1
|
Budczies J, Kazdal D, Menzel M, Beck S, Kluck K, Altbürger C, Schwab C, Allgäuer M, Ahadova A, Kloor M, Schirmacher P, Peters S, Krämer A, Christopoulos P, Stenzinger A. Tumour mutational burden: clinical utility, challenges and emerging improvements. Nat Rev Clin Oncol 2024; 21:725-742. [PMID: 39192001 DOI: 10.1038/s41571-024-00932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Tumour mutational burden (TMB), defined as the total number of somatic non-synonymous mutations present within the cancer genome, varies across and within cancer types. A first wave of retrospective and prospective research identified TMB as a predictive biomarker of response to immune-checkpoint inhibitors and culminated in the disease-agnostic approval of pembrolizumab for patients with TMB-high tumours based on data from the Keynote-158 trial. Although the applicability of outcomes from this trial to all cancer types and the optimal thresholds for TMB are yet to be ascertained, research into TMB is advancing along three principal avenues: enhancement of TMB assessments through rigorous quality control measures within the laboratory process, including the mitigation of confounding factors such as limited panel scope and low tumour purity; refinement of the traditional TMB framework through the incorporation of innovative concepts such as clonal, persistent or HLA-corrected TMB, tumour neoantigen load and mutational signatures; and integration of TMB with established and emerging biomarkers such as PD-L1 expression, microsatellite instability, immune gene expression profiles and the tumour immune contexture. Given its pivotal functions in both the pathogenesis of cancer and the ability of the immune system to recognize tumours, a profound comprehension of the foundational principles and the continued evolution of TMB are of paramount relevance for the field of oncology.
Collapse
Affiliation(s)
- Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany.
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Michael Menzel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Susanne Beck
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Klaus Kluck
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Christian Altbürger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Solange Peters
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Petros Christopoulos
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumour Diseases at Heidelberg University Hospital, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany.
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.
| |
Collapse
|
2
|
Meng Y, Feng J, Yang J, Yin H. Clinicopathological characteristics of endometrial carcinoma with different molecular subtypes and their correlation with lymph node metastasis. Am J Cancer Res 2024; 14:3994-4003. [PMID: 39267670 PMCID: PMC11387856 DOI: 10.62347/fpuj8382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Endometrial carcinoma (EC) is one of the three major malignancies of the female reproductive organs. With intense research of tumor molecular mechanisms and development of precision medicine in recent years, the traditional pathomorphological classification fails to meet the needs of clinical diagnosis and treatment for EC. This study aims to analyze the correlation of different Proactive Molecular Risk Classifier for Endometrial Cancer molecular subtypes with lymph node metastasis (LNM) and other clinical features in EC. 120 treatment-naive EC patients with surgery were enrolled in this study. The molecular subtypes of these patients were classified as follows by Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE) molecular subtyping: mismatch repair deficiency (MMRd) in 22 cases (18.33%), polymerase epsilon exonuclease domain mutation (POLE EDM) in 2 cases (1.67%), p53 wild-type (p53-wt) in 64 cases (53.33%), and p53 abnormal (p53-abn) in 32 cases (26.67%). The clinicopathological features of 120 patients were retrospectively analyzed. Statistical significance was identified among the four molecular subtypes in terms of histological classification, International Federation of Gynecology and Obstetrics (FIGO) staging, pathological grading, and LNM. Among the enrolled cases, 26 had LNM and 94 had no lymph node involvement. According to the multivariate Logistic regression analysis, p53 wt (P=0.008, OR=0.078, 95% CI: 0.012-0.510) was a protective factor for LNM in EC patients, while poorly differentiated histology (P=0.001, OR=15.137, 95% CI: 3.013-76.044) was a risk factor. ProMisE classification system, being more objective and reproducible, can provide an important reference for preoperative decision-making. The patients with p53 wt by ProMisE had a low risk of LNM in preoperative diagnostic curettage specimens, while there was a higher risk of LNM among the patients with poorly differentiated EC.
Collapse
Affiliation(s)
- Yiting Meng
- Department of Pathology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University Beijing 102218, China
| | - Jin Feng
- Department of Pathology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University Beijing 102218, China
| | - Jianghui Yang
- Department of Pathology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University Beijing 102218, China
| | - Hongfang Yin
- Department of Pathology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University Beijing 102218, China
| |
Collapse
|
3
|
Haller F, Jimenez K, Baumgartner M, Lang M, Klotz A, Jambrich M, Busslinger G, Müllauer L, Khare V, Gasche C. Nfe2l2/NRF2 Deletion Attenuates Tumorigenesis and Increases Bacterial Diversity in a Mouse Model of Lynch Syndrome. Cancer Prev Res (Phila) 2024; 17:311-324. [PMID: 38643981 DOI: 10.1158/1940-6207.capr-23-0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Lynch syndrome (LS) is the most prevalent heritable form of colorectal cancer. Its early onset and high lifetime risk for colorectal cancer emphasize the necessity for effective chemoprevention. NFE2L2 (NRF2) is often considered a potential druggable target, and many chemopreventive compounds induce NRF2. However, although NRF2 counteracts oxidative stress, it is also overexpressed in colorectal cancer and may promote tumorigenesis. In this study, we evaluated the role of NRF2 in the prevention of LS-associated neoplasia. We found increased levels of NRF2 in intestinal epithelia of mice with intestinal epithelium-specific Msh2 deletion (MSH2ΔIEC) compared with C57BL/6 (wild-type) mice, as well as an increase in downstream NRF2 targets NAD(P)H dehydrogenase (quinone 1) and glutamate-cysteine ligase catalytic subunit. Likewise, NRF2 levels were increased in human MSH2-deficient LS tumors compared with healthy human controls. In silico analysis of a publicly accessible RNA sequencing LS dataset also found an increase in downstream NRF2 targets. Upon crossing MSH2ΔIEC with Nrf2null (MSH2ΔIECNrf2null) mice, we unexpectedly found reduced tumorigenesis in MSH2ΔIECNrf2null mice compared with MSH2ΔIEC mice after 40 weeks, which occurred despite an increase in oxidative damage in MSH2ΔIECNrf2null mice. The loss of NRF2 impaired proliferation as seen by Ki67 intestinal staining and in organoid cultures. This was accompanied by diminished WNT/β-catenin signaling, but apoptosis was unaffected. Microbial α-diversity increased over time with the loss of NRF2 based upon 16S rRNA gene amplicon sequencing of murine fecal samples. Altogether, we show that NRF2 protein levels are increased in MSH2 deficiency and associated neoplasia, but the loss of NRF2 attenuates tumorigenesis. Activation of NRF2 may not be a feasible strategy for chemoprevention in LS. Prevention Relevance: Patients with LS have an early onset and high lifetime risk for colorectal cancer. In this study, we show that NRF2 protein levels are increased in MSH2 deficiency and associated neoplasia, but the loss of NRF2 attenuates tumorigenesis. This suggests that NRF2 may not be a tumor suppressor in this specific context.
Collapse
Affiliation(s)
- Felix Haller
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Kristine Jimenez
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Maximilian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Michaela Lang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Anton Klotz
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Manuela Jambrich
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Georg Busslinger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Butterfield LH, Najjar YG. Immunotherapy combination approaches: mechanisms, biomarkers and clinical observations. Nat Rev Immunol 2024; 24:399-416. [PMID: 38057451 PMCID: PMC11460566 DOI: 10.1038/s41577-023-00973-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
The approval of the first immune checkpoint inhibitors provided a paradigm shift for the treatment of malignancies across a broad range of indications. Whereas initially, single-agent immune checkpoint inhibition was used, increasing numbers of patients are now treated with combination immune checkpoint blockade, where non-redundant mechanisms of action of the individual agents generally lead to higher response rates. Furthermore, immune checkpoint therapy has been combined with various other therapeutic modalities, including chemotherapy, radiotherapy and other immunotherapeutics such as vaccines, adoptive cellular therapies, cytokines and others, in an effort to maximize clinical efficacy. Currently, a large number of clinical trials test combination therapies with an immune checkpoint inhibitor as a backbone. However, proceeding without inclusion of broad, if initially exploratory, biomarker investigations may ultimately slow progress, as so far, few combinations have yielded clinical successes based on clinical data alone. Here, we present the rationale for combination therapies and discuss clinical data from clinical trials across the immuno-oncology spectrum. Moreover, we discuss the evolution of biomarker approaches and highlight the potential new directions that comprehensive biomarker studies can yield.
Collapse
Affiliation(s)
- Lisa H Butterfield
- University of California San Francisco, Microbiology and Immunology, San Francisco, CA, USA.
| | | |
Collapse
|
5
|
Yazdani A, Lenz HJ, Pillonetto G, Mendez-Giraldez R, Yazdani A, Sanof H, Hadi R, Samiei E, Venook AP, Ratain MJ, Rashid N, Vincent BG, Qu X, Wen Y, Kosorok M, Symmans WF, Shen JPYC, Lee MS, Kopetz S, Nixon AB, Bertagnolli MM, Perou CM, Innocenti F. Gene signatures derived from transcriptomic-causal networks stratified colorectal cancer patients for effective targeted therapy. RESEARCH SQUARE 2023:rs.3.rs-3673588. [PMID: 38168324 PMCID: PMC10760223 DOI: 10.21203/rs.3.rs-3673588/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Predictive and prognostic gene signatures derived from interconnectivity among genes can tailor clinical care to patients in cancer treatment. We identified gene interconnectivity as the transcriptomic-causal network by integrating germline genotyping and tumor RNA-seq data from 1,165 patients with metastatic colorectal cancer (CRC). The patients were enrolled in a clinical trial with randomized treatment, either cetuximab or bevacizumab in combination with chemotherapy. We linked the network to overall survival (OS) and detected novel biomarkers by controlling for confounding genes. Our data-driven approach discerned sets of genes, each set collectively stratify patients based on OS. Two signatures under the cetuximab treatment were related to wound healing and macrophages. The signature under the bevacizumab treatment was related to cytotoxicity and we replicated its effect on OS using an external cohort. We also showed that the genes influencing OS within the signatures are downregulated in CRC tumor vs. normal tissue using another external cohort. Furthermore, the corresponding proteins encoded by the genes within the signatures interact each other and are functionally related. In conclusion, this study identified a group of genes that collectively stratified patients based on OS and uncovered promising novel prognostic biomarkers for personalized treatment of CRC using transcriptomic causal networks.
Collapse
Affiliation(s)
- Akram Yazdani
- University of Texas Health Science center at Houston
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fojnica A, Ljuca K, Akhtar S, Gatalica Z, Vranic S. An Updated Review of the Biomarkers of Response to Immune Checkpoint Inhibitors in Merkel Cell Carcinoma: Merkel Cell Carcinoma and Immunotherapy. Cancers (Basel) 2023; 15:5084. [PMID: 37894451 PMCID: PMC10605355 DOI: 10.3390/cancers15205084] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Merkel cell carcinoma (MCC) is primarily a disease of the elderly Caucasian, with most cases occurring in individuals over 50. Immune checkpoint inhibitors (ICI) treatment has shown promising results in MCC patients. Although ~34% of MCC patients are expected to exhibit at least one of the predictive biomarkers (PD-L1, high tumor mutational burden/TMB-H/, and microsatellite instability), their clinical significance in MCC is not fully understood. PD-L1 expression has been variably described in MCC, but its predictive value has not been established yet. Our literature survey indicates conflicting results regarding the predictive value of TMB in ICI therapy for MCC. Avelumab therapy has shown promising results in Merkel cell polyomavirus (MCPyV)-negative MCC patients with TMB-H, while pembrolizumab therapy has shown better response in patients with low TMB. A study evaluating neoadjuvant nivolumab therapy found no significant difference in treatment response between the tumor etiologies and TMB levels. In addition to ICI therapy, other treatments that induce apoptosis, such as milademetan, have demonstrated positive responses in MCPyV-positive MCC, with few somatic mutations and wild-type TP53. This review summarizes current knowledge and discusses emerging and potentially predictive biomarkers for MCC therapy with ICI.
Collapse
Affiliation(s)
- Adnan Fojnica
- Institute of Virology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria
| | - Kenana Ljuca
- Health Center of Sarajevo Canton, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Saghir Akhtar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
| | - Zoran Gatalica
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73019, USA;
- Reference Medicine, Phoenix, AZ 85040, USA
| | - Semir Vranic
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
7
|
Heinze K, Cairns ES, Thornton S, Harris B, Milne K, Grube M, Meyer C, Karnezis AN, Fereday S, Garsed DW, Leung SC, Chiu DS, Moubarak M, Harter P, Heitz F, McAlpine JN, DeFazio A, Bowtell DD, Goode EL, Pike M, Ramus SJ, Pearce CL, Staebler A, Köbel M, Kommoss S, Talhouk A, Nelson BH, Anglesio MS. The Prognostic Effect of Immune Cell Infiltration Depends on Molecular Subtype in Endometrioid Ovarian Carcinomas. Clin Cancer Res 2023; 29:3471-3483. [PMID: 37339172 PMCID: PMC10472107 DOI: 10.1158/1078-0432.ccr-22-3815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE Endometrioid ovarian carcinoma (ENOC) is the second most-common type of ovarian carcinoma, comprising 10%-20% of cases. Recently, the study of ENOC has benefitted from comparisons to endometrial carcinomas including defining ENOC with four prognostic molecular subtypes. Each subtype suggests differential mechanisms of progression, although tumor-initiating events remain elusive. There is evidence that the ovarian microenvironment may be critical to early lesion establishment and progression. However, while immune infiltrates have been well studied in high-grade serous ovarian carcinoma, studies in ENOC are limited. EXPERIMENTAL DESIGN We report on 210 ENOC, with clinical follow-up and molecular subtype annotation. Using multiplex IHC and immunofluorescence, we examine the prevalence of T-cell lineage, B-cell lineage, macrophages, and populations with programmed cell death protein 1 or programmed death-ligand 1 across subtypes of ENOC. RESULTS Immune cell infiltrates in tumor epithelium and stroma showed higher densities in ENOC subtypes with known high mutation burden (POLEmut and MMRd). While molecular subtypes were prognostically significant, immune infiltrates were not (overall survival P > 0.2). Analysis by molecular subtype revealed that immune cell density was prognostically significant in only the no specific molecular profile (NSMP) subtype, where immune infiltrates lacking B cells (TILB minus) had inferior outcome (disease-specific survival: HR, 4.0; 95% confidence interval, 1.1-14.7; P < 0.05). Similar to endometrial carcinomas, molecular subtype stratification was generally superior to immune response in predicting outcomes. CONCLUSIONS Subtype stratification is critical for better understanding of ENOC, in particular the distribution and prognostic significance of immune cell infiltrates. The role of B cells in the immune response within NSMP tumors warrants further study.
Collapse
Affiliation(s)
- Karolin Heinze
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan S. Cairns
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - Shelby Thornton
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
- Molecular and Cellular Immunology Core (MCIC), Deeley Research Centre, BC Cancer, Victoria, Canada
| | - Bronwyn Harris
- Molecular and Cellular Immunology Core (MCIC), Deeley Research Centre, BC Cancer, Victoria, Canada
| | - Katy Milne
- Molecular and Cellular Immunology Core (MCIC), Deeley Research Centre, BC Cancer, Victoria, Canada
| | - Marcel Grube
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Charlotte Meyer
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Anthony N. Karnezis
- Department of Pathology and Laboratory, UC Davis Medical Center, Sacramento, California
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Samuel C.Y. Leung
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Derek S. Chiu
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Malak Moubarak
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Philipp Harter
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Florian Heitz
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
- Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jessica N. McAlpine
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - David D.L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ellen L. Goode
- Mayo Clinic, Department of Health Science Research, Division of Epidemiology, Rochester, Minnesota
| | - Malcolm Pike
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of New South Wales Sydney, Sydney, Australia
- Multidisciplinary Ovarian Cancer Outcomes Group (Consortium)
| | - C. Leigh Pearce
- Multidisciplinary Ovarian Cancer Outcomes Group (Consortium)
- School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Annette Staebler
- Institute of Pathology, University Hospital of Tübingen, Tübingen, Germany
| | - Martin Köbel
- Department of Pathology, University of Calgary, Calgary, Alberta, Canada
| | - Stefan Kommoss
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Aline Talhouk
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Brad H. Nelson
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
- Molecular and Cellular Immunology Core (MCIC), Deeley Research Centre, BC Cancer, Victoria, Canada
- Multidisciplinary Ovarian Cancer Outcomes Group (Consortium)
| | - Michael S. Anglesio
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
- OVCARE - British Columbia's Gynecological Cancer Research Program, BC Cancer, Vancouver General Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Mitchell A, Ruiz M, Yang S, Wang C, Davila JI. Excerno: Using Mutational Signatures in Sequencing Data to Filter False Variants Caused by Clinical Archival. J Comput Biol 2023; 30:366-375. [PMID: 36322906 DOI: 10.1089/cmb.2022.0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
The accurate detection of point mutations from pathology slides using sequencing data is of great importance in cancer genomics and precision oncology. Formalin-fixation paraffin-embedding (FFPE) is a widely used technique to preserve pathology tissues. The FFPE process introduces artificial C > T mutations in next-generation sequencing, so we set out to develop excerno, a method to score and filter such spurious variants. FFPE mutational artifacts follow a mutational signature. By using the FFPE signature and Bayes' formula, we can calculate the probability of a mutation resulting from the FFPE process and use this probability to filter FFPE variants. We implement this method as the excerno R package. We tested excerno by simulating mutations across all 60-baseline mutational signatures from the Catalog of Somatic Mutations in Cancer (COSMIC) and combining them with mutations following the FFPE mutational signature. The sensitivity and specificity of excerno are adversely affected by the cosine similarity between the baseline and FFPE signatures (cosFFPE). Higher percentages of FFPE mutations (pctFFPE) result in increased sensitivity and reduced specificity. The specificity and sensitivity of excerno can be predicted as linear model with an interaction term using cosFFPE and pctFFPE, with an R2of0.84 and 0.79, respectively. Finally, we tested excerno using six RNA sequencing cancer samples and observed concordant trends of specificity and sensitivity with respect to our simulated data. The excerno R package can be used to annotate and filter FFPE-induced mutations in cancer genomics. Our method is adversely affected by cosFFPE and pctFFPE.
Collapse
Affiliation(s)
- Audrey Mitchell
- Department of Mathematics, Statistics and Computer Science, St Olaf College, Northfield, Minnesota, USA
| | - Marco Ruiz
- Department of Mathematics, Statistics and Computer Science, St Olaf College, Northfield, Minnesota, USA
| | - Soua Yang
- Department of Mathematics, Statistics and Computer Science, St Olaf College, Northfield, Minnesota, USA
| | - Chen Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Jaime I Davila
- Department of Mathematics, Statistics and Computer Science, St Olaf College, Northfield, Minnesota, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Markham JF, Fellowes AP, Green T, Leal JL, Legaie R, Cullerne D, Morris T, John T, Solomon B, Fox SB. Predicting response to immune checkpoint blockade in NSCLC with tumour-only RNA-seq. Br J Cancer 2023; 128:1148-1154. [PMID: 36572732 PMCID: PMC10006283 DOI: 10.1038/s41416-022-02105-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Targeted RNA sequencing (RNA-seq) from FFPE specimens is used clinically in cancer for its ability to estimate gene expression and to detect fusions. Using a cohort of NSCLC patients, we sought to determine whether targeted RNA-seq could be used to measure tumour mutational burden (TMB) and the expression of immune-cell-restricted genes from FFPE specimens and whether these could predict response to immune checkpoint blockade. METHODS Using The Cancer Genome Atlas LUAD dataset, we developed a method for determining TMB from tumour-only RNA-seq and showed a correlation with DNA sequencing derived TMB calculated from tumour/normal sample pairs (Spearman correlation = 0.79, 95% CI [0.73, 0.83]. We applied this method to targeted sequencing data from our patient cohort and validated these results against TMB estimates obtained using an orthogonal assay (Spearman correlation = 0.49, 95% CI [0.24, 0.68]). RESULTS We observed that the RNA measure of TMB was significantly higher in responders to immune blockade treatment (P = 0.028) and that it was predictive of response (AUC = 0.640 with 95% CI [0.493, 0.786]). By contrast, the expression of immune-cell-restricted genes was uncorrelated with patient outcome. CONCLUSION TMB calculated from targeted RNA sequencing has a similar diagnostic ability to TMB generated from targeted DNA sequencing.
Collapse
Affiliation(s)
- John F Markham
- Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew P Fellowes
- Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia.
- Department of Pathology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia.
| | - Thomas Green
- Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Jose Luis Leal
- Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Roxane Legaie
- Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Darren Cullerne
- Murdoch Children's Research Institute, Flemington Road, Parkville, VIC, 3052, Australia
| | - Tessa Morris
- Southern Blood and Cancer Service, Te Whatu Ora Southern, Dunedin, New Zealand
- Mercy Cancer Care, Mercy Hospital, Dunedin, New Zealand
| | - Tom John
- Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Ben Solomon
- Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen B Fox
- Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Sorokin M, Rabushko E, Rozenberg JM, Mohammad T, Seryakov A, Sekacheva M, Buzdin A. Clinically relevant fusion oncogenes: detection and practical implications. Ther Adv Med Oncol 2022; 14:17588359221144108. [PMID: 36601633 PMCID: PMC9806411 DOI: 10.1177/17588359221144108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/22/2022] [Indexed: 12/28/2022] Open
Abstract
Mechanistically, chimeric genes result from DNA rearrangements and include parts of preexisting normal genes combined at the genomic junction site. Some rearranged genes encode pathological proteins with altered molecular functions. Those which can aberrantly promote carcinogenesis are called fusion oncogenes. Their formation is not a rare event in human cancers, and many of them were documented in numerous study reports and in specific databases. They may have various molecular peculiarities like increased stability of an oncogenic part, self-activation of tyrosine kinase receptor moiety, and altered transcriptional regulation activities. Currently, tens of low molecular mass inhibitors are approved in cancers as the drugs targeting receptor tyrosine kinase (RTK) oncogenic fusion proteins, that is, including ALK, ABL, EGFR, FGFR1-3, NTRK1-3, MET, RET, ROS1 moieties. Therein, the presence of the respective RTK fusion in the cancer genome is the diagnostic biomarker for drug prescription. However, identification of such fusion oncogenes is challenging as the breakpoint may arise in multiple sites within the gene, and the exact fusion partner is generally unknown. There is no gold standard method for RTK fusion detection, and many alternative experimental techniques are employed nowadays to solve this issue. Among them, RNA-seq-based methods offer an advantage of unbiased high-throughput analysis of only transcribed RTK fusion genes, and of simultaneous finding both fusion partners in a single RNA-seq read. Here we focus on current knowledge of biology and clinical aspects of RTK fusion genes, related databases, and laboratory detection methods.
Collapse
Affiliation(s)
| | - Elizaveta Rabushko
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | | | - Tharaa Mohammad
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia
| | | | - Marina Sekacheva
- I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | - Anton Buzdin
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia,Shemyakin-Ovchinnikov Institute of Bioorganic
Chemistry, Moscow, Russia,PathoBiology Group, European Organization for
Research and Treatment of Cancer (EORTC), Brussels, Belgium
| |
Collapse
|
11
|
Zhao L, Grimes SM, Greer SU, Kubit M, Lee H, Nadauld L, Ji H. Characterization of the consensus mucosal microbiome of colorectal cancer. NAR Cancer 2021; 3:zcab049. [PMID: 34988460 PMCID: PMC8693571 DOI: 10.1093/narcan/zcab049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Dysbioisis is an imbalance of an organ's microbiome and plays a role in colorectal cancer pathogenesis. Characterizing the bacteria in the microenvironment of a cancer through genome sequencing has advantages compared to culture-based profiling. However, there are notable technical and analytical challenges in characterizing universal features of tumor microbiomes. Colorectal tumors demonstrate microbiome variation among different studies and across individual patients. To address these issues, we conducted a computational study to determine a consensus microbiome for colorectal cancer, analyzing 924 tumors from eight independent RNA-Seq data sets. A standardized meta-transcriptomic analysis pipeline was established with quality control metrics. Microbiome profiles across different cohorts were compared and recurrently altered microbial shifts specific to colorectal cancer were determined. We identified cancer-specific set of 114 microbial species associated with tumors that were found among all investigated studies. Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria were among the four most abundant phyla for the colorectal cancer microbiome. Member species of Clostridia were depleted and Fusobacterium nucleatum was one of the most enriched bacterial species in tumors. Associations between the consensus species and specific immune cell types were noted. Our results are available as a web data resource for other researchers to explore (https://crc-microbiome.stanford.edu).
Collapse
Affiliation(s)
- Lan Zhao
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susan M Grimes
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephanie U Greer
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Kubit
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - HoJoon Lee
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lincoln D Nadauld
- Intermountain Precision Genomics Program, Intermountain Healthcare, Saint George, UT 84790, USA
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
12
|
Sorokin M, Rabushko E, Efimov V, Poddubskaya E, Sekacheva M, Simonov A, Nikitin D, Drobyshev A, Suntsova M, Buzdin A. Experimental and Meta-Analytic Validation of RNA Sequencing Signatures for Predicting Status of Microsatellite Instability. Front Mol Biosci 2021; 8:737821. [PMID: 34888350 PMCID: PMC8650122 DOI: 10.3389/fmolb.2021.737821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023] Open
Abstract
Microsatellite instability (MSI) is an important diagnostic and prognostic cancer biomarker. In colorectal, cervical, ovarian, and gastric cancers, it can guide the prescription of chemotherapy and immunotherapy. In laboratory diagnostics of susceptible tumors, MSI is routinely detected by the size of marker polymerase chain reaction products encompassing frequent microsatellite expansion regions. Alternatively, MSI status is screened indirectly by immunohistochemical interrogation of microsatellite binding proteins. RNA sequencing (RNAseq) profiling is an emerging source of data for a wide spectrum of cancer biomarkers. Recently, three RNAseq-based gene signatures were deduced for establishing MSI status in tumor samples. They had 25, 15, and 14 gene products with only one common gene. However, they were developed and tested on the incomplete literature of The Cancer Genome Atlas (TCGA) sampling and never validated experimentally on independent RNAseq samples. In this study, we, for the first time, systematically validated these three RNAseq MSI signatures on the literature colorectal cancer (CRC) (n = 619), endometrial carcinoma (n = 533), gastric cancer (n = 380), uterine carcinosarcoma (n = 55), and esophageal cancer (n = 83) samples and on the set of experimental CRC RNAseq samples (n = 23) for tumors with known MSI status. We found that all three signatures performed well with area under the curve (AUC) ranges of 0.94-1 for the experimental CRCs and 0.94-1 for the TCGA CRC, esophageal cancer, and uterine carcinosarcoma samples. However, for the TCGA endometrial carcinoma and gastric cancer samples, only two signatures were effective with AUC 0.91-0.97, whereas the third signature showed a significantly lower AUC of 0.69-0.88. Software for calculating these MSI signatures using RNAseq data is included.
Collapse
Affiliation(s)
- Maksim Sorokin
- Laboratory For Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- OmicsWay Corp., Walnut, CA, United States
| | - Elizaveta Rabushko
- Laboratory For Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Victor Efimov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Oncobox Ltd., Moscow, Russia
| | - Elena Poddubskaya
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marina Sekacheva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Simonov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Oncobox Ltd., Moscow, Russia
| | - Daniil Nikitin
- Oncobox Ltd., Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Aleksey Drobyshev
- Laboratory For Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Suntsova
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- OmicsWay Corp., Walnut, CA, United States
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
13
|
Sorokin M, Gorelyshev A, Efimov V, Zotova E, Zolotovskaia M, Rabushko E, Kuzmin D, Seryakov A, Kamashev D, Li X, Poddubskaya E, Suntsova M, Buzdin A. RNA Sequencing Data for FFPE Tumor Blocks Can Be Used for Robust Estimation of Tumor Mutation Burden in Individual Biosamples. Front Oncol 2021; 11:732644. [PMID: 34650919 PMCID: PMC8506044 DOI: 10.3389/fonc.2021.732644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/06/2021] [Indexed: 01/16/2023] Open
Abstract
Tumor mutation burden (TMB) is a well-known efficacy predictor for checkpoint inhibitor immunotherapies. Currently, TMB assessment relies on DNA sequencing data. Gene expression profiling by RNA sequencing (RNAseq) is another type of analysis that can inform clinical decision-making and including TMB estimation may strongly benefit this approach, especially for the formalin-fixed, paraffin-embedded (FFPE) tissue samples. Here, we for the first time compared TMB levels deduced from whole exome sequencing (WES) and RNAseq profiles of the same FFPE biosamples in single-sample mode. We took TCGA project data with mean sequencing depth 23 million gene-mapped reads (MGMRs) and found 0.46 (Pearson)–0.59 (Spearman) correlation with standard mutation calling pipelines. This was converted into low (<10) and high (>10) TMB per megabase classifier with area under the curve (AUC) 0.757, and application of machine learning increased AUC till 0.854. We then compared 73 experimental pairs of WES and RNAseq profiles with lower (mean 11 MGMRs) and higher (mean 68 MGMRs) RNA sequencing depths. For higher depth, we observed ~1 AUC for the high/low TMB classifier and 0.85 (Pearson)–0.95 (Spearman) correlation with standard mutation calling pipelines. For the lower depth, the AUC was below the high-quality threshold of 0.7. Thus, we conclude that using RNA sequencing of tumor materials from FFPE blocks with enough coverage can afford for high-quality discrimination of tumors with high and low TMB levels in a single-sample mode.
Collapse
Affiliation(s)
- Maxim Sorokin
- Biostatistics and Bioinformatics Subgroup, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium.,The Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,OmicsWay Corp., Walnut, CA, United States
| | - Alexander Gorelyshev
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,OmicsWay Corp., Walnut, CA, United States
| | - Victor Efimov
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Evgenia Zotova
- The Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marianna Zolotovskaia
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Elizaveta Rabushko
- The Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Denis Kuzmin
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Dmitry Kamashev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Xinmin Li
- Department of Pathology & Laboratory Medicine, University of California Los Angeles (UCLA) Technology Center for Genomics & Bioinformatics, Los Angeles, CA, United States
| | - Elena Poddubskaya
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Suntsova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anton Buzdin
- Biostatistics and Bioinformatics Subgroup, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium.,Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,OmicsWay Corp., Walnut, CA, United States.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
14
|
Chen P, Guo Y, Jia L, Wan J, He T, Fang C, Li T. Interaction Between Functionally Activate Endometrial Microbiota and Host Gene Regulation in Endometrial Cancer. Front Cell Dev Biol 2021; 9:727286. [PMID: 34631710 PMCID: PMC8495019 DOI: 10.3389/fcell.2021.727286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: In this study, we mainly explored two questions: Which microorganisms were functionally active in the endometrium of patients with endometrial cancer (EC)? What kind of response did the human host respond to functionally active microorganisms? Methods: Nine endometrial cancer patients and eight normal subjects were included in this study. HMP Unified Metabolic Analysis Network 3 (HUMAnN3) was used to obtain functional information of microorganisms. In addition, metaCyc-based GSEA functional enrichment analysis was used to obtain information on the metabolic pathways of the human host. At the same time, the O2PLS model and Spearman correlation analysis were used to analyze the microorganisms–host interaction. Results: With the novel metatranscriptome analysis pipeline, we described the composition of more than 5,000 functionally active microorganisms and analyzed the difference in microorganisms between the EC and the normal group. Our research found that these microorganisms were involved in part of the metabolic process of endometrial cancer, such as 6-sulfo-sialyl Lewis x epitope, N-acetyl-beta-glucosaminyl. In addition, the host–microbiota crosstalk of EC endometrium also included many biological processes, mainly functions related to tumor migration and the Apelin signaling pathway. Conclusion: The functionally active microorganisms in the EC endometrium played an essential role in the occurrence and migration of tumors. This meant that functionally active microorganisms could not be ignored in the treatment of endometrial cancer. This study helped to better understand the possible role of endometrial functional, active microorganisms in the occurrence and development of EC in patients with endometrial cancer and provided new information for new attempts to treat EC.
Collapse
Affiliation(s)
- Peigen Chen
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingchun Guo
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Jia
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Wan
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - TianTian He
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cong Fang
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Li
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Davila JI, Chanana P, Sarangi V, Fogarty ZC, Weroha SJ, Guo R, Goode EL, Huang Y, Wang C. Frequent POLE-driven hypermutation in ovarian endometrioid cancer revealed by mutational signatures in RNA sequencing. BMC Med Genomics 2021; 14:165. [PMID: 34158040 PMCID: PMC8218518 DOI: 10.1186/s12920-021-01017-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA polymerase epsilon (POLE) is encoded by the POLE gene, and POLE-driven tumors are characterized by high mutational rates. POLE-driven tumors are relatively common in endometrial and colorectal cancer, and their presence is increasingly recognized in ovarian cancer (OC) of endometrioid type. POLE-driven cases possess an abundance of TCT > TAT and TCG > TTG somatic mutations characterized by mutational signature 10 from the Catalog of Somatic Mutations in Cancer (COSMIC). By quantifying the contribution of COSMIC mutational signature 10 in RNA sequencing (RNA-seq) we set out to identify POLE-driven tumors in a set of unselected Mayo Clinic OC. METHODS Mutational profiles were calculated using expressed single-nucleotide variants (eSNV) in the Mayo Clinic OC tumors (n = 195), The Cancer Genome Atlas (TCGA) OC tumors (n = 419), and the Genotype-Tissue Expression (GTEx) normal ovarian tissues (n = 84). Non-negative Matrix Factorization (NMF) of the mutational profiles inferred the contribution per sample of four distinct mutational signatures, one of which corresponds to COSMIC mutational signature 10. RESULTS In the Mayo Clinic OC cohort we identified six tumors with a predicted contribution from COSMIC mutational signature 10 of over five mutations per megabase. These six cases harbored known POLE hotspot mutations (P286R, S297F, V411L, and A456P) and were of endometrioid histotype (P = 5e-04). These six tumors had an early onset (average age of patients at onset, 48.33 years) when compared to non-POLE endometrioid OC cohort (average age at onset, 60.13 years; P = .008). Samples from TCGA and GTEx had a low COSMIC signature 10 contribution (median 0.16 mutations per megabase; maximum 1.78 mutations per megabase) and carried no POLE hotspot mutations. CONCLUSIONS From the largest cohort of RNA-seq from endometrioid OC to date (n = 53), we identified six hypermutated samples likely driven by POLE (frequency, 11%). Our result suggests the clinical need to screen for POLE driver mutations in endometrioid OC, which can guide enrollment in immunotherapy clinical trials.
Collapse
Affiliation(s)
- Jaime I Davila
- Department of Mathematics, Statistics and Computer Science, St Olaf College, Northfield, MN, USA.
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
| | - Pritha Chanana
- Division of Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Zachary C Fogarty
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - S John Weroha
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Ruifeng Guo
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Yajue Huang
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Chen Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
T Danley K, Schmitz K, Ghai R, Sclamberg JS, Buckingham LE, Burgess K, Kuzel TM, Usha L. A Durable Response to Pembrolizumab in a Patient with Uterine Serous Carcinoma and Lynch Syndrome due to the MSH6 Germline Mutation. Oncologist 2021; 26:811-817. [PMID: 34018286 DOI: 10.1002/onco.13832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/07/2021] [Indexed: 11/06/2022] Open
Abstract
Pembrolizumab, a programmed death 1 ligand (PD-1) checkpoint inhibitor, has elicited responses in mismatch repair (MMR)-deficient advanced solid tumors, leading to its agnostic approval by the US Food and Drug Administration in 2017 when no other therapeutic options are available. However, there are still insufficient data on the response to checkpoint inhibitors in advanced endometrial cancer related to Lynch syndrome (LS) and, specifically, in uterine serous carcinoma, which is uncommon in LS. Here we report a case of metastatic uterine serous carcinoma due to a germline MSH6 mutation (Lynch syndrome) that was discovered because of a patient's tumor MMR deficiency. The patient was started on first-line pembrolizumab in 2018 and sustained a partial response. She remains asymptomatic and progression free for more than 2 years. Tumor sequencing showed a high mutational burden and an upstream somatic mutation in the same gene, p.F1088fs. Immunohistochemical staining was negative for PD-L1 expression. We discuss clinical characteristics of the patient, molecular features of her tumor, and the mechanism of her tumor response. We also discuss the duration of immunotherapy in her case. Our case demonstrated a partial response and a long-term remission from the frontline single-agent pembrolizumab in a woman with metastatic uterine serous carcinoma and Lynch syndrome due to a germline MSH6 gene mutation. Our experience suggests a potential significant clinical benefit of checkpoint inhibitors used as single agents early on in the treatment of MMR-deficient/high microsatellite instability/hypermutated uterine cancers in women with Lynch syndrome. KEY POINTS: Even though checkpoint inhibitors are effective in mismatch repair-deficient endometrial cancer, it is unknown whether the response to them differs between women with endometrial cancer due to germline mutations in a mismatch repair gene (Lynch syndrome) and women with sporadic endometrial cancer. In our case, a patient with Lynch syndrome and recurrent mismatch repair-deficient serous endometrial cancer achieved a durable remission on the first-line therapy with the checkpoint inhibitor pembrolizumab and remains progression free after more than 2 years. Based on our observation and the data, suggesting the stronger immune activation in women with Lynch syndrome-associated endometrial cancer, we propose to use checkpoint inhibitor monotherapy early in the course of their treatment and stratify patients for the presence of Lynch syndrome in clinical trials.
Collapse
Affiliation(s)
- Kelsey T Danley
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Karen Schmitz
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ritu Ghai
- Department of Pathology, Advocate Christ Medical Center, Chicago, Illinois, USA.,Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Joy S Sclamberg
- Department of Diagnostic Radiology & Nuclear Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Lela E Buckingham
- Department of Pathology, Advocate Christ Medical Center, Chicago, Illinois, USA
| | - Kelly Burgess
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, Illinois, USA.,Ambry Genetics, Enterprise, Aliso Viejo, California, USA
| | - Timothy M Kuzel
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Lydia Usha
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|