1
|
Shishido SN, Marvit A, Pham D, Luo T, Xu L, Mason J, Priceman SJ, Portnow J, Kuhn P. Multi-Omic Characterization of Single Cells and Cell-Free Components Detected in the Cerebrospinal Fluid of Patients with Leptomeningeal Disease. Cancers (Basel) 2024; 16:3746. [PMID: 39594700 PMCID: PMC11592257 DOI: 10.3390/cancers16223746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Up to 30% of patients with breast cancers will develop brain or leptomeningeal metastases, and this risk is especially high with HER2-positive cancers. For patients with central nervous system metastases, cerebrospinal fluid (CSF) liquid biopsies are a promising opportunity to monitor disease, inform treatment, and predict prognosis. This pilot study investigated CSF liquid biopsy analytes from three patients diagnosed with central nervous system metastases based on imaging but not confirmed via clinical cytology. METHODS The detection of cellular analytes with the non-enrichment high-definition single-cell assay (HDSCA3.0) workflow was compared between the CSF and matched peripheral blood (PB) samples. RESULTS Circulating tumor cells (CTCs) were detected in the CSF but not the PB and were subsequently molecularly characterized using single-cell genomics and targeted multiplexed proteomics to reveal a clonal population of phenotypically heterogeneous cells. There was a lack of concordance in the copy number alteration profiles between CTCs and cell-free DNA (cfDNA) in the CSF. Extracellular vesicle surface marker analysis in CSF revealed a prominent signal among tetraspanins (CD9/CD63/CD81), with CD81 exhibiting the highest signal across all patients. CONCLUSIONS The data presented suggest that CSF could be a useful tool for diagnosing and assessing disease severity.
Collapse
Affiliation(s)
- Stephanie N. Shishido
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA (D.P.); (T.L.); (J.M.)
| | - Amelia Marvit
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA (D.P.); (T.L.); (J.M.)
| | - Doanna Pham
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA (D.P.); (T.L.); (J.M.)
| | - Theresa Luo
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA (D.P.); (T.L.); (J.M.)
| | - Liya Xu
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
- USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jeremy Mason
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA (D.P.); (T.L.); (J.M.)
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Saul J. Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA;
- Department of Medicine, KSOM/NCCC Center for Cancer Cellular Immunotherapy, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Jana Portnow
- Department of Medical Oncology & Therapeutics Research, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA;
| | - Peter Kuhn
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA (D.P.); (T.L.); (J.M.)
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Resnick K, Shah A, Mason J, Kuhn P, Nieva J, Shishido SN. Circulation of rare events in the liquid biopsy for early detection of lung mass lesions. Thorac Cancer 2024; 15:2100-2109. [PMID: 39233479 PMCID: PMC11471425 DOI: 10.1111/1759-7714.15429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Lung cancer screening with low-dose computed tomography (CT) scans (LDCT) has reduced mortality for patients with high-risk smoking histories, but it has significant limitations: LDCT screening implementation remains low, high rates of false-positive scans, and current guidelines exclude those without smoking histories. We sought to explore the utility of liquid biopsy (LBx) in early cancer screening and diagnosis of lung cancer. METHODS Using the high-definition single-cell assay workflow, we analyzed 99 peripheral blood samples from three cohorts: normal donors (NDs) with no known pathology (n = 50), screening CT patients (n = 25) with Lung-RADS score of 1-2, and biopsy (BX) patients (n = 24) with abnormal CT scans requiring tissue biopsy. RESULTS For CT and BX patients, demographic information was roughly equivalent; however, average pack-years smoked differed. A total of 14 (58%) BX patients were diagnosed with primary lung cancer (BX+). The comparison of the rare event enumerations among the cohorts revealed a greater incidence of total events, rare cells, and oncosomes, as well as specific cellular phenotypes in the CT and BX cohorts compared with the ND cohort. LBx analytes were also significantly elevated in the BX compared with the CT samples, but there was no difference between BX+ and BX- samples. CONCLUSIONS The data support the utility of the LBx in distinguishing patients with an alveolar lesion from those without, providing a potential avenue for prescreening before LDCT.
Collapse
Affiliation(s)
- Karen Resnick
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Anya Shah
- Convergent Science Institute for Cancer, Michelson Center, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jeremy Mason
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Convergent Science Institute for Cancer, Michelson Center, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Institute of Urology, Catherine & Joseph Aresty Department of UrologyKeck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Peter Kuhn
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Convergent Science Institute for Cancer, Michelson Center, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Institute of Urology, Catherine & Joseph Aresty Department of UrologyKeck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biomedical EngineeringViterbi School of Engineering, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Aerospace and Mechanical EngineeringViterbi School of Engineering, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biological SciencesDornsife College of Letters, Arts, and Sciences, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jorge Nieva
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Stephanie N. Shishido
- Convergent Science Institute for Cancer, Michelson Center, University of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Shishido SN, Suresh D, Courcoubetis G, Ye B, Lin E, Mason J, Park K, Lewis M, Wang R, Lo SK, Kuhn P, Pandol S. Determining the efficacy of ExThera Seraph100 blood filtration in patients diagnosed with pancreatic cancer through the liquid biopsy. BJC REPORTS 2024; 2:47. [PMID: 39516545 PMCID: PMC11524105 DOI: 10.1038/s44276-024-00069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cancer becomes lethal as it spreads from the primary site to the rest of the body. Circulating tumor cells (CTCs) are biomarkers of disease progression and have been associated with decreased overall survival. Blood filtration is a novel concept for removing CTCs from circulation to improve patient prognosis. METHODS This study utilizes liquid biopsy to assess the efficacy of ExThera Medical's Seraph® 100 Microbind® Affinity Blood Filter on the blood of patients with pancreatic ductal adenocarcinoma (PDAC) using the third generation high-definition single cell assay workflow. Blood samples from treatment-naïve PDAC patients were collected and analyzed to characterize the CTCs and other rare cells present before and after filtration. RESULTS Examination of 6 paired portal vein blood (PoVB) samples demonstrated a statistically significant decrease in total rare cells, total cytokeratin (CK)+ cells, and CTCs across all patients due to filtration. Furthermore, analysis of 2 paired peripheral blood (PB) samples showed a decrease in total rare cells, total CK+ cells, and specific phenotypes of rare cells after filtration. DISCUSSION These preliminary results demonstrate initial proof of concept that this filtration device can remove CTCs from circulation and may therefore be useful as a therapy or adjunct in PDAC patient care.
Collapse
Affiliation(s)
- Stephanie N Shishido
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Divya Suresh
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - George Courcoubetis
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Brandon Ye
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Emmeline Lin
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jeremy Mason
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ken Park
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Michael Lewis
- Departments of Medicine and Pathology, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Pathology, VA Greater Los Angeles Medical Center, Los Angeles, CA, 90073, USA
- Center for Cancer Research and Development, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Ruoxiang Wang
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Simon K Lo
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Peter Kuhn
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA.
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Stephen Pandol
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| |
Collapse
|
4
|
Ghoreifi A, Shishido SN, Sayeed S, Courcoubetis G, Huang A, Schuckman A, Aron M, Desai M, Daneshmand S, Gill IS, Kuhn P, Djaladat H, Mason J. Blood-based liquid biopsy: A promising noninvasive test in diagnosis, surveillance, and prognosis of patients with upper tract urothelial carcinoma. Urol Oncol 2024; 42:118.e9-118.e17. [PMID: 38383240 DOI: 10.1016/j.urolonc.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVES To assess the efficacy of blood-based liquid biopsy in the diagnosis, surveillance, and prognosis of upper tract urothelial carcinoma (UTUC). METHODS AND MATERIALS In this prospective study, peripheral blood samples were collected from patients with primary UTUC before surgery with curative intent and follow-up visits at University of Southern California between May 2021 and September 2022. The samples were analyzed using the third-generation comprehensive high-definition single-cell assay (HDSCA3.0) to detect rare events, including circulating tumor cells (CTCs) and oncosomes, based on the immunofluorescence signals of DAPI (D), cytokeratin (CK), CD45/CD31 (CD), and vimentin (V). The findings of pre-surgery liquid biopsies were compared with those of blood samples from normal donors (NDs) and matched follow-up liquid biopsies. The association between liquid biopsy findings and clinical data, including recurrence-free survival (RFS), was also assessed. RESULTS Twenty-eight patients with UTUC were included, of whom 21 had follow-up samples. Significant differences in specific rare analytes were detected in the preoperative samples compared to the NDs. In the post- vs. presurgery matched analysis, a significant decrease was detected in total-, CK-, and CK|V oncosomes, as well as in D-, D|V-, and D|V|CD cells. With a median follow-up of 11 months, 8 patients had disease recurrence. Survival analysis demonstrated that patients with >1.95 preoperative CK|V oncosomes (p = 0.020) and those with >4.18 D|CK|V cells (p = 0.050) had worse RFS compared to other patients. CONCLUSIONS This study demonstrated promising initial evidence for the biomarker role of CTCs and oncosomes in the diagnosis and surveillance of patients with UTUC.
Collapse
Affiliation(s)
- Alireza Ghoreifi
- Catherine and Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Stephanie N Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA
| | - Salmaan Sayeed
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA
| | - George Courcoubetis
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA
| | - Amy Huang
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA
| | - Anne Schuckman
- Catherine and Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Monish Aron
- Catherine and Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Mihir Desai
- Catherine and Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Siamak Daneshmand
- Catherine and Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Inderbir S Gill
- Catherine and Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Peter Kuhn
- Catherine and Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA; Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA; Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA
| | - Hooman Djaladat
- Catherine and Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| | - Jeremy Mason
- Catherine and Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA; Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| |
Collapse
|
5
|
Shishido SN, Hart O, Jeong S, Moriarty A, Heeke D, Rossi J, Bot A, Kuhn P. Liquid biopsy approach to monitor the efficacy and response to CAR-T cell therapy. J Immunother Cancer 2024; 12:e007329. [PMID: 38350684 PMCID: PMC10862257 DOI: 10.1136/jitc-2023-007329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cells are approved for use in the treatment of hematological malignancies. Axicabtagene ciloleucel (YESCARTA) and brexucabtagene autoleucel (TECARTUS) genetically modified autologous T cells expressing an anti-CD19 scFv based on the FMC63 clone have shown impressive response rates for the treatment of CD19+B cell malignancies, but there remain challenges in monitoring long-term persistence as well as the functional characterization of low-level persisting CAR-T cells in patients. Furthermore, due to CD19-negative driven relapse, having the capability to monitor patients with simultaneous detection of the B cell malignancy and persisting CAR-T cells in patient peripheral blood is important for ensuring timely treatment optionality and understanding relapse. METHODS This study demonstrates the development and technical validation of a comprehensive liquid biopsy, high-definition single cell assay (HDSCA)-HemeCAR for (1) KTE-X19 CAR-T cell identification and analysis and (2) simultaneously monitoring the CD19-epitope landscape on neoplastic B cells in cryopreserved or fresh peripheral blood. Proprietary anti-CD19 CAR reagents, healthy donor transduced CAR-T cells, and patient samples consisting of malignant B cell fractions from manufacturing were used for assay development. RESULTS The CAR-T assay showed an approximate limit of detection at 1 cell in 3 million with a sensitivity of 91%. Genomic analysis was additionally used to confirm the presence of the CAR transgene. This study additionally reports the successful completion of two B cell assays with multiple CD19 variants (FMC63 and LE-CD19) and a unique fourth channel biomarker (CD20 or CD22). In patient samples, we observed that CD19 isoforms were highly heterogeneous both intrapatient and interpatient. CONCLUSIONS With the simultaneous detection of the CAR-T cells and the B cell malignancy in patient peripheral blood, the HDSCA-HemeCAR workflow may be considered for risk monitoring and patient management.
Collapse
Affiliation(s)
- Stephanie N Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Olivia Hart
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Sujin Jeong
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Aidan Moriarty
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Darren Heeke
- Kite A Gilead Company, Santa Monica, California, USA
| | - John Rossi
- Kite A Gilead Company, Santa Monica, California, USA
| | - Adrian Bot
- Kite A Gilead Company, Santa Monica, California, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
Setayesh SM, Ndacayisaba LJ, Rappard KE, Hennes V, Rueda LYM, Tang G, Lin P, Orlowski RZ, Symer DE, Manasanch EE, Shishido SN, Kuhn P. Targeted single-cell proteomic analysis identifies new liquid biopsy biomarkers associated with multiple myeloma. NPJ Precis Oncol 2023; 7:95. [PMID: 37723227 PMCID: PMC10507120 DOI: 10.1038/s41698-023-00446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
Multiple myeloma (MM) is accompanied by alterations to the normal plasma cell (PC) proteome, leading to changes to the tumor microenvironment and disease progression. There is a great need for understanding the consequences that lead to MM progression and for the discovery of new biomarkers that can aid clinical diagnostics and serve as targets for therapeutics. This study demonstrates the applicability of utilizing the single-cell high-definition liquid biopsy assay (HDSCA) and imaging mass cytometry to characterize the proteomic profile of myeloma. In our study, we analyzed ~87,000 cells from seven patient samples (bone marrow and peripheral blood) across the myeloma disease spectrum and utilized our multiplexed panel to characterize the expression of clinical markers for PC classification, additional potential therapeutic targets, and the tumor microenvironment cells. Our analysis showed BCMA, ICAM3 (CD50), CD221, and CS1 (SLAMF7) as the most abundantly expressed markers on PCs across all myeloma stages, with BCMA, ICAM3, and CD221 having significantly higher expression levels on disease versus precursor PCs. Additionally, we identify significantly elevated levels of expression for CD74, MUM1, CD229, CD44, IGLL5, Cyclin D1, UBA52, and CD317 on PCs from overt disease conditions compared to those from precursor states.
Collapse
Affiliation(s)
- Sonia M Setayesh
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Libere J Ndacayisaba
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kate E Rappard
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Valerie Hennes
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Luz Yurany Moreno Rueda
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guilin Tang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pei Lin
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David E Symer
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Elisabet E Manasanch
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephanie N Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
- Catherine & Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
7
|
Qi E, Courcoubetis G, Liljegren E, Herrera E, Nguyen N, Nadri M, Ghandehari S, Kazemian E, Reckamp KL, Merin NM, Merchant A, Mason J, Figueiredo JC, Shishido SN, Kuhn P. Investigation of liquid biopsy analytes in peripheral blood of individuals after SARS-CoV-2 infection. EBioMedicine 2023; 90:104519. [PMID: 36921564 PMCID: PMC10008671 DOI: 10.1016/j.ebiom.2023.104519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Post-acute COVID-19 syndrome (PACS) is linked to severe organ damage. The identification and stratification of at-risk SARS-CoV-2 infected individuals is vital to providing appropriate care. This exploratory study looks for a potential liquid biopsy signal for PACS using both manual and machine learning approaches. METHODS Using a high definition single cell assay (HDSCA) workflow for liquid biopsy, we analysed 100 Post-COVID patients and 19 pre-pandemic normal donor (ND) controls. Within our patient cohort, 73 had received at least 1 dose of vaccination prior to SARS-CoV-2 infection. We stratified the COVID patients into 25 asymptomatic, 22 symptomatic COVID-19 but not suspected for PACS and 53 PACS suspected. All COVID-19 patients investigated in this study were diagnosed between April 2020 and January 2022 with a median 243 days (range 16-669) from diagnosis to their blood draw. We did a histopathological examination of rare events in the peripheral blood and used a machine learning model to evaluate predictors of PACS. FINDINGS The manual classification found rare cellular and acellular events consistent with features of endothelial cells and platelet structures in the PACS-suspected cohort. The three categories encompassing the hypothesised events were observed at a significantly higher incidence in the PACS-suspected cohort compared to the ND (p-value < 0.05). The machine learning classifier performed well when separating the NDs from Post-COVID with an accuracy of 90.1%, but poorly when separating the patients suspected and not suspected of PACS with an accuracy of 58.7%. INTERPRETATION Both the manual and the machine learning model found differences in the Post-COVID cohort and the NDs, suggesting the existence of a liquid biopsy signal after active SARS-CoV-2 infection. More research is needed to stratify PACS and its subsyndromes. FUNDING This work was funded in whole or in part by Fulgent Genetics, Kathy and Richard Leventhal and Vassiliadis Research Fund. This work was also supported by the National Cancer InstituteU54CA260591.
Collapse
Affiliation(s)
- Elizabeth Qi
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - George Courcoubetis
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Emmett Liljegren
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ergueen Herrera
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd Suite AC1072, Los Angeles, CA 90048, USA
| | - Nathalie Nguyen
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Maimoona Nadri
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sara Ghandehari
- Cedars-Sinai Medical Center, Pulmonary Rehabilitation in the Women's Guild Lung Institute, Los Angeles, CA 90048, USA
| | - Elham Kazemian
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd Suite AC1072, Los Angeles, CA 90048, USA
| | - Karen L Reckamp
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd Suite AC1072, Los Angeles, CA 90048, USA
| | - Noah M Merin
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Akil Merchant
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jeremy Mason
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Catherine & Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd Suite AC1072, Los Angeles, CA 90048, USA
| | - Stephanie N Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Catherine & Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
8
|
Ndacayisaba LJ, Rappard KE, Shishido SN, Setayesh SM, Tang G, Lin P, Matsumoto N, Hsu CJ, Nevarez R, Velasco CR, Naghdloo A, Yang E, Kelly K, Hicks J, Mason J, Orlowski RZ, Manasanch EE, Kuhn P. Characterization of BCMA Expression in Circulating Rare Single Cells of Patients with Plasma Cell Neoplasms. Int J Mol Sci 2022; 23:13427. [PMID: 36362214 PMCID: PMC9658574 DOI: 10.3390/ijms232113427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
B-cell maturation antigen (BCMA), a key regulator of B-cell proliferation and survival, is highly expressed in almost all cases of plasma cell neoplasms and B-lymphoproliferative malignancies. BCMA is a robust biomarker of plasma cells and a therapeutic target with substantial clinical significance. However, the expression of BCMA in circulating tumor cells of patients with hematological malignancies has not been validated for the detection of circulating plasma and B cells. The application of BCMA as a biomarker in single-cell detection and profiling of circulating tumor cells in patients' blood could enable early disease profiling and therapy response monitoring. Here, we report the development and validation of a slide-based immunofluorescence assay (i.e., CD138, BCMA, CD45, DAPI) for enrichment-free detection, quantification, and morphogenomic characterization of BCMA-expressing cells in patients (N = 9) with plasma cell neoplasms. Varying morphological subtypes of circulating BCMA-expressing cells were detected across the CD138(+/-) and CD45(+/-) compartments, representing candidate clonotypic post-germinal center B cells, plasmablasts, and both normal and malignant plasma cells. Genomic analysis by single-cell sequencing and correlation to clinical FISH cytogenetics provides validation, with data showing that patients across the different neoplastic states carry both normal and altered BCMA-expressing cells. Furthermore, altered cells harbor cytogenetic events detected by clinical FISH. The reported enrichment-free liquid biopsy approach has potential applications as a single-cell methodology for the early detection of BCMA+ B-lymphoid malignancies and in monitoring therapy response for patients undergoing anti-BCMA treatments.
Collapse
Affiliation(s)
- Libere J. Ndacayisaba
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
- Programs in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kate E. Rappard
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephanie N. Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Sonia M. Setayesh
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Guilin Tang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pei Lin
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas Matsumoto
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Ching-Ju Hsu
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Rafael Nevarez
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Carmen Ruiz Velasco
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Amin Naghdloo
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Eric Yang
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kevin Kelly
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jeremy Mason
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Catherine & Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert Z. Orlowski
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elisabet E. Manasanch
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Catherine & Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
9
|
Defining A Liquid Biopsy Profile of Circulating Tumor Cells and Oncosomes in Metastatic Colorectal Cancer for Clinical Utility. Cancers (Basel) 2022; 14:cancers14194891. [PMID: 36230811 PMCID: PMC9563925 DOI: 10.3390/cancers14194891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Metastatic colorectal cancer (mCRC) is typified by its tumor heterogeneity and changing disease states, suggesting that personalized medicine approaches could be vital to improving clinical practice. As a minimally invasive approach, the liquid biopsy has the potential to be a powerful longitudinal prognostic tool. We investigated mCRC patients’ peripheral blood samples using an enrichment-free single-cell approach to capture the broader rare-event population beyond the conventionally detected epithelial-derived circulating tumor cell (CTC). Our analysis reveals a heterogenous profile of CTCs and oncosomes not commonly found in normal donor samples. We identified select rare cell types based on their distinct immunofluorescence expression and morphology across multiple assays. Lastly, we highlight correlations between enumerations of the blood-based analytes and progression-free survival. This study clinically validates an unbiased rare-event approach in the liquid biopsy, motivating future studies to further investigate these analytes for their prognostic potential. Abstract Metastatic colorectal cancer (mCRC) is characterized by its extensive disease heterogeneity, suggesting that individualized analysis could be vital to improving patient outcomes. As a minimally invasive approach, the liquid biopsy has the potential to longitudinally monitor heterogeneous analytes. Current platforms primarily utilize enrichment-based approaches for epithelial-derived circulating tumor cells (CTC), but this subtype is infrequent in the peripheral blood (PB) of mCRC patients, leading to the liquid biopsy’s relative disuse in this cancer type. In this study, we evaluated 18 PB samples from 10 mCRC patients using the unbiased high-definition single-cell assay (HDSCA). We first employed a rare-event (Landscape) immunofluorescence (IF) protocol, which captured a heterogenous CTC and oncosome population, the likes of which was not observed across 50 normal donor (ND) samples. Subsequent analysis was conducted using a colorectal-targeted IF protocol to assess the frequency of CDX2-expressing CTCs and oncosomes. A multi-assay clustering analysis isolated morphologically distinct subtypes across the two IF stains, demonstrating the value of applying an unbiased single-cell approach to multiple assays in tandem. Rare-event enumerations at a single timepoint and the variation of these events over time correlated with progression-free survival. This study supports the clinical utility of an unbiased approach to interrogating the liquid biopsy in mCRC, representing the heterogeneity within the CTC classification and warranting the further molecular characterization of the rare-event analytes with clinical promise.
Collapse
|
10
|
Multianalyte liquid biopsy to aid the diagnostic workup of breast cancer. NPJ Breast Cancer 2022; 8:112. [PMID: 36167819 PMCID: PMC9515081 DOI: 10.1038/s41523-022-00480-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer (BC) affects 1 in every 8 women in the United States and is currently the most prevalent cancer worldwide. Precise staging at diagnosis and prognosis are essential components for the clinical management of BC patients. In this study, we set out to evaluate the feasibility of the high-definition single cell (HDSCA) liquid biopsy (LBx) platform to stratify late-stage BC, early-stage BC, and normal donors using peripheral blood samples. Utilizing 5 biomarkers, we identified rare circulating events with epithelial, mesenchymal, endothelial and hematological origin. We detected a higher level of CTCs in late-stage patients, compared to the early-stage and normal donors. Additionally, we observed more tumor-associated large extracellular vesicles (LEVs) in the early-stage, compared to late-stage and the normal donor groups. Overall, we were able to detect reproducible patterns in the enumeration of rare cells and LEVs of cancer vs. normal donors and early-stage vs. late-stage BC with high accuracy, allowing for robust stratification. Our findings illustrate the feasibility of the LBx assay to provide robust detection of rare circulating events in peripheral blood draws and to stratify late-stage BC, early-stage BC, and normal donor samples.
Collapse
|
11
|
Liquid Biopsy Landscape in Patients with Primary Upper Tract Urothelial Carcinoma. Cancers (Basel) 2022; 14:cancers14123007. [PMID: 35740671 PMCID: PMC9221424 DOI: 10.3390/cancers14123007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Urothelial carcinomas (UCs) are a broad and heterogeneous group of malignancies, with the prevalence of upper tract urothelial carcinoma (UTUC) being rare, accounting for only 5-10% of total malignancies. There is a need for additional toolsets to assist the current clinical paradigm of care for patients with UTUC. As a non-invasive tool for the discovery of cancer-related biomarkers, the liquid biopsy has the potential to represent the complex process of tumorigenesis and metastasis. Herein, we show the efficacy of the liquid biopsy as a source of biomarkers for detecting UTUC. Using the third-generation high-definition single-cell assay (HDSCA3.0) workflow, we investigate liquid biopsy samples collected from patients with UTUC and normal donors (NDs) to provide critical information regarding the molecular and morphological characteristics of circulating rare events. We document several important findings from the liquid biopsy analysis of patients diagnosed with UTUC prior to surgery: (1) Large extracellular vesicles (LEVs) and circulating tumor cells (CTCs) are detectable in the peripheral blood. (2) The rare-event profile is highly heterogeneous. (3) Clinical data elements correlate with liquid biopsy analytes. Overall, this study provides evidence for the efficacy of the liquid biopsy in understanding the biology of UTUC with the future intent of informing clinical decision making, ultimately improving patient outcomes.
Collapse
|
12
|
Yuwono NL, Boyd MAA, Henry CE, Werner B, Ford CE, Warton K. Circulating cell-free DNA undergoes significant decline in yield after prolonged storage time in both plasma and purified form. Clin Chem Lab Med 2022; 60:1287-1298. [DOI: 10.1515/cclm-2021-1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/16/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Circulating DNA (cirDNA) is generally purified from plasma that has been biobanked for variable lengths of time. In long-term experiments or clinical trials, the plasma can be stored frozen for up to several years. Therefore, it is crucial to determine the stability of cirDNA to ensure confidence in sample quality upon analysis. Our main objective was to determine the effect of storage for up to 2 years on cirDNA yield and fragmentation.
Methods
We stored frozen EDTA plasma and purified cirDNA from 10 healthy female donors, then quantified cirDNA yield at baseline, and at regular intervals for up to 2 years, by qPCR and Qubit. We also compared cirDNA levels in non-haemolysed and haemolysed blood samples after 16 months of storage and tested the effect of varying DNA extraction protocol parameters.
Results
Storage up to two years caused an annual cirDNA yield decline of 25.5% when stored as plasma and 23% when stored as purified DNA, with short fragments lost more rapidly than long fragments. Additionally, cirDNA yield was impacted by plasma input and cirDNA elution volumes, but not by haemolysis.
Conclusions
The design of long-term cirDNA-based studies and clinical trials should factor in the deterioration of cirDNA during storage.
Collapse
Affiliation(s)
- Nicole Laurencia Yuwono
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| | - Mollie Ailie Acheson Boyd
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| | - Claire Elizabeth Henry
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| | - Bonnita Werner
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| | - Caroline Elizabeth Ford
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| | - Kristina Warton
- Gynaecological Cancer Research Group, Adult Cancer Program, School of Women’s and Children’s Health, Faculty of Medicine and Health, Lowy Cancer Research Centre, University of New South Wales , Sydney , Australia
| |
Collapse
|
13
|
Ndacayisaba LJ, Rappard KE, Shishido SN, Ruiz Velasco C, Matsumoto N, Navarez R, Tang G, Lin P, Setayesh SM, Naghdloo A, Hsu CJ, Maney C, Symer D, Bethel K, Kelly K, Merchant A, Orlowski R, Hicks J, Mason J, Manasanch EE, Kuhn P. Enrichment-Free Single-Cell Detection and Morphogenomic Profiling of Myeloma Patient Samples to Delineate Circulating Rare Plasma Cell Clones. Curr Oncol 2022; 29:2954-2972. [PMID: 35621632 PMCID: PMC9139906 DOI: 10.3390/curroncol29050242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
Multiple myeloma is an incurable malignancy that initiates from a bone marrow resident clonal plasma cell and acquires successive mutational changes and genomic alterations, eventually resulting in tumor burden accumulation and end-organ damage. It has been recently recognized that myeloma secondary genomic events result in extensive sub-clonal heterogeneity both in localized bone marrow areas and circulating peripheral blood plasma cells. Rare genomic subclones, including myeloma initiating cells, could be the drivers of disease progression and recurrence. Additionally, evaluation of rare myeloma cells in blood for disease monitoring has numerous advantages over invasive bone marrow biopsies. To this end, an unbiased method for detecting rare cells and delineating their genomic makeup enables disease detection and monitoring in conditions with low abundant cancer cells. In this study, we applied an enrichment-free four-plex (CD138, CD56, CD45, DAPI) immunofluorescence assay and single-cell DNA sequencing for morphogenomic characterization of plasma cells to detect and delineate common and rare plasma cells and discriminate between normal and malignant plasma cells in paired blood and bone marrow aspirates from five patients with newly diagnosed myeloma (N = 4) and monoclonal gammopathy of undetermined significance (n = 1). Morphological analysis confirms CD138+CD56+ cells in the peripheral blood carry genomic alterations that are clonally identical to those in the bone marrow. A subset of altered CD138+CD56- cells are also found in the peripheral blood consistent with the known variability in CD56 expression as a marker of plasma cell malignancy. Bone marrow tumor clinical cytogenetics is highly correlated with the single-cell copy number alterations of the liquid biopsy rare cells. A subset of rare cells harbors genetic alterations not detected by standard clinical diagnostic methods of random localized bone marrow biopsies. This enrichment-free morphogenomic approach detects and characterizes rare cell populations derived from the liquid biopsies that are consistent with clinical diagnosis and have the potential to extend our understanding of subclonality at the single-cell level in this disease. Assay validation in larger patient cohorts has the potential to offer liquid biopsy for disease monitoring with similar or improved disease detection as traditional blind bone marrow biopsies.
Collapse
Affiliation(s)
- Libere J. Ndacayisaba
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Kate E. Rappard
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Stephanie N. Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Carmen Ruiz Velasco
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Nicholas Matsumoto
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Rafael Navarez
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Guilin Tang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.T.); (P.L.)
| | - Pei Lin
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.T.); (P.L.)
| | - Sonia M. Setayesh
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Amin Naghdloo
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Ching-Ju Hsu
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - Carlisle Maney
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
| | - David Symer
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (R.O.); (E.E.M.)
| | - Kelly Bethel
- Department of Pathology, Scripps Clinic Medical Group, La Jolla, CA 92037, USA;
| | - Kevin Kelly
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Akil Merchant
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Robert Orlowski
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (R.O.); (E.E.M.)
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
- Department of Pathology, Scripps Clinic Medical Group, La Jolla, CA 92037, USA;
| | - Jeremy Mason
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Elisabeth E. Manasanch
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.S.); (R.O.); (E.E.M.)
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (L.J.N.); (K.E.R.); (S.N.S.); (C.R.V.); (N.M.); (R.N.); (S.M.S.); (A.N.); (C.-J.H.); (C.M.); (J.H.); (J.M.)
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: ; Tel.: +1-213-821-3980
| |
Collapse
|
14
|
Shishido SN, Masson R, Xu L, Welter L, Prabakar RK, D' Souza A, Spicer D, Kang I, Jayachandran P, Hicks J, Lu J, Kuhn P. Disease characterization in liquid biopsy from HER2-mutated, non-amplified metastatic breast cancer patients treated with neratinib. NPJ Breast Cancer 2022; 8:22. [PMID: 35181666 PMCID: PMC8857263 DOI: 10.1038/s41523-022-00390-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/14/2022] [Indexed: 12/18/2022] Open
Abstract
Metastatic breast cancer (mBC) patients have a high risk of progression and face poor prognosis overall, with about one third (34%) surviving five years or more. In rare instances (2-4% of cases) patients with mBC have ERBB2 (HER2) activating mutations but are ERBB2 non-amplified. Neratinib is a potent, irreversible inhibitor that binds HER2 and inhibits downstream signaling. We used the previously validated high-definition single cell assay (HDSCA) workflow to investigate the clinical significance of the liquid biopsy in ERBB2 mutant, non-amplified, post-menopausal mBC patients starting neratinib and fulvestrant combination therapy. Characterization with a comprehensive liquid biopsy methodology (HDSCA) included genomic analysis of both the cell-free DNA (cfDNA) and single circulating tumor cells (CTCs) to monitor tumor evolution and identify potential mutational variants unique to the patient's clinical response. A limited series of five sequentially enrolled patients presented here were from the MutHER ( https://www.clinicaltrials.gov , NCT01670877) or SUMMIT ( https://www.clinicaltrials.gov , NCT01953926) trials. Patients had an average of 5.4 lines of therapy before enrollment, variable hormone receptor status, and ERBB2 mutations at diagnosis and during treatment. CTC enumeration alone was not sufficient to predict clinical response. Treatment pressure was shown to lead to an observable change in CTC morphology and genomic instability (GI), suggesting these parameters may inform prognosis. Single cell copy number alteration (CNA) analysis indicated that the persistence or development of a clonal population of CTCs during treatment was associated with a worse response. Hierarchical clustering analysis of the single cells across all patients and timepoints identified distinct aberrant regions shared among patients, comprised of 26 genes that are similarly affected and may be related to drug resistance. Additionally, the genomic analysis of the cfDNA, identified new mutations in ERBB2, PIK3CA, and TP53 that arose likely due to treatment pressure in a patient with poor response, further providing insights on the dynamics of the cancer genome over the course of therapy. The data presented in this small cohort study demonstrates the feasibility of real-time molecular profiling of the cellular and acellular fractions of the liquid biopsy using the HDSCA methodology. Additional studies are necessary to determine the potential use of morphometric and genomic analysis as a prognostic tool to advance personalized oncology.
Collapse
Affiliation(s)
- Stephanie N Shishido
- Convergent Science Institute in Cancer (CSI-Cancer), Michelson Center for Convergent Bioscience, University of Southern California,1002 Childs Way, MCB 220, Los Angeles, CA, 90089, USA
| | - Rahul Masson
- Convergent Science Institute in Cancer (CSI-Cancer), Michelson Center for Convergent Bioscience, University of Southern California,1002 Childs Way, MCB 220, Los Angeles, CA, 90089, USA
| | - Liya Xu
- Convergent Science Institute in Cancer (CSI-Cancer), Michelson Center for Convergent Bioscience, University of Southern California,1002 Childs Way, MCB 220, Los Angeles, CA, 90089, USA
| | - Lisa Welter
- Convergent Science Institute in Cancer (CSI-Cancer), Michelson Center for Convergent Bioscience, University of Southern California,1002 Childs Way, MCB 220, Los Angeles, CA, 90089, USA
| | - Rishvanth Kaliappan Prabakar
- Convergent Science Institute in Cancer (CSI-Cancer), Michelson Center for Convergent Bioscience, University of Southern California,1002 Childs Way, MCB 220, Los Angeles, CA, 90089, USA
| | - Anishka D' Souza
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, NTT-3440, Los Angeles, CA, 90033, USA
| | - Darcy Spicer
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, NTT-3440, Los Angeles, CA, 90033, USA
| | - Irene Kang
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, NTT-3440, Los Angeles, CA, 90033, USA
| | - Priya Jayachandran
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, NTT-3440, Los Angeles, CA, 90033, USA
| | - James Hicks
- Convergent Science Institute in Cancer (CSI-Cancer), Michelson Center for Convergent Bioscience, University of Southern California,1002 Childs Way, MCB 220, Los Angeles, CA, 90089, USA
| | - Janice Lu
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, NTT-3440, Los Angeles, CA, 90033, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer (CSI-Cancer), Michelson Center for Convergent Bioscience, University of Southern California,1002 Childs Way, MCB 220, Los Angeles, CA, 90089, USA.
| |
Collapse
|
15
|
Shishido SN, Sayeed S, Courcoubetis G, Djaladat H, Miranda G, Pienta KJ, Nieva J, Hansel DE, Desai M, Gill IS, Kuhn P, Mason J. Characterization of Cellular and Acellular Analytes from Pre-Cystectomy Liquid Biopsies in Patients Newly Diagnosed with Primary Bladder Cancer. Cancers (Basel) 2022; 14:758. [PMID: 35159025 PMCID: PMC8833768 DOI: 10.3390/cancers14030758] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Urinary bladder cancer (BCa) is the 10th most frequent cancer in the world, most commonly found among the elderly population, and becomes highly lethal once cells have spread from the primary tumor to surrounding tissues and distant organs. Cystectomy, alone or with other treatments, is used to treat most BCa patients, as it offers the best chance of cure. However, even with curative intent, 29% of patients experience relapse of the cancer, 50% of which occur within the first year of surgery. This study aims to use the liquid biopsy to noninvasively detect disease and discover prognostic markers for disease progression. Using the third generation high-definition single cell assay (HDSCA3.0), 50 bladder cancer patient samples and 50 normal donor (ND) samples were analyzed for circulating rare events in the peripheral blood (PB), including circulating tumor cells (CTCs) and large extracellular vesicles (LEVs). Here, we show that (i) CTCs and LEVs are detected in the PB of BCa patients prior to cystectomy, (ii) there is a high heterogeneity of CTCs, and (iii) liquid biopsy analytes correlate with clinical data elements. We observed a significant difference in the incidence of rare cells and LEVs between BCa and ND samples (median of 74.61 cells/mL and 30.91 LEVs/mL vs. 34.46 cells/mL and 3.34 LEVs/mL, respectively). Furthermore, using classification models for the liquid biopsy data, we achieved a sensitivity of 78% and specificity of 92% for the identification of BCa patient samples. Taken together, these data support the clinical utility of the liquid biopsy in detecting BCa, as well as the potential for predicting cancer recurrence and survival post-cystectomy to better inform treatment decisions in BCa care.
Collapse
Affiliation(s)
- Stephanie N. Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (S.S.); (G.C.)
| | - Salmaan Sayeed
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (S.S.); (G.C.)
| | - George Courcoubetis
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (S.S.); (G.C.)
| | - Hooman Djaladat
- Catherine & Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (H.D.); (G.M.); (M.D.); (I.S.G.)
| | - Gus Miranda
- Catherine & Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (H.D.); (G.M.); (M.D.); (I.S.G.)
| | - Kenneth J. Pienta
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Jorge Nieva
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Donna E. Hansel
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - Mihir Desai
- Catherine & Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (H.D.); (G.M.); (M.D.); (I.S.G.)
| | - Inderbir S. Gill
- Catherine & Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (H.D.); (G.M.); (M.D.); (I.S.G.)
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (S.S.); (G.C.)
- Catherine & Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (H.D.); (G.M.); (M.D.); (I.S.G.)
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jeremy Mason
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; (S.N.S.); (S.S.); (G.C.)
- Catherine & Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (H.D.); (G.M.); (M.D.); (I.S.G.)
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| |
Collapse
|
16
|
Kolenčík D, Narayan S, Thiele JA, McKinley D, Gerdtsson AS, Welter L, Hošek P, Ostašov P, Vyčítal O, Brůha J, Fiala O, Šorejs O, Liška V, Pitule P, Kuhn P, Shishido SN. Circulating Tumor Cell Kinetics and Morphology from the Liquid Biopsy Predict Disease Progression in Patients with Metastatic Colorectal Cancer Following Resection. Cancers (Basel) 2022; 14:642. [PMID: 35158910 PMCID: PMC8833610 DOI: 10.3390/cancers14030642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
The liquid biopsy has the potential to improve current clinical practice in oncology by providing real-time personalized information about a patient's disease status and response to treatment. In this study, we evaluated 161 peripheral blood (PB) samples that were collected around surgical resection from 47 metastatic colorectal cancer (mCRC) patients using the High-Definition Single Cell Assay (HDSCA) workflow. In conjunction with the standard circulating tumor cell (CTC) enumeration, cellular morphology and kinetics between time-points of collection were considered in the survival analysis. CTCs, CTC-Apoptotic, and CTC clusters were found to indicate poor survival with an increase in cell count from pre-resection to post-resection. This study demonstrates that CTC subcategorization based on morphological differences leads to nuanced results between the subtypes, emphasizing the heterogeneity within the CTC classification. Furthermore, we show that factoring in the time-point of each blood collection is critical, both for its static enumeration and for the change in cell populations between draws. By integrating morphology and time-based analysis alongside standard CTC enumeration, liquid biopsy platforms can provide greater insight into the pathophysiology of mCRC by highlighting the complexity of the disease across a patient's treatment.
Collapse
Affiliation(s)
- Drahomír Kolenčík
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (J.-A.T.); (P.H.); (P.O.); (O.V.); (J.B.); (O.F.); (O.Š.); (V.L.); (P.P.)
| | - Sachin Narayan
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.); (D.M.); (A.S.G.); (L.W.); (S.N.S.)
| | - Jana-Aletta Thiele
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (J.-A.T.); (P.H.); (P.O.); (O.V.); (J.B.); (O.F.); (O.Š.); (V.L.); (P.P.)
| | - Dillon McKinley
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.); (D.M.); (A.S.G.); (L.W.); (S.N.S.)
| | - Anna Sandström Gerdtsson
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.); (D.M.); (A.S.G.); (L.W.); (S.N.S.)
| | - Lisa Welter
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.); (D.M.); (A.S.G.); (L.W.); (S.N.S.)
| | - Petr Hošek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (J.-A.T.); (P.H.); (P.O.); (O.V.); (J.B.); (O.F.); (O.Š.); (V.L.); (P.P.)
| | - Pavel Ostašov
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (J.-A.T.); (P.H.); (P.O.); (O.V.); (J.B.); (O.F.); (O.Š.); (V.L.); (P.P.)
| | - Ondřej Vyčítal
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (J.-A.T.); (P.H.); (P.O.); (O.V.); (J.B.); (O.F.); (O.Š.); (V.L.); (P.P.)
- Department of Surgery, Faculty of Medicine and University Hospital in Pilsen, Charles University, 32300 Pilsen, Czech Republic
| | - Jan Brůha
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (J.-A.T.); (P.H.); (P.O.); (O.V.); (J.B.); (O.F.); (O.Š.); (V.L.); (P.P.)
- Department of Surgery, Faculty of Medicine and University Hospital in Pilsen, Charles University, 32300 Pilsen, Czech Republic
| | - Ondřej Fiala
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (J.-A.T.); (P.H.); (P.O.); (O.V.); (J.B.); (O.F.); (O.Š.); (V.L.); (P.P.)
- Department of Oncology and Radiotherapeutics, Faculty of Medicine and University Hospital in Pilsen, Charles University, 32300 Pilsen, Czech Republic
| | - Ondřej Šorejs
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (J.-A.T.); (P.H.); (P.O.); (O.V.); (J.B.); (O.F.); (O.Š.); (V.L.); (P.P.)
- Department of Oncology and Radiotherapeutics, Faculty of Medicine and University Hospital in Pilsen, Charles University, 32300 Pilsen, Czech Republic
| | - Václav Liška
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (J.-A.T.); (P.H.); (P.O.); (O.V.); (J.B.); (O.F.); (O.Š.); (V.L.); (P.P.)
- Department of Surgery, Faculty of Medicine and University Hospital in Pilsen, Charles University, 32300 Pilsen, Czech Republic
| | - Pavel Pitule
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (D.K.); (J.-A.T.); (P.H.); (P.O.); (O.V.); (J.B.); (O.F.); (O.Š.); (V.L.); (P.P.)
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.); (D.M.); (A.S.G.); (L.W.); (S.N.S.)
| | - Stephanie N. Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.N.); (D.M.); (A.S.G.); (L.W.); (S.N.S.)
| |
Collapse
|
17
|
Till JE, Black TA, Gentile C, Abdalla A, Wang Z, Sangha HK, Roth JJ, Sussman R, Yee SS, O'Hara MH, Thompson JC, Aggarwal C, Hwang WT, Elenitoba-Johnson KSJ, Carpenter EL. Optimization of Sources of Circulating Cell-Free DNA Variability for Downstream Molecular Analysis. J Mol Diagn 2021; 23:1545-1552. [PMID: 34454115 DOI: 10.1016/j.jmoldx.2021.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Circulating cell-free DNA (ccfDNA) is used increasingly as a cancer biomarker for prognostication, as a correlate for tumor volume, or as input for downstream molecular analysis. Determining optimal blood processing and ccfDNA quantification are crucial for ccfDNA to serve as an accurate biomarker as it moves into the clinical realm. Whole blood was collected from 50 subjects, processed to plasma, and used immediately or frozen at -80°C. Plasma ccfDNA was extracted and concentration was assessed by real-time quantitative PCR (qPCR), fluorimetry, and droplet digital PCR (ddPCR). For the 24 plasma samples from metastatic pancreatic cancer patients, the variant allele fractions (VAF) of KRAS G12/13 pathogenic variants in circulating tumor DNA (ctDNA) were measured by ddPCR. Using a high-speed (16,000 × g) or slower-speed (4100 × g) second centrifugation step showed no difference in ccfDNA yield or ctDNA VAF. A two- versus three-spin centrifugation protocol also showed no difference in ccfDNA yield or ctDNA VAF. A higher yield was observed from fresh versus frozen plasma by qPCR and fluorimetry, whereas a higher yield was observed for frozen versus fresh plasma by ddPCR, however, no difference was observed in ctDNA VAF. Overall, our findings suggest factors to consider when implementing a ccfDNA extraction and quantification workflow in a research or clinical setting.
Collapse
Affiliation(s)
- Jacob E Till
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Taylor A Black
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caren Gentile
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aseel Abdalla
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zhuoyang Wang
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hareena K Sangha
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacquelyn J Roth
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robyn Sussman
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephanie S Yee
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark H O'Hara
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey C Thompson
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charu Aggarwal
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kojo S J Elenitoba-Johnson
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erica L Carpenter
- Division of Hematology-Oncology, Department of Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
18
|
Fundamentals of liquid biopsies in metastatic prostate cancer: from characterization to stratification. Curr Opin Oncol 2020; 32:527-534. [PMID: 32675591 DOI: 10.1097/cco.0000000000000655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW In this review, we provide an overview of the recent developments and prospects on the applications of blood-based liquid biopsies, including circulating tumor DNA and circulating tumor cells, in metastatic prostate cancer. RECENT FINDINGS Guidelines and consensus statements have been formulated to standardize preanalytical conditions that affect liquid biopsy analysis. Currently, there are four FDA approved assays for the analysis of liquid biopsies and many quantitative and qualitative assays are being developed. Comprehensive analyses of cell-free tumor DNA (ctDNA) and circulating tumor cells (CTCs) demonstrate that they adequately reflect the genomic makeup of the tumor and may thus complement or even replace tumor biopsies. The assessment of genomic aberrations in ctDNA can potentially predict therapy response and detect mechanisms of resistance. CTC count is not only a strong prognosticator in metastatic prostate cancer but can also measure therapy response. SUMMARY Liquid biopsies may provide a temporal snapshot of the biologic variables that affect tumor growth and progression in metastatic prostate cancer. Liquid biopsies could inform on prognostic, predictive, and response measures. However, prospective clinical trials need to be performed to provide definitive validation of the clinical value of the most advanced assays.
Collapse
|
19
|
Coombs CC, Dickherber T, Crompton BD. Chasing ctDNA in Patients With Sarcoma. Am Soc Clin Oncol Educ Book 2020; 40:e351-e360. [PMID: 32598183 DOI: 10.1200/edbk_280749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Liquid biopsies are new technologies that allow cancer profiling of tumor fragments found in body fluids, such as peripheral blood, collected noninvasively from patients with malignancies. These assays are increasingly valuable in clinical oncology practice as prognostic biomarkers, as guides for therapy selection, for treatment monitoring, and for early detection of disease progression and relapse. However, application of these assays to rare cancers, such as pediatric and adult sarcomas, have lagged. In this article, we review the technical challenges of applying liquid biopsy technologies to sarcomas, provide an update on progress in the field, describe common pitfalls in interpreting liquid biopsy data, and discuss the intersection of sarcoma clinical care and commercial assays emerging on the horizon.
Collapse
Affiliation(s)
| | | | - Brian D Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| |
Collapse
|
20
|
Abstract
Abstract
It is well documented that in the chain from sample to the result in a clinical laboratory, the pre-analytical phase is the weakest and most vulnerable link. This also holds for the use and analysis of extracellular nucleic acids. In this short review, we will summarize and critically evaluate the most important steps of the pre-analytical phase, i.e. the choice of the best control population for the patients to be analyzed, the actual blood draw, the choice of tubes for blood drawing, the impact of delayed processing of blood samples, the best method for getting rid of cells and debris, the choice of matrix, i.e. plasma vs. serum vs. other body fluids, and the impact of long-term storage of cell-free liquids on the outcome. Even if the analysis of cell-free nucleic acids has already become a routine application in the area of non-invasive prenatal screening (NIPS) and in the care of cancer patients (search for resistance mutations in the EGFR gene), there are still many unresolved issues of the pre-analytical phase which need to be urgently tackled.
Collapse
Affiliation(s)
- Michael Fleischhacker
- DRK Kliniken Berlin Mitte , Klinik für Innere Medizin – Pneumologie und Schlafmedizin , Drontheimer Str. 39 – 40 , 13359 Berlin , Germany
| | - Bernd Schmidt
- DRK Kliniken Berlin Mitte , Klinik für Innere Medizin – Pneumologie und Schlafmedizin , Berlin , Germany
| |
Collapse
|
21
|
Keomanee-Dizon K, Shishido SN, Kuhn P. Circulating Tumor Cells: High-Throughput Imaging of CTCs and Bioinformatic Analysis. Recent Results Cancer Res 2020; 215:89-104. [PMID: 31605225 PMCID: PMC7679175 DOI: 10.1007/978-3-030-26439-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Circulating tumor cells (CTCs) represent novel biomarkers, since they are obtainable through a simple and noninvasive blood draw or liquid biopsy. Here, we review the high-definition single-cell analysis (HD-SCA) workflow, which brings together modern methods of immunofluorescence with more sophisticated image processing to rapidly and accurately detect rare tumor cells among the milieu of platelets, erythrocytes, and leukocytes in the peripheral blood. In particular, we discuss progress in methods to measure CTC morphology and subcellular protein expression, and we highlight some initial applications that lead to fundamental new insights about the hematogenous phase of cancer, as well as its performance in early-stage diagnosis and treatment monitoring. We end with an outlook on how to further probe CTCs and the unique advantages of the HD-SCA workflow for improving the precision of cancer care.
Collapse
Affiliation(s)
- Kevin Keomanee-Dizon
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, 1002 W. Childs Way, Los Angeles, 90089-3502, CA, United States
- Viterbi School of Engineering, University of Southern California, 1002 W. Childs Way, Los Angeles, CA, 90089, United States
| | - Stephanie N Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, 1002 W. Childs Way, Los Angeles, 90089-3502, CA, United States
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, 1002 W. Childs Way, Los Angeles, 90089-3502, CA, United States.
- Viterbi School of Engineering, University of Southern California, 1002 W. Childs Way, Los Angeles, CA, 90089, United States.
| |
Collapse
|