute/hospital, Shanghai, 200438, People's Republic of China. .,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, 200438, People's Republic of China. .,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, 200438, People's Republic of China.
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Institute/hospital, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
4
|
Palmieri M, Zulato E, Wahl SGF, Guibert N, Frullanti E. Diagnostic accuracy of circulating free DNA testing for the detection of KRAS mutations in non-small cell lung cancer: A systematic review and meta-analysis. Front Genet 2022; 13:1015161. [PMID: 36386815 PMCID: PMC9640997 DOI: 10.3389/fgene.2022.1015161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) gene encodes a GTPase that acts as a molecular switch for intracellular signal transduction, promoting cell growth and proliferation. Mutations in the KRAS gene represent important biomarkers for NSCLC targeted therapy. However, detection of KRAS mutations in tissues has shown some limitations. During the last years, analyses of circulating free DNA (cfDNA) has emerged as an alternative and minimally invasive, approach to investigate tumor molecular changes. Here, we assessed the diagnostic performance of cfDNA analysis, compared to tissues through a meta-analysis and systematic review of existing literature. From 561 candidate papers, we finally identified 40 studies, including 2,805 NSCLC patients. We extracted values relating to the number of true-positive, false-positive, false-negative, and true-negative. Pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio, each with 95% CI, were calculated. A summary receiver operating characteristic curve and the area under curve (AUC) were used to evaluate the overall diagnostic performance. The pooled sensitivity was 0.71 (95% CI 0.68–0.74) and the specificity was 0.93 (95% CI 0.92–0.94). The diagnostic odds ratio was 35.24 (95% CI 24.88–49.91) and the area under the curve was 0.92 (SE = 0.094). These results provide evidence that detection of KRAS mutation using cfDNA testing is of adequate diagnostic accuracy thus offering to the clinicians a new promising screening test for NSCLC patients.
Collapse
Affiliation(s)
- Maria Palmieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisabetta Zulato
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto IOV—IRCCS, Padova, Italy
| | - Sissel Gyrid Freim Wahl
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Technology and Science, Trondheim, Norway
| | - Nicolas Guibert
- Thoracic Oncology Department, Larrey Hospital, University Hospital of Toulouse, Toulouse, France
- Inserm, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France
- University of Toulouse III (Paul Sabatier), Toulouse, France
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- *Correspondence: Elisa Frullanti,
| |
Collapse
|
5
|
Ye P, Cai P, Xie J, Zhang J. Reliability of BRAF mutation detection using plasma sample: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e28382. [PMID: 34941166 PMCID: PMC8701458 DOI: 10.1097/md.0000000000028382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Testing of B-Raf proto-oncogene (BRAF) mutation in tumor is necessary before targeted therapies are given. When tumor samples are not available, plasma samples are commonly used for the testing of BRAF mutation. The aim of this study was to investigate the diagnostic accuracy of BRAF mutation testing using plasma sample of cancer patients. METHODS Databases of Pubmed, Embase, and Cochrane Library were searched for eligible studies investigating BRAF mutation in paired tissue and plasma samples of cancer patients. A total of 798 publications were identified after database searching. After removing 229 duplicated publications, 569 studies were screened using the following exclusion criteria: (1) BRAF mutation not measured in plasma or in tumor sample; (2) lacking BRAF-wildtype or BRAF-mutated samples; (3) tissue and plasma samples not paired; (4) lacking tumor or plasma samples; (5) not plasma sample; (6) not cancer; (7) un-interpretable data. Accuracy data and relevant information were extracted from each eligible study by 2 independent researchers and analyzed using statistical software. RESULTS After pooling the accuracy data from 3943 patients of the 53 eligible studies, the pooled sensitivity, specificity, and diagnostic odds ratio of BRAF mutation testing using plasma sample were 69%, 98%, and 55.78, respectively. Area under curve of summary receiver operating characteristic curve was 0.9435. Subgroup analysis indicated that BRAF mutation testing using plasma had overall higher accuracy (diagnostic odds ratio of 89.17) in colorectal cancer, compared to melanoma and thyroid carcinoma. In addition, next-generation sequencing had an overall higher accuracy in detecting BRAF mutation using plasma sample (diagnostic odds ratio of 63.90), compared to digital polymerase chain reaction (PCR) and conventional PCR, while digital PCR showed the highest sensitivity (74%) among the 3 techniques. CONCLUSION BRAF testing using plasma sample showed an overall high accuracy compared to paired tumor tissue sample, which could be used for cancer genotyping when tissue sample is not available. Large prospective studies are needed to further investigate the accuracy of BRAF mutation testing in plasma sample.
Collapse
Affiliation(s)
- Peng Ye
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, P.R. China
| | - Peiling Cai
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, P.R. China
| | - Jing Xie
- Department of Pathology and Clinical Laboratory, Sichuan Provincial Fourth People's Hospital, Chengdu, P.R. China
| | - Jie Zhang
- Adverse Drug Reaction Monitoring Center, Chengdu, P.R. China
| |
Collapse
|
6
|
Zheng B, Liu XL, Fan R, Bai J, Wen H, Du LT, Jiang GQ, Wang CY, Fan XT, Ye YN, Qian YS, Wang YC, Liu GJ, Deng GH, Shen F, Hu HP, Wang H, Zhang QZ, Ru LL, Zhang J, Gao YH, Xia J, Yan HD, Liang MF, Yu YL, Sun FM, Gao YJ, Sun J, Zhong CX, Wang Y, Kong F, Chen JM, Zheng D, Yang Y, Wang CX, Wu L, Hou JL, Liu JF, Wang HY, Chen L. The Landscape of Cell-Free HBV Integrations and Mutations in Cirrhosis and Hepatocellular Carcinoma Patients. Clin Cancer Res 2021; 27:3772-3783. [PMID: 33947693 DOI: 10.1158/1078-0432.ccr-21-0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/09/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Intratumoral hepatitis B virus (HBV) integrations and mutations are related to hepatocellular carcinoma (HCC) progression. Circulating cell-free DNA (cfDNA) has shown itself as a powerful noninvasive biomarker for cancer. However, the HBV integration and mutation landscape on cfDNA remains unclear. EXPERIMENTAL DESIGN A cSMART (Circulating Single-Molecule Amplification and Resequencing Technology)-based method (SIM) was developed to simultaneously investigate HBV integration and mutation landscapes on cfDNA with HBV-specific primers covering the whole HBV genome. Patients with HCC (n = 481) and liver cirrhosis (LC; n = 517) were recruited in the study. RESULTS A total of 6,861 integration breakpoints including TERT and KMT2B were discovered in HCC cfDNA, more than in LC. The concentration of circulating tumor DNA (ctDNA) was positively correlated with the detection rate of these integration hotspots and total HBV integration events in cfDNA. To track the origin of HBV integrations in cfDNA, whole-genome sequencing (WGS) was performed on their paired tumor tissues. The paired comparison of WGS data from tumor tissues and SIM data from cfDNA confirmed most recurrent integration events in cfDNA originated from tumor tissue. The mutational landscape across the whole HBV genome was first generated for both HBV genotype C and B. A region from nt1100 to nt1500 containing multiple HCC risk mutation sites (OR > 1) was identified as a potential HCC-related mutational hot zone. CONCLUSIONS Our study provides an in-depth delineation of HBV integration/mutation landscapes at cfDNA level and did a comparative analysis with their paired tissues. These findings shed light on the possibilities of noninvasive detection of virus insertion/mutation.
Collapse
Affiliation(s)
- Bo Zheng
- National Center for Liver Cancer, Shanghai, PR China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, PR China
| | - Xiao-Long Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, PR China
| | - Rong Fan
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Jian Bai
- Berry Oncology Corporation. Beijing, PR China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Lu-Tao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, PR China.,The Clinical Research Center of Shandong Province for Clinical Laboratory, Jinan, PR China
| | - Guo-Qing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, PR China
| | | | - Xiao-Tang Fan
- Dept of Hepatology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Yi-Nong Ye
- The Department of Infectious Disease, the First People's Hospital of Foshan, Foshan City, PR China
| | - Yun-Song Qian
- Hepatology Department, Ningbo Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, PR China
| | - Ying-Chao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, PR China
| | | | - Guo-Hong Deng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Feng Shen
- Department of Hepatic Surgery IV, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, PR China
| | - He-Ping Hu
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, PR China
| | - Hui Wang
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, PR China
| | | | - Lan-Lan Ru
- Berry Oncology Corporation. Beijing, PR China
| | - Jing Zhang
- Berry Oncology Corporation. Beijing, PR China
| | - Yan-Hang Gao
- The First Hospital of Jilin University, Jilin, PR China
| | - Jie Xia
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hua-Dong Yan
- Hepatology Department, Ningbo Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, PR China
| | - Min-Feng Liang
- The Department of Infectious Disease, the First People's Hospital of Foshan, Foshan City, PR China
| | - Yan-Long Yu
- Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, PR China
| | - Fu-Ming Sun
- Berry Oncology Corporation. Beijing, PR China
| | - Yu-Jing Gao
- Xuzhou Infectious Diseases Hospital, Xuzhou, PR China
| | - Jian Sun
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Chun-Xiu Zhong
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yin Wang
- Berry Oncology Corporation. Beijing, PR China
| | - Fei Kong
- The First Hospital of Jilin University, Jilin, PR China
| | - Jin-Ming Chen
- Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, PR China
| | - Dan Zheng
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yuan Yang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, PR China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, PR China
| | - Chuan-Xin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, PR China.,The Clinical Research Center of Shandong Province for Clinical Laboratory, Jinan, PR China
| | - Lin Wu
- Berry Oncology Corporation. Beijing, PR China.
| | - Jin-Lin Hou
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| | - Jing-Feng Liu
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Jinan District, Fuzhou City, PR China.
| | - Hong-Yang Wang
- National Center for Liver Cancer, Shanghai, PR China. .,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, PR China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, PR China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, PR China
| | - Lei Chen
- National Center for Liver Cancer, Shanghai, PR China. .,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, PR China
| |
Collapse
|
7
|
Wang X, Liu Y, Meng Z, Wu Y, Wang S, Jin G, Qin Y, Wang F, Wang J, Zhou H, Su X, Fu X, Wang X, Shi X, Wen Z, Jia X, Qin Q, Gao Y, Guo W, Lu S. Plasma EGFR mutation abundance affects clinical response to first-line EGFR-TKIs in patients with advanced non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:635. [PMID: 33987333 PMCID: PMC8106032 DOI: 10.21037/atm-20-7155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Activated epidermal growth factor receptor (EGFR) mutation is the main pathogenic cause of non-small cell lung cancer (NSCLC) in Asia. However, the impact of plasma EGFR mutation abundance, especially of the ultra-low abundance of EGFR mutation detected by highly sensitive techniques on clinical outcomes of first-line EGFR tyrosine kinase inhibitors (TKIs) for advanced NSCLC patients remains unclear. Methods We qualitatively detected baseline EGFR status of NSCLC tissues using amplification-refractory mutation system and quantified the plasma abundance of EGFR mutations through next-generation sequencing (NGS). Every 8–12 weeks, we performed dynamic detection of plasma mutation abundance and imaging evaluation. We analyzed the association between plasma abundance of EGFR sensitizing mutations, tumor size, tumor shrinkage percentage, concomitant TP53 mutations, and clinical response to TKIs. Results This prospective study enrolled 135 patients with advanced NSCLC. The objective response rate (ORR) and disease control rate (DCR) for EGFR mutation–positive patients were 50.0% and 87.0%, respectively. When the cutoff value of plasma EGFR mutation abundance was 0.1%, the ORRs of TKI-treated patients were significantly different (60.0% for the >0.1% group vs. 21.4% for the ≤0.1% group, P=0.028). Median progression-free survival (PFS) was significantly longer for participants with a mutation abundance above 0.1% compared to those with a 0.01–0.1% abundance (log rank, P=0.0115). There was no significant association between plasma abundance of EGFR sensitizing mutations and tumor size, tumor shrinkage percentage, or concomitant TP53 mutations. Cox multivariate analysis demonstrated that plasma mutation abundance was an independent predictive factor for PFS [hazard ratio (HR) 2.41, 95% confidence interval (CI): 1.12–5.20; P=0.025]. We identified 11 participants with the acquired T790M resistance mutation according to serial dynamic plasma samples. Conclusions Liquid biopsy screening based on highly sensitive NGS is reliable for detecting drug resistance and actionable somatic mutations. The plasma abundance of the EGFR driver mutation affected clinical response to EGFR-TKIs in advanced NSCLC patients; prolongation of PFS was also observed in patients with an ultra-low abundance of EGFR sensitizing mutations.
Collapse
Affiliation(s)
- Xiaohong Wang
- Chest Oncology Medicine, Baotou Cancer Hospital, Baotou, China
| | - Yonggang Liu
- Chest Oncology Medicine, Baotou Cancer Hospital, Baotou, China
| | - Zhiying Meng
- Chest Oncology Medicine, Baotou Cancer Hospital, Baotou, China
| | - Yun Wu
- Department of Oncology, Baotou Central Hospital, Baotou, China
| | - Shubin Wang
- Department of Oncology, Baotou Central Hospital, Baotou, China
| | - Gaowa Jin
- Oncology Division II, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Yingchun Qin
- Oncology Division II, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Fengyun Wang
- Oncology Department, The Third Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Jing Wang
- Oncology Department, The Third Affiliated Hospital of Baotou Medical College, Baotou, China
| | | | | | - Xiuhua Fu
- Department of Respiratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiaolan Wang
- Department of Oncology Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiaoyu Shi
- Department of Oncology, Bayan Nur Hospital, Bayan Nur, China
| | - Zhenping Wen
- Department of Oncology, The Inner Mongolia Cancer Hospital, Hohhot, China
| | - Xiaoqiong Jia
- Department of Oncology, The Inner Mongolia Cancer Hospital, Hohhot, China
| | - Qiong Qin
- Department of Oncology, The People's Hospital of DaLaTe Banner, Ordos, China
| | - Yongqiang Gao
- Department of Oncology, The People's Hospital of DaLaTe Banner, Ordos, China
| | - Weidong Guo
- Oncology Department, Baogang Hospital, Baotou, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Sivager G, Calvez L, Bruyere S, Boisne-Noc R, Brat P, Gros O, Ollitrault P, Morillon R. Specific Physiological and Anatomical Traits Associated With Polyploidy and Better Detoxification Processes Contribute to Improved Huanglongbing Tolerance of the Persian Lime Compared With the Mexican Lime. FRONTIERS IN PLANT SCIENCE 2021; 12:685679. [PMID: 34512684 PMCID: PMC8427660 DOI: 10.3389/fpls.2021.685679] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/09/2021] [Indexed: 05/13/2023]
Abstract
Huanglongbing (HLB) is presently a major threat to the citrus industry. Because of this disease, millions of trees are currently dying worldwide. The putative causal agent is a motile bacteria belonging to Candidatus Liberibacter spp., which is transmitted by psyllids. The bacteria is responsible for the synthesis of callose at the phloem sieve plate, leading to the obstruction of the pores that provide connections between adjacent sieve elements, thus limiting the symplastic transport of the sugars and starches synthesized in leaves to the other plant organs. The Persian triploid lime (Citrus latifolia) is one of the most HLB-tolerant citrus varieties, but the determinants associated with the tolerance are still unknown. HLB-infected diploid Mexican lime (Citrus aurantiifolia) and Persian lime were investigated. The leaf petiole was analyzed using scanning electron microscopy (SEM) to observe callose deposition at the phloem sieve plate. Leaf starch contents and detoxification enzyme activities were investigated. In the field, Persian lime leaves present more limited symptoms due to HLB than the Mexican lime leaves do. Photosynthesis, stomatal conductance, and transpiration decreased compared with control plants, but values remained greater in the Persian than in the Mexican lime. Analysis of the petiole sieve plate in control petiole samples showed that pores were approximately 1.8-fold larger in the Persian than in the Mexican lime. SEM analyses of petiole samples of symptomatic leaves showed the important deposition of callose into pores of Mexican and Persian limes, whereas biochemical analyses revealed better detoxification in Persian limes than in Mexican limes. Moreover, SEM analyses of infected petiole samples of asymptomatic leaves showed much larger callose depositions into the Mexican lime pores than in the Persian lime pores, whereas biochemical traits revealed much better behavior in Persian limes than in Mexican limes. Our results reveal that polyploids present specific behaviors associated with important physiological and biochemical determinants that may explain the better tolerance of the Persian lime against HLB compared with the Mexican lime.
Collapse
Affiliation(s)
- Gary Sivager
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Leny Calvez
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Saturnin Bruyere
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Rosiane Boisne-Noc
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Pierre Brat
- CIRAD UMR Qualisud Dpt PERSYST-Qualisud, Univ. Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Olivier Gros
- C3MAG, UFR des Sciences Exactes et Naturelles, Université des Antilles, Pointe-à-Pitre, Guadeloupe
| | - Patrick Ollitrault
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Raphaël Morillon
- CIRAD, UMR AGAP Institut, Equipe SEAPAG, Petit-Bourg, Guadeloupe, French West Indies—UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- *Correspondence: Raphaël Morillon,
| |
Collapse
|
9
|
Huang L, Jiang XL, Liang HB, Li JC, Chin LH, Wei JP, Wang RR, Cai J, Xiong Q, Wang LT, Cram DS, Liu AW. Genetic profiling of primary and secondary tumors from patients with lung adenocarcinoma and bone metastases reveals targeted therapy options. Mol Med 2020; 26:88. [PMID: 32942985 PMCID: PMC7499871 DOI: 10.1186/s10020-020-00197-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background Patients newly diagnosed with lung adenocarcinoma with bone metastases (LABM) have poor survival rates after treatment with conventional therapies. To improve outcomes, we retrospectively investigated whether the application of a more comprehensive genetic test of tumor biopsies samples from LABM patients could provide the basis for treatment with more effective tyrosine kinase inhibitors (TKIs) regimens. Methods Fine needle biopsies were taken from the primary tumor (PT) and a secondary bone metastasis (BM) of 17 LABM patients before treatment. Simple genetic profiles for selecting therapies were initially obtained using an ARMS-PCR test for EGFR and ALK fusion mutations. More detailed genetic profiles of somatic exon SNVs and CNVs in 457 cancer-related genes were retrospectively derived using capture single molecule amplification and resequencing technology (capSMART). Results ARMS-PCR identified 14 EGFR positive, 3 EGFR negative and 1 ALK fusion positive patient. A therapy regimen incorporating TKIs Gefitinib and Crizotinib was offered to the EGFR and ALK fusion positive patients, respectively. With the exception of two patients, molecular profiling of matching PT and BM biopsies identified a highly shared somatic variant fingerprint, although the BMs exhibited additional genomic instability. In six of 13 EGFR positive patients and in all three EGFR negative patients, examination of the genetic profiles identified additional clinically significant mutations that are known or experimental drug targets for treatment of lung cancer. Conclusion Our findings firstly suggest that treatment regimens based on comprehensive genetic assessment of newly diagnosed LABM patients should target both the PT and secondary BMs, including rogue clones with potential to form new BMs. Second, the additional information gained should allow clinicians to design and implement more personalized treatment regimens and potentially improve outcomes for LABM patients.
Collapse
Affiliation(s)
- Long Huang
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.,JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Xiao-Liu Jiang
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.,JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Hong-Bin Liang
- Berry Oncology Corporation, Beijing, China.,Berry Genomics Corporation, Beijing, China
| | - Jian-Cheng Li
- Department of Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | | | - Jian-Ping Wei
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.,JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | | | - Jing Cai
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.,JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Qiang Xiong
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.,JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | | | | | - An-Wen Liu
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, China. .,JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China.
| |
Collapse
|
10
|
Lu Y, Xue J, Deng T, Zhou X, Yu K, Deng L, Huang M, Yi X, Liang M, Wang Y, Shen H, Tong R, Wang W, Li L, Song J, Li J, Su X, Ding Z, Gong Y, Zhu J, Wang Y, Zou B, Zhang Y, Li Y, Zhou L, Liu Y, Yu M, Wang Y, Zhang X, Yin L, Xia X, Zeng Y, Zhou Q, Ying B, Chen C, Wei Y, Li W, Mok T. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med 2020; 26:732-740. [DOI: 10.1038/s41591-020-0840-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/18/2020] [Indexed: 12/24/2022]
|
11
|
McEwen AE, Leary SES, Lockwood CM. Beyond the Blood: CSF-Derived cfDNA for Diagnosis and Characterization of CNS Tumors. Front Cell Dev Biol 2020; 8:45. [PMID: 32133357 PMCID: PMC7039816 DOI: 10.3389/fcell.2020.00045] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/17/2020] [Indexed: 12/15/2022] Open
Abstract
Genetic data are rapidly becoming part of tumor classification and are integral to prognosis and predicting response to therapy. Current molecular tumor profiling relies heavily on tissue resection or biopsy. Tissue profiling has several disadvantages in tumors of the central nervous system, including the challenge associated with invasive biopsy, the heterogeneous nature of many malignancies where a small biopsy can underrepresent the mutational profile, and the frequent lack of obtaining a repeat biopsy, which limits routine monitoring to assess therapy response and/or tumor evolution. Circulating tumor, cell-free DNA (cfDNA), has been proposed as a liquid biopsy to address some limitations of tissue-based genetics. In cancer patients, a portion of cfDNA is tumor-derived and may contain somatic genetic alterations. In central nervous system (CNS) neoplasia, plasma tumor-derived cfDNA is very low or absent, likely due to the blood brain barrier. Interrogating cfDNA in cerebrospinal fluid (CSF) has several advantages. Compared to blood, CSF is paucicellular and therefore predominantly lacks non-tumor cfDNA; however, patients with CNS-limited tumors have significantly enriched tumor-derived cfDNA in CSF. In patients with metastatic CNS disease, mutations in CSF cfDNA are most concordant with the intracranial process. CSF cfDNA can also occasionally uncover additional genetic alterations absent in concurrent biopsy specimens, reflecting tumor heterogeneity. Although CSF is enriched for tumor-derived cfDNA, absolute quantities are low. Highly sensitive, targeted methods including next-generation sequencing and digital PCR are required to detect mutations in CSF cfDNA. Additional technical and bioinformatic approaches also facilitate enhanced ability to detect tumor mutations in CSF cfDNA.
Collapse
Affiliation(s)
- Abbye E McEwen
- Department of Pathology, University of Washington, Seattle, WA, United States.,Department of Laboratory Medicine, University of Washington, Seattle, WA, United States.,Brotman Baty Institute for Precision Medicine, Seattle, WA, United States
| | - Sarah E S Leary
- Brotman Baty Institute for Precision Medicine, Seattle, WA, United States.,Seattle Children's Hospital, Cancer and Blood Disorders Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States.,Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Christina M Lockwood
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States.,Brotman Baty Institute for Precision Medicine, Seattle, WA, United States
| |
Collapse
|
12
|
Chen K, Zhao H, Shi Y, Yang F, Wang LT, Kang G, Nie Y, Wang J. Perioperative Dynamic Changes in Circulating Tumor DNA in Patients with Lung Cancer (DYNAMIC). Clin Cancer Res 2019; 25:7058-7067. [PMID: 31439586 DOI: 10.1158/1078-0432.ccr-19-1213] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/31/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE No study has investigated the precise perioperative dynamic changes in circulating tumor DNA (ctDNA) in any patients with early-stage cancer. This study (DYNAMIC) investigated perioperative dynamic changes in ctDNA and determined the appropriate detection time of ctDNA-based surveillance for surgical patients with lung cancer.Experimental Design: Consecutive patients who underwent curative-intent lung resections were enrolled prospectively (NCT02965391). Plasma samples were obtained at multiple prespecified time points including before surgery (time A), during surgery after tumor resection (time B-time D), and after surgery (time P1-time P3). Next-generation sequencing-based detection platform was performed to calculate the plasma mutation allele frequency. The primary endpoint was ctDNA half-life after radical tumor resection. RESULTS Thirty-six patients showed detectable mutations in time A. The plasma ctDNA concentration showed a rapid decreasing trend after radical tumor resection, with the average mutant allele fraction at times A, B, C, and D being 2.72%, 2.11%, 1.14%, and 0.17%, respectively. The median ctDNA half-life was 35.0 minutes. Patients with minimal residual disease (MRD) detection had a significant slower ctDNA half-life than those with negative MRD (103.2 minutes vs. 29.7 minutes, P = 0.001). The recurrence-free survival of patients with detectable and undetectable ctDNA concentrations at time P1 was 528 days and 543 days, respectively (P = 0.657), whereas at time P2 was 278 days and 637 days, respectively (P = 0.002). CONCLUSIONS ctDNA decays rapidly after radical tumor resection. The ctDNA detection on the third day after R0 resection can be used as the baseline value for postoperative lung cancer surveillance.
Collapse
Affiliation(s)
- Kezhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Heng Zhao
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | | | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | | | - Guannan Kang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Yuntao Nie
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
13
|
Lyu M, Zhou J, Ning K, Ying B. The diagnostic value of circulating tumor cells and ctDNA for gene mutations in lung cancer. Onco Targets Ther 2019; 12:2539-2552. [PMID: 31040697 PMCID: PMC6454989 DOI: 10.2147/ott.s195342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Detecting gene mutations by two competing biomarkers, circulating tumor cells (CTCs) and ctDNA has gradually paved a new diagnostic avenue for personalized medicine. We performed a comprehensive analysis to compare the diagnostic value of CTCs and ctDNA for gene mutations in lung cancer. METHODS Publications were electronically searched in PubMed, Embase, and Web of Science as of July 2018. Pooled sensitivity, specificity, and AUC, each with a 95% CI, were yielded. Subgroup analyses and sensitivity analyses were conducted. Quality assessment of included studies was also performed. RESULTS From 4,283 candidate articles, we identified 47 articles with a total of 7,244 patients for qualitative review and meta-analysis. When detecting EGFR, the CTC and ctDNA groups had pooled sensitivity of 75.4% (95% CI 0.683-0.817) and 67.1% (95% CI 0.647-0.695), respectively. When testing KRAS, pooled sensitivity was 38.7% (95% CI 0.266-0.519) in the CTC group and 65.1% (95% CI 0.558-0.736) in the ctDNA group. The diagnostic performance of ctDNA in testing ALK and BRAF was also evaluated. Heterogeneity among the 47 articles was acceptable. CONCLUSION ctDNA might be a more promising biomarker with equivalent performance to CTCs when detecting EGFR and its detailed subtypes, and superior diagnostic capacity when testing KRAS and ALK. In addition, the diagnostic performance of ctDNA and CTCs depends on the detection methods greatly, and this warrants further studies to explore more sensitive methods.
Collapse
Affiliation(s)
- Mengyuan Lyu
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China,
| | - Jian Zhou
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kang Ning
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China,
| |
Collapse
|
14
|
Huang M, Wei S. Overview of Molecular Testing of Cytology Specimens. Acta Cytol 2019; 64:136-146. [PMID: 30917368 DOI: 10.1159/000497187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Utilizing cytology specimens for molecular testing has attracted increasing attention in the era of personalized medicine. Cytology specimens are clinically easier to access. The samples can be quickly and completely fixed in a very short time of fixation before tissue degradation occurs, compared to hours or days of fixation in surgical pathology specimens. In addition, cytology specimens can be fixed without formalin, which can significantly damage DNA and RNA. All these factors contribute to the superb quality of DNA and RNA in cytology specimens for molecular tests. STUDY DESIGN We summarize the most pertinent information in the literature regarding molecular testing in the field of cytopathology. RESULTS The first part focuses on the types of cytological specimens that can be used for molecular testing, including the advantages and limitations. The second section describes the common molecular tests and their clinical application. CONCLUSION Various types of cytology specimens are suitable for many molecular tests, which may require additional clinical laboratory validation.
Collapse
Affiliation(s)
- Min Huang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Shuanzeng Wei
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA,
| |
Collapse
|
15
|
Cabanero M, Tsao MS. Circulating tumour DNA in EGFR-mutant non-small-cell lung cancer. ACTA ACUST UNITED AC 2018; 25:S38-S44. [PMID: 29910646 DOI: 10.3747/co.25.3761] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of targeted therapy in non-small-cell lung cancer (nsclc) has made the routine molecular diagnosis of EGFR mutations crucial for optimal patient management. Obtaining tumour tissue for biomarker testing, especially in the setting of re-biopsy, can present many challenges. A potential alternative source of tumour dna is circulating cell-free tumour-derived dna (ctdna). Although ctdna is present in low quantities in plasma, the convenience of sample acquisition and the increasing reliability of detection methods make this approach a promising one. The various performance characteristics of both digital and nondigital platforms are still variable, and a standardized approach is needed that will make those platforms reliable clinical tools for the detection of EGFR sensitizing mutations and resistance mutations, including the T790M resistance mutation. Information derived from ctdna can be used to assess tumour burden, to identify genomic-based resistance mechanisms, and to track dynamic changes during therapy.
Collapse
Affiliation(s)
- M Cabanero
- Princess Margaret Cancer Centre, University Health Network, and.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON
| | - M S Tsao
- Princess Margaret Cancer Centre, University Health Network, and.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON
| |
Collapse
|
16
|
Shen H, Che K, Cong L, Dong W, Zhang T, Liu Q, Du J. Diagnostic and prognostic value of blood samples for KRAS mutation identification in lung cancer: a meta-analysis. Oncotarget 2018; 8:36812-36823. [PMID: 28415658 PMCID: PMC5482700 DOI: 10.18632/oncotarget.15972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/28/2017] [Indexed: 12/20/2022] Open
Abstract
Circulating tumor DNA (ctDNA) and tumor cells (CTC) are novel approaches for identifying genomic alterations. Thus, we designed a meta-analysis to evaluate the diagnostic value and prognostic significance of a KRAS proto-oncogene, GTPase (KRAS) mutation for lung cancer patients. All included articles were from PubMed, EMBASE, Web of Science and Cochrane Library. Twelve articles that described 1,131 patients were reviewed. True positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) were used to calculate pooled sensitivity, specificity, the positive likelihood ratio (PLR), the negative likelihood ratio (NLR), a diagnostic odds ratio (DOR), the area under the curve (AUC) and corresponding 95% confidence intervals (95% CI). PLR is calculated as sensitivity/(1-specificity) and NLR is (1– sensitivity)/specificity. DOR is a measured of diagnostic effectiveness (PLR/NLR). A survival analysis subgroup was also designed to evaluate prognostic significance. Pooled sensitivity, specificity, PLR, NLR, DOR and AUC were 0.79 (95% CI, 0.63-0.89), 0.93 (95% CI, 0.89-0.96), 12.13 (92% CI, 7.11-20.67), 0.22 (95% CI, 0.12-0.41), 54.82 (95% CI, 23.11-130.09), and 0.95 (95% CI, 0.93–0.96), respectively. KRAS mutation and wild-type hazard ratios for overall survival and progression-free survival were 1.37 (95% CI, 1.08–1.66), 1.46 (95% CI, 1.15-1.77) in blood samples, and 1.16 (95% CI, 1.03–1.28), 1.28 (95% CI, 1.09–1.46) in tumor tissue.
Collapse
Affiliation(s)
- Hongchang Shen
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Keying Che
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Lei Cong
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Wei Dong
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Tiehong Zhang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Qi Liu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| |
Collapse
|
17
|
Chen K, Zhao H, Yang F, Hui B, Wang T, Wang LT, Shi Y, Wang J. Dynamic changes of circulating tumour DNA in surgical lung cancer patients: protocol for a prospective observational study. BMJ Open 2018; 8:e019012. [PMID: 29437753 PMCID: PMC5829675 DOI: 10.1136/bmjopen-2017-019012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Circulating tumour DNA (ctDNA) has potential applications in cancer management. Most previous studies about ctDNA focused on advanced stage cancer patients. We have completed a clinical prospective study (NCT02645318) and showed the feasibility and clinical application of ctDNA detection in early stage non-small cell lung cancer (NSCLC) patients. The aim of this study is to investigate the elimination rate of ctDNA level after surgery. This is the first prospective study to evaluate the perioperative dynamic changes of ctDNA in surgical lung cancer patients. METHODS AND ANALYSIS This is a prospective observational study to determine the elimination rate of circulating tumour DNA after surgery. Consecutive patients with suspected lung cancer who undergo curative-intent lung resection will be enrolled. 10 mL blood samples are taken by intravenous puncture. Plasma samples are obtained before surgery (time A) and at a series of scheduled time-points (2 min to 72 hours, time B to F) after tumour resection. DNA is prepared from 4 mL of purified plasma. A multiplex assay based on circulating single-molecule amplification and resequencing technology (cSMART) is used to simultaneously detect and quantitate hot spot EGFR, KRAS, BRAF, ERBB2, PIK3CA, TP53, ALK, RET and MET plasma DNA variants. Positive plasma mutations are validated in tumour tissue and normal lung tissue by targeted sequencing. ETHICS AND DISSEMINATION Ethical approval has been obtained from the Peking University People's Hospital Medical Ethics Committee (2016PHB156-01). Results will be disseminated through presentations at scientific meetings and publications in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT02965391; Pre-results.
Collapse
Affiliation(s)
- Kezhong Chen
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| | - Heng Zhao
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| | - Bengang Hui
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| | | | | | | | - Jun Wang
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
18
|
Fahoum I, Forer R, Volodarsky D, Vulih I, Bick T, Sarji S, Bamberger Z, Ben-Izhak O, Sabo E, Hershberg R, Hershkovitz D. Characterization of Factors Affecting the Detection Limit of EGFR p.T790M in Circulating Tumor DNA. Technol Cancer Res Treat 2018; 17:1533033818793653. [PMID: 30099961 PMCID: PMC6090485 DOI: 10.1177/1533033818793653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/30/2018] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Circulating tumor DNA is a promising noninvasive tool for cancer monitoring. One of the challenges in applying this tool is the detection of low-frequency mutations. The detection limit of these mutations varies between different molecular methods. The aim of this study is to characterize the factors affecting the limit of detection for epidermal growth factor receptor p.T790M mutation in circulating tumor DNA of patients with lung adenocarcinoma. METHODS DNA was extracted from plasma samples of 102 patients. For sequencing the DNA, we used 2 different next-generation sequencing-based platforms: Ion Torrent Personal Genome Machine (56 cases) and Roche/454 (46 cases). Serially diluted synthetic DNA samples carrying the p.T790M mutation were sequenced using the Ion Torrent Personal Genome Machine for validation. Limit of detection was determined through the analysis of non-hot-spot nonreference reads, which were regarded as sequencing artifacts. RESULTS The frequency of the non-hot-spot nonreference reads was higher in Ion Torrent Personal Genome Machine compared to Roche/454 (0.07% ± 0.08% and 0.03% ± 0.06%, respectively, P < .001). We found that different base type substitutions occur with different frequency. Since the base substitution leading to p.T790M mutation is C>T transition, its frequency was used to determine the limit of detection for the assay. Based on the C>T non-hot-spot nonreference allele frequency, we found that the limit of detection is 0.18% in Ion Torrent Personal Genome Machine and 0.1% in Roche/454. Based on these values, 48% and 56% of the cases were positive for T790M mutation in Ion Torrent Personal Genome Machine and Roche/454 groups, respectively. Agreement between duplicates was 76% in Ion Torrent Personal Genome Machine and 72% in Roche/454. Using serially diluted synthetic DNA samples carrying the p.T790M mutation, we could identify mutations with allele frequency of 0.18% or more using the Ion Torrent Personal Genome Machine, supporting our approach to determine the detection limit. CONCLUSION Both the sequencing platform and the specific nucleotide change affect the limit of detection and should therefore be determined in the validation process of new assays.
Collapse
Affiliation(s)
- Ibrahim Fahoum
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv,
Israel
| | - Relly Forer
- Dyn Diagnostics, Assaf Harofeh Hospital, Zriffin, Israel
| | | | - Inna Vulih
- Dyn Diagnostics, Assaf Harofeh Hospital, Zriffin, Israel
| | - Tova Bick
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Shada Sarji
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Zeev Bamberger
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Ofer Ben-Izhak
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
- Technion Integrative Cancer Center at the Ruth (TICC) and Bruce Rappaport
Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Edmond Sabo
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
- Technion Integrative Cancer Center at the Ruth (TICC) and Bruce Rappaport
Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Technion Integrative Cancer Center at the Ruth (TICC) and Bruce Rappaport
Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
- Department of Genetics and Developmental Biology, the Ruth and Bruce
Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Dov Hershkovitz
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv,
Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
ALK Status Assessment with Liquid Biopsies of Lung Cancer Patients. Cancers (Basel) 2017; 9:cancers9080106. [PMID: 28805673 PMCID: PMC5575609 DOI: 10.3390/cancers9080106] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/06/2017] [Accepted: 08/10/2017] [Indexed: 12/22/2022] Open
Abstract
Patients with advanced stage non-small cell lung carcinoma (NSCLC) harboring an anaplastic lymphoma kinase ALK gene rearrangement, detected from a tissue sample, can benefit from targeted ALK inhibitor treatment. However, while treatment is initially effective in most cases, relapse or progression occurs due to different resistance mechanisms including mutations in the tyrosine kinase domain of echinoderm microtubule-associated protein-like 4 (EML44)-ALK. The liquid biopsy concept has recently radically changed the clinical care of NSCLC patients, in particular for those harboring an epidermal growth factor receptor (EGFR) gene mutation. Therefore, liquid biopsy is an alternative or complementary method to tissue biopsy for the detection of some resistance mutations in EGFR arising during tyrosine kinase inhibitor treatment. Moreover, in some frail patients, or if the tumor lesion is not accessible to a tissue biopsy, a liquid biopsy can also detect some activating mutations in EGFR on initial assessment. Recent studies have evaluated the possibility of also using a liquid biopsy approach to detect an ALK rearrangement and/or the emergence during inhibitor treatment of some resistance mutations in ALK. These assessments can be performed by studying circulating tumor cells by fluorescent in situ hybridization and by immunocytochemistry and/or after the isolation of RNA from plasma samples, free or associated with platelets. Thus, the liquid biopsy may be a complementary or sometimes alternative method for the assessment of the ALK status in certain NSCLC patients, as well as a non-invasive approach for early detection of ALK mutations. In this review, we highlight the current data concerning the role of the liquid biopsy for the ALK status assessment for NSCLC patients, and we compare the different approaches for this evaluation from blood samples.
Collapse
|