1
|
Verkerk K, Zeverijn LJ, van de Haar J, Roepman P, Geurts BS, Spiekman AC, van der Noort V, van Berge Henegouwen JM, Hoes LR, van der Wijngaart H, Jansen AML, de Leng WWJ, Gelderblom AJ, Verheul HMW, Voest EE. The pathway alteration load is a pan-cancer determinant of outcome of targeted therapies: results from the Drug Rediscovery Protocol (DRUP). ESMO Open 2025; 10:104112. [PMID: 39778224 PMCID: PMC11760820 DOI: 10.1016/j.esmoop.2024.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Many patients with cancer exhibit primary or rapid secondary resistance to targeted therapy (TT). We hypothesized that a higher number of altered oncogenic signaling pathways [pathway alteration load (PAL)] would reduce the benefit of TT which only intervenes in one pathway. This hypothesis was tested in the Drug Rediscovery Protocol (DRUP). PATIENTS AND METHODS DRUP is a prospective, pan-cancer, non-randomized clinical trial (NCT02925234) that treats patients with therapy-refractory metastatic cancer and an actionable molecular profile using matched off-label targeted and immunotherapies. All patients treated with TT with available clinical outcomes and whole genome sequencing were included. PAL was determined based on driver gene alterations and correlated with clinical benefit rate (CBR), progression-free survival (PFS) and overall survival (OS). Outcomes were validated in the independent Hartwig Medical database of metastatic cancers. RESULTS In 154 patients treated with TT, the median PAL was 3. Patients with a PAL below median (n = 60) demonstrated a higher CBR (41.7% versus 25.5%, odds ratio 0.48, P = 0.051), longer PFS [median 4.7 versus 2.9 months, adjusted hazard ratio (aHR) 1.70, P = 0.020] and OS (median 13.7 versus 5.6 months, aHR 3.80, P < 0.001) compared with those with PAL ≥3. Two hundred and fifty-eight patients in the Hartwig database showed similar results for CBR (54.2% versus 36.7%, odds ratio 2.04, P = 0.009) and PFS (7.0 versus 4.2 months, aHR 1.55, P = 0.009). CONCLUSIONS In our population, PAL emerged as a pan-cancer determinant of outcome to TT. Our findings support refined patient selection for TT and highlight the rationale for combinatorial treatment strategies in patients with multiple affected pathways.
Collapse
Affiliation(s)
- K Verkerk
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - L J Zeverijn
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - J van de Haar
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - P Roepman
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - B S Geurts
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - A C Spiekman
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Medical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - V van der Noort
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J M van Berge Henegouwen
- Oncode Institute, Utrecht, The Netherlands; Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - L R Hoes
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - H van der Wijngaart
- Department of Medical Oncology, GROW, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - A M L Jansen
- Department of Pathology, University Medical Cancer Center Utrecht, Utrecht, The Netherlands
| | - W W J de Leng
- Department of Pathology, University Medical Cancer Center Utrecht, Utrecht, The Netherlands
| | - A J Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - H M W Verheul
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - E E Voest
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
2
|
de Groot D, Spanjaard A, Shah R, Kreft M, Morris B, Lieftink C, Catsman JJI, Ormel S, Ayidah M, Pilzecker B, Buoninfante OA, van den Berk PCM, Beijersbergen RL, Jacobs H. Molecular dependencies and genomic consequences of a global DNA damage tolerance defect. Genome Biol 2024; 25:323. [PMID: 39741332 DOI: 10.1186/s13059-024-03451-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/29/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND DNA damage tolerance (DDT) enables replication to continue in the presence of fork stalling lesions. In mammalian cells, DDT is regulated by two independent pathways, controlled by the polymerase REV1 and ubiquitinated PCNA, respectively. RESULTS To determine the molecular and genomic impact of a global DDT defect, we studied PcnaK164R/-;Rev1-/- compound mutants in mouse cells. Double-mutant cells display increased replication stress, hypersensitivity to genotoxic agents, replication speed, and repriming. A whole-genome CRISPR-Cas9 screen revealed a strict reliance of double-mutant cells on the CST complex, where CST promotes fork stability. Whole-genome sequencing indicated that this double-mutant DDT defect favors the generation of large, replication-stress inducible deletions of 0.4-4.0 kbp, defined as type 3 deletions. Junction break sites of these deletions reveal microhomology preferences of 1-2 base pairs, differing from the smaller type 1 and type 2 deletions. These differential characteristics suggest the existence of molecularly distinct deletion pathways. Type 3 deletions are abundant in human tumors, can dominate the deletion landscape, and are associated with DNA damage response status and treatment modality. CONCLUSIONS Our data highlight the essential contribution of the DDT system to genome maintenance and type 3 deletions as mutational signature of replication stress. The unique characteristics of type 3 deletions implicate the existence of a novel deletion pathway in mice and humans that is counteracted by DDT.
Collapse
Affiliation(s)
- Daniel de Groot
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Aldo Spanjaard
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ronak Shah
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ben Morris
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Joyce J I Catsman
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Shirley Ormel
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Matilda Ayidah
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Bas Pilzecker
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Olimpia Alessandra Buoninfante
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Paul C M van den Berk
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The NKI Robotics and Screening Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Verkerk K, van der Wel TJWT, Zeverijn LJ, Geurts BS, Spiekman IAC, de Wit GF, Roepman P, Jansen AML, van der Noort V, Smit EF, Hoeben A, Hendriks LEL, van den Heuvel MM, Piet B, Herder GJM, Hashemi SMS, Gelderblom H, Verheul HMW, Voest EE, de Langen AJ. Safety, Efficacy, and Biomarker Analysis of Crizotinib in MET-Mutated Non-Small Cell Lung Cancer-Results from the Drug Rediscovery Protocol. Clin Cancer Res 2024; 30:5323-5332. [PMID: 39352721 DOI: 10.1158/1078-0432.ccr-24-1925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Accepted: 09/26/2024] [Indexed: 12/12/2024]
Abstract
PURPOSE To provide patients with MET-mutated advanced non-small cell lung cancer (METmut aNSCLC) access to crizotinib, further substantiate evidence of its efficacy and safety in this setting, and find potential biomarkers for nonresponse. PATIENTS AND METHODS In the Drug Rediscovery Protocol (NCT0295234), patients with an actionable molecular profile are treated with off-label registered drugs. Both treated and untreated patients with aNSCLC harboring MET exon 14 skipping or other MET mutations received crizotinib 250 mg BID until disease progression or intolerable toxicity. Primary endpoints were clinical benefit [CB: RECIST v1.1 confirmed partial response, complete response (CR), or stable disease ≥16 weeks] and safety. Patients were enrolled using a Simon-like two-stage design, with eight patients in stage I and if ≥1/8 patients had CB, 24 patients in stage II. Whole-genome sequencing and RNA sequencing were performed on baseline biopsies. RESULTS Between September 2018 and October 2022, 30 patients started treatment, and 24 were response-evaluable after completing ≥1 full treatment cycle. Two patients (8.3%) achieved CR, 13 (54.2%) partial response, and two (8.3%) stable disease. The CB rate was 70.8% [95% confidence interval (CI), 48.9-87.4], and the objective response rate was 62.5% (95% CI, 40.6-81.2). After 21.2-month median follow-up, median duration of response, progression-free survival, and overall survival were 9.3 (95% CI, 6.5-not available), 10.2 (95% CI, 6.0-20.1), and 13.0 months (95% CI, 9.0-not available), respectively. Twenty-three treatment-related grade ≥ 3 adverse events occurred in 12/30 patients (40%), causing treatment discontinuation in three (10%). One patient (achieving CR) had a tyrosine kinase domain mutation (p.H1094Y), and all other patients had MET exon 14 skipping mutations. CONCLUSIONS Crizotinib is a valuable treatment option in METmut aNSCLC.
Collapse
Affiliation(s)
- Karlijn Verkerk
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Laurien J Zeverijn
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Birgit S Geurts
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Ilse A C Spiekman
- Oncode Institute, Utrecht, the Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Gijs F de Wit
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Anne M L Jansen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Egbert F Smit
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ann Hoeben
- Division of Medical Oncology, Department of Internal Medicine, GROW School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonology, GROW - School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Michel M van den Heuvel
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Berber Piet
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gerarda J M Herder
- Department of Pulmonology, Meander Medical Center, Amersfoort, the Netherlands
| | - Sayed M S Hashemi
- Department of Pulmonary Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Emile E Voest
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Center for Personalized Cancer Treatment, the Netherlands
| | - Adrianus J de Langen
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Lansbergen MF, Dings MPG, Manoukian P, Fariña A, Waasdorp C, Hooijer GKJ, Verheij J, Koster J, Zwijnenburg DA, Wilmink JW, Medema JP, Dijk F, van Laarhoven HWM, Bijlsma MF. Transcriptome-based classification to predict FOLFIRINOX response in a real-world metastatic pancreatic cancer cohort. Transl Res 2024; 273:137-147. [PMID: 39154856 DOI: 10.1016/j.trsl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/18/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at metastatic stage and typically treated with fluorouracil, leucovorin, irinotecan and oxaliplatin (FOLFIRINOX). Few patients benefit from this treatment. Molecular subtypes are prognostic in particularly resectable PDAC and might predict treatment response. This study aims to correlate molecular subtypes in metastatic PDAC with FOLFIRINOX responses using real-world data, providing assistance in counselling patients. We collected 131 RNA-sequenced metastatic biopsies and applied a network-based meta-analysis using published PDAC classifiers. Subsequent survival analysis was performed using the most suitable classifier. For validation, we developed an immunohistochemistry (IHC) classifier using GATA6 and keratin-17 (KRT17), and applied it to 86 formalin-fixed paraffin-embedded samples of advanced PDAC. Lastly, GATA6 knockdown models were generated in PDAC organoids and cell lines. We showed that the PurIST classifier was the most suitable classifier. With this classifier, classical tumors had longer PFS and OS than basal-like tumors (PFS: 216 vs. 78 days, p = 0.0002; OS: 251 vs. 195 days, p = 0.049). The validation cohort showed a similar trend. Importantly, IHC GATA6low patients had significantly shorter survival with FOLFIRINOX (323 vs. 746 days, p = 0.006), but no difference in non-treated patients (61 vs. 54 days, p = 0.925). This suggests that GATA6 H-score predicts therapy response. GATA6 knockdown models did not lead to increased FOLFIRINOX responsiveness. These data suggest a predictive role for subtyping (transcriptomic and GATA6 IHC), though no direct causal relationship was found between GATA6 expression and chemoresistance. GATA6 immunohistochemistry should be seamlessly added to current diagnostics and integrated into upcoming clinical trials.
Collapse
Affiliation(s)
- Marjolein F Lansbergen
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Medical Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Mark P G Dings
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Paul Manoukian
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Arantza Fariña
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Pathology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Cynthia Waasdorp
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Gerrit K J Hooijer
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Pathology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Joanne Verheij
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Pathology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jan Koster
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Danny A Zwijnenburg
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Johanna W Wilmink
- Amsterdam UMC, location University of Amsterdam, Medical Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Jan Paul Medema
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Frederike Dijk
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Pathology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC, location University of Amsterdam, Medical Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Geurts BS, Zeverijn LJ, Leek LVM, van Berge Henegouwen JM, Hoes LR, van der Wijngaart H, van der Noort V, van de Haar J, van Ommen-Nijhof A, Kok M, Roepman P, Jansen AML, de Leng WWJ, de Jonge MJA, Hoeben A, van Herpen CML, Westgeest HM, Wessels LFA, Verheul HMW, Gelderblom H, Voest EE. Efficacy of Pembrolizumab and Biomarker Analysis in Patients with WGS-Based Intermediate to High Tumor Mutational Load: Results from the Drug Rediscovery Protocol. Clin Cancer Res 2024; 30:3735-3746. [PMID: 38630551 DOI: 10.1158/1078-0432.ccr-24-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/25/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE To evaluate the efficacy of pembrolizumab across multiple cancer types harboring different levels of whole-genome sequencing-based tumor mutational load (TML; total of nonsynonymous mutations across the genome) in patients included in the Drug Rediscovery Protocol (NCT02925234). PATIENTS AND METHODS Patients with solid, treatment-refractory, microsatellite-stable tumors were enrolled in cohort A: breast cancer cohort harboring a TML of 140 to 290, cohort B: tumor-agnostic cohort harboring a TML of 140 to 290, and cohort C: tumor-agnostic cohort harboring a TML >290. Patients received pembrolizumab 200 mg every 3 weeks. The primary endpoint was clinical benefit [CB; objective response or stable disease (SD) ≥16 weeks]. Pretreatment tumor biopsies were obtained for whole-genome sequencing and RNA sequencing. RESULTS Seventy-two evaluable patients with 26 different histotypes were enrolled. The CB rate was 13% in cohort A [3/24 with partial response (PR)], 21% in cohort B (3/24 with SD; 2/24 with PR), and 42% in cohort C (4/24 with SD; 6/24 with PR). In cohort C, neoantigen burden estimates and expression of inflammation and innate immune biomarkers were significantly associated with CB. Similar associations were not identified in cohorts A and B. In cohort A, CB was significantly associated with mutations in the chromatin remodeling gene PBRM1, whereas in cohort B, CB was significantly associated with expression of MICA/MICB and butyrophilins. CB and clonal TML were not significantly associated. CONCLUSIONS Although pembrolizumab lacked activity in cohort A, cohorts B and C met the study's primary endpoint. Further research is warranted to refine the selection of patients with tumors harboring lower TMLs and may benefit from a focus on innate immunity. See related commentary by Hsu and Yen, p. 3652.
Collapse
Affiliation(s)
- Birgit S Geurts
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Laurien J Zeverijn
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Lindsay V M Leek
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Louisa R Hoes
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Hanneke van der Wijngaart
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Internal Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | - Joris van de Haar
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Marleen Kok
- Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Anne M L Jansen
- Department of Pathology, University Medical Cancer Center Utrecht, Utrecht, the Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Cancer Center Utrecht, Utrecht, the Netherlands
| | - Maja J A de Jonge
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Internal Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Carla M L van Herpen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans M Westgeest
- Department of Internal Medicine, Amphia Hospital, Breda, the Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, the Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
6
|
Hoosemans L, Vooijs M, Hoeben A. Opportunities and Challenges of Small Molecule Inhibitors in Glioblastoma Treatment: Lessons Learned from Clinical Trials. Cancers (Basel) 2024; 16:3021. [PMID: 39272879 PMCID: PMC11393907 DOI: 10.3390/cancers16173021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Glioblastoma (GBM) is the most prevalent central nervous system tumour (CNS). Patients with GBM have a dismal prognosis of 15 months, despite an intensive treatment schedule consisting of surgery, chemoradiation and concurrent chemotherapy. In the last decades, many trials have been performed investigating small molecule inhibitors, which target specific genes involved in tumorigenesis. So far, these trials have been unsuccessful, and standard of care for GBM patients has remained the same since 2005. This review gives an overview of trials investigating small molecule inhibitors on their own, combined with chemotherapy or other small molecule inhibitors. We discuss possible resistance mechanisms in GBM, focussing on intra- and intertumoral heterogeneity, bypass mechanisms and the influence of the tumour microenvironment. Moreover, we emphasise how combining inhibitors can help overcome these resistance mechanisms. We also address strategies for improving trial outcomes through modifications to their design. In summary, this review aims to elucidate different resistance mechanisms against small molecule inhibitors, highlighting their significance in the search for novel therapeutic combinations to improve the overall survival of GBM patients.
Collapse
Affiliation(s)
- Linde Hoosemans
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
7
|
Geurts BS, Zeverijn LJ, van Berge Henegouwen JM, van der Wijngaart H, Hoes LR, de Wit GF, Spiekman IA, Battaglia TW, van Beek DM, Roepman P, Jansen AM, de Leng WW, Broeks A, Labots M, van Herpen CM, Gelderblom H, Verheul HM, Snaebjornsson P, Voest EE. Characterization of discordance between mismatch repair deficiency and microsatellite instability testing may prevent inappropriate treatment with immunotherapy. J Pathol 2024; 263:288-299. [PMID: 38747304 DOI: 10.1002/path.6279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 06/12/2024]
Abstract
In the Drug Rediscovery Protocol (DRUP), patients with cancer are treated based on their tumor molecular profile with approved targeted and immunotherapies outside the labeled indication. Importantly, patients undergo a tumor biopsy for whole-genome sequencing (WGS) which allows for a WGS-based evaluation of routine diagnostics. Notably, we observed that not all biopsies of patients with dMMR/MSI-positive tumors as determined by routine diagnostics were classified as microsatellite-unstable by subsequent WGS. Therefore, we aimed to evaluate the discordance rate between routine dMMR/MSI diagnostics and WGS and to further characterize discordant cases. We assessed patients enrolled in DRUP with dMMR/MSI-positive tumors identified by routine diagnostics, who were treated with immune checkpoint blockade (ICB) and for whom WGS data were available. Patient and tumor characteristics, study treatment outcomes, and material from routine care were retrieved from the patient medical records and via Palga (the Dutch Pathology Registry), and were compared with WGS results. Initially, discordance between routine dMMR/MSI diagnostics and WGS was observed in 13 patients (13/121; 11%). The majority of these patients did not benefit from ICB (11/13; 85%). After further characterization, we found that in six patients (5%) discordance was caused by dMMR tumors that did not harbor an MSI molecular phenotype by WGS. In six patients (5%), discordance was false due to the presence of multiple primary tumors (n = 3, 2%) and misdiagnosis of dMMR status by immunohistochemistry (n = 3, 2%). In one patient (1%), the exact underlying cause of discordance could not be identified. Thus, in this group of patients limited to those initially diagnosed with dMMR/MSI tumors by current routine diagnostics, the true assay-based discordance rate between routine dMMR/MSI-positive diagnostics and WGS was 5%. To prevent inappropriate ICB treatment, clinicians and pathologists should be aware of the risk of multiple primary tumors and the limitations of different tests. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Birgit S Geurts
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Laurien J Zeverijn
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | | | - Hanneke van der Wijngaart
- Department of Medical Oncology, GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Louisa R Hoes
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Gijs F de Wit
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Ilse Ac Spiekman
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thomas W Battaglia
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | | | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - Anne Ml Jansen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wendy Wj de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Carla Ml van Herpen
- Department of Medical Oncology, Radboud Medical Center, Nijmegen, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk Mw Verheul
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Petur Snaebjornsson
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Emile E Voest
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
8
|
Haj Mohammad SF, Timmer HJL, Zeverijn LJ, Geurts BS, Spiekman IAC, Verkerk K, Verbeek FAJ, Verheul HMW, Voest EE, Gelderblom H. The evolution of precision oncology: The ongoing impact of the Drug Rediscovery Protocol (DRUP). Acta Oncol 2024; 63:368-372. [PMID: 38779868 PMCID: PMC11332463 DOI: 10.2340/1651-226x.2024.34885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/02/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND AND PURPOSE The Drug Rediscovery Protocol (DRUP) is a Dutch, pan-cancer, nonrandomized clinical trial that aims to investigate the efficacy and safety of targeted and immunotherapies outside their registered indication in patients with advanced or metastatic cancer. PATIENTS Patients with advanced or metastatic cancer are eligible when there are no standard of care treatment options left and the tumor possesses a molecular genomic variant for which commercially available anticancer treatment is accessible off-label in DRUP. Clinical benefit is the study's primary endpoint, characterized by a confirmed objective response or stable disease after at least 16 weeks of treatment. RESULTS More than 2,500 patients have undergone evaluation, of which over 1,500 have started treatment in DRUP. The overall clinical benefit rate (CBR) remains 33%. The nivolumab cohort for patients with microsatellite instable metastatic tumors proved highly successful with a CBR of 63%, while palbociclib or ribociclib in patients with tumors harboring CDK4/6 pathway alterations showed limited efficacy, with a CBR of 15%. The formation of two European initiatives (PCM4EU and PRIME-ROSE) strives to accelerate implementation and enhance data collection to broaden equitable access to anticancer treatments and gather more evidence. CONCLUSION DRUP persists in improving patients access to off-label targeted or immunotherapy in the Netherlands and beyond. The expansion of DRUP-like clinical trials across Europe provides countless opportunities for broadening the horizon of precision oncology.
Collapse
Affiliation(s)
- Soemeya F Haj Mohammad
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands; Department of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Hans J L Timmer
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands; Department of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laurien J Zeverijn
- Department of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Birgit S Geurts
- Department of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ilse A C Spiekman
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Karlijn Verkerk
- Department of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Florentine A J Verbeek
- Department of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Emile E Voest
- Department of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
9
|
Spiekman IAC, Zeverijn LJ, Geurts BS, Verkerk K, Haj Mohammad SF, van der Noort V, Roepman P, de Leng WWJ, Jansen AML, Gootjes EC, de Groot DJA, Kerver ED, van Voorthuizen T, Roodhart JML, Valkenburg-van Iersel LBJ, Gelderblom H, Voest EE, Verheul HMW. Trastuzumab plus pertuzumab for HER2-amplified advanced colorectal cancer: Results from the drug rediscovery protocol (DRUP). Eur J Cancer 2024; 202:113988. [PMID: 38471288 DOI: 10.1016/j.ejca.2024.113988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND In 2-5% of patients with colorectal cancer (CRC), human epidermal growth factor 2 (HER2) is amplified or overexpressed. Despite prior evidence that anti-HER2 therapy confers clinical benefit (CB) in one-third of these patients, it is not approved for this indication in Europe. In the Drug Rediscovery Protocol (DRUP), patients are treated with off-label drugs based on their molecular profile. Here, we present the results of the cohort 'trastuzumab/pertuzumab for treatment-refractory patients with RAS/BRAF-wild-type HER2amplified metastatic CRC (HER2+mCRC)'. METHODS Patients with progressive treatment-refractory RAS/BRAF-wild-type HER2+mCRC with measurable disease were included for trastuzumab plus pertuzumab treatment. Primary endpoints of DRUP are CB (defined as confirmed objective response (OR) or stable disease (SD) ≥ 16 weeks) and safety. Patients were enrolled using a Simon-like 2-stage model, with 8 patients in stage 1 and 24 patients in stage 2 if at least 1/8 patients had CB. To identify biomarkers for response, whole genome sequencing (WGS) was performed on pre-treatment biopsies. RESULTS CB was observed in 11/24 evaluable patients (46%) with HER2+mCRC, seven patients achieved an OR (29%). Median duration of response was 8.4 months. Patients had undergone a median of 3 prior treatment lines. Median progression-free survival and overall survival were 4.3 months (95% CI 1.9-10.3) and 8.2 months (95% CI 7.2-14.7), respectively. No unexpected toxicities were observed. WGS provided potential explanations for resistance in 3/10 patients without CB, for whom WGS was available. CONCLUSIONS The results of this study confirm a clinically significant benefit of trastuzumab plus pertuzumab treatment in patients with HER2+mCRC.
Collapse
Affiliation(s)
- Ilse A C Spiekman
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Laurien J Zeverijn
- Oncode Institute, Utrecht, the Netherlands; Department of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Birgit S Geurts
- Oncode Institute, Utrecht, the Netherlands; Department of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Karlijn Verkerk
- Oncode Institute, Utrecht, the Netherlands; Department of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Soemeya F Haj Mohammad
- Department of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anne M L Jansen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elske C Gootjes
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Derk-Jan A de Groot
- Department of Medical Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Emile D Kerver
- Department of Medical Oncology, OLVG, Amsterdam, the Netherlands
| | | | - Jeanine M L Roodhart
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Liselot B J Valkenburg-van Iersel
- Division of Medical Oncology, Department of Internal Medicine, GROW school of Oncology and Development Biology, Maastricht University Center+, Maastricht, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Emile E Voest
- Oncode Institute, Utrecht, the Netherlands; Department of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Mfumbilwa ZA, Simons MJHG, Ramaekers B, Retèl VP, Mankor JM, Groen HJM, Aerts JGJV, Joore M, Wilschut JA, Coupé VMH. Exploring the Cost Effectiveness of a Whole-Genome Sequencing-Based Biomarker for Treatment Selection in Patients with Advanced Lung Cancer Ineligible for Targeted Therapy. PHARMACOECONOMICS 2024; 42:419-434. [PMID: 38194023 PMCID: PMC10937799 DOI: 10.1007/s40273-023-01344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE We aimed to perform an early cost-effectiveness analysis of using a whole-genome sequencing-based tumor mutation burden (WGS-TMB), instead of programmed death-ligand 1 (PD-L1), for immunotherapy treatment selection in patients with non-squamous advanced/metastatic non-small cell lung cancer ineligible for targeted therapy, from a Dutch healthcare perspective. METHODS A decision-model simulating individual patients with metastatic non-small cell lung cancer was used to evaluate diagnostic strategies to select first-line immunotherapy only or the immunotherapy plus chemotherapy combination. Treatment was selected using PD-L1 [A, current practice], WGS-TMB [B], and both PD-L1 and WGS-TMB [C]. Strategies D, E, and F take into account a patient's disease burden, in addition to PD-L1, WGS-TMB, and both PD-L1 and WGS-TMB, respectively. Disease burden was defined as a fast-growing tumor, a high number of metastases, and/or weight loss. A threshold of 10 mutations per mega-base was used to classify patients into TMB-high and TMB-low groups. Outcomes were discounted quality-adjusted life-years (QALYs) and healthcare costs measured from the start of first-line treatment to death. Healthcare costs includes drug acquisition, follow-up costs, and molecular diagnostic tests (i.e., standard diagnostic techniques and/or WGS for strategies involving TMB). Results were reported using the net monetary benefit at a willingness-to-pay threshold of €80,000/QALY. Additional scenario and threshold analyses were performed. RESULTS Strategy B had the lowest QALYs (1.84) and lowest healthcare costs (€120,800). The highest QALYs and healthcare costs were 2.00 and €140,400 in strategy F. In the base-case analysis, strategy A was cost effective with the highest net monetary benefit (€27,300), followed by strategy B (€26,700). Strategy B was cost effective when the cost of WGS testing was decreased by at least 24% or when immunotherapy results in an additional 0.5 year of life gained or more for TMB high compared with TMB low. Strategies C and F, which combined TMB and PD-L1 had the highest net monetary benefit (≥ €76,900) when the cost of WGS testing, immunotherapy, and chemotherapy acquisition were simultaneously reduced by at least 47%, 39%, and 43%, respectively. Furthermore, strategy C resulted in the highest net monetary benefit (≥ €39,900) in a scenario where patients with both PD-L1 low and TMB low were treated with chemotherapy instead of immunotherapy plus chemotherapy. CONCLUSIONS The use of WGS-TMB is not cost effective compared to PD-L1 for immunotherapy treatment selection in non-squamous metastatic non-small cell lung cancer in the Netherlands. WGS-TMB could become cost effective provided there is a reduction in the cost of WGS testing or there is an increase in the predictive value of WGS-TMB for immunotherapy effectiveness. Alternatively, a combination strategy of PD-L1 testing with WGS-TMB would be cost effective if used to support the choice to withhold immunotherapy in patients with a low expected benefit of immunotherapy.
Collapse
Affiliation(s)
- Zakile A Mfumbilwa
- Department of Epidemiology and Data Science, Disease Modelling and Health Care Evaluation, Amsterdam UMC, Location Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Department of Mathematics and Statistics, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Martijn J H G Simons
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Bram Ramaekers
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Valesca P Retèl
- Department of Health Technology and Services Research, University of Twente, Enschede, The Netherlands
| | - Joanne M Mankor
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Harry J M Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Manuela Joore
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Janneke A Wilschut
- Department of Epidemiology and Data Science, Disease Modelling and Health Care Evaluation, Amsterdam UMC, Location Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
| | - Veerle M H Coupé
- Department of Epidemiology and Data Science, Disease Modelling and Health Care Evaluation, Amsterdam UMC, Location Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Samsom KG, Bosch LJW, Schipper LJ, Schout D, Roepman P, Boelens MC, Lalezari F, Klompenhouwer EG, de Langen AJ, Buffart TE, van Linder BMH, van Deventer K, van den Burg K, Unmehopa U, Rosenberg EH, Koster R, Hogervorst FBL, van den Berg JG, Riethorst I, Schoenmaker L, van Beek D, de Bruijn E, van der Hoeven JJM, van Snellenberg H, van der Kolk LE, Cuppen E, Voest EE, Meijer GA, Monkhorst K. Optimized whole-genome sequencing workflow for tumor diagnostics in routine pathology practice. Nat Protoc 2024; 19:700-726. [PMID: 38092944 DOI: 10.1038/s41596-023-00933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/19/2023] [Indexed: 03/10/2024]
Abstract
Two decades after the genomics revolution, oncology is rapidly transforming into a genome-driven discipline, yet routine cancer diagnostics is still mainly microscopy based, except for tumor type-specific predictive molecular tests. Pathology laboratories struggle to quickly validate and adopt biomarkers identified by genomics studies of new targeted therapies. Consequently, clinical implementation of newly approved biomarkers suffers substantial delays, leading to unequal patient access to these therapies. Whole-genome sequencing (WGS) can successfully address these challenges by providing a stable molecular diagnostic platform that allows detection of a multitude of genomic alterations in a single cost-efficient assay and facilitating rapid implementation, as well as by the development of new genomic biomarkers. Recently, the Whole-genome sequencing Implementation in standard Diagnostics for Every cancer patient (WIDE) study demonstrated that WGS is a feasible and clinically valid technique in routine clinical practice with a turnaround time of 11 workdays. As a result, WGS was successfully implemented at the Netherlands Cancer Institute as part of routine diagnostics in January 2021. The success of implementing WGS has relied on adhering to a comprehensive protocol including recording patient information, sample collection, shipment and storage logistics, sequencing data interpretation and reporting, integration into clinical decision-making and data usage. This protocol describes the use of fresh-frozen samples that are necessary for WGS but can be challenging to implement in pathology laboratories accustomed to using formalin-fixed paraffin-embedded samples. In addition, the protocol outlines key considerations to guide uptake of WGS in routine clinical care in hospitals worldwide.
Collapse
Affiliation(s)
- Kris G Samsom
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Linda J W Bosch
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Luuk J Schipper
- Department of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Utrecht, the Netherlands
| | - Daoin Schout
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
| | - Mirjam C Boelens
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ferry Lalezari
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Adrianus J de Langen
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tineke E Buffart
- Department of Medical Oncology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Berit M H van Linder
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Kelly van Deventer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Kay van den Burg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Unga Unmehopa
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Efraim H Rosenberg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roelof Koster
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Frans B L Hogervorst
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - José G van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Immy Riethorst
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
| | - Lieke Schoenmaker
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
| | - Daphne van Beek
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
| | - Ewart de Bruijn
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
| | | | | | | | - Edwin Cuppen
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Utrecht, the Netherlands
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Emile E Voest
- Department of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Utrecht, the Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Kim Monkhorst
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Jang MA. Genomic technologies for detecting structural variations in hematologic malignancies. Blood Res 2024; 59:1. [PMID: 38485792 PMCID: PMC10903520 DOI: 10.1007/s44313-024-00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 03/18/2024] Open
Abstract
Genomic structural variations in myeloid, lymphoid, and plasma cell neoplasms can provide key diagnostic, prognostic, and therapeutic information while elucidating the underlying disease biology. Several molecular diagnostic approaches play a central role in evaluating hematological malignancies. Traditional cytogenetic diagnostic assays, such as chromosome banding and fluorescence in situ hybridization, are essential components of the current diagnostic workup that guide clinical care for most hematologic malignancies. However, each assay has inherent limitations, including limited resolution for detecting small structural variations and low coverage, and can only detect alterations in the target regions. Recently, the rapid expansion and increasing availability of novel and comprehensive genomic technologies have led to their use in clinical laboratories for clinical management and translational research. This review aims to describe the clinical relevance of structural variations in hematologic malignancies and introduce genomic technologies that may facilitate personalized tumor characterization and treatment.
Collapse
Affiliation(s)
- Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Korea.
| |
Collapse
|
13
|
Koster R, Schipper LJ, Giesbertz NAA, van Beek D, Mendeville M, Samsom KG, Rosenberg EH, Hogervorst FBL, Roepman P, Boelens MC, Bosch LJW, van den Berg JG, Meijer GA, Voest EE, Cuppen E, Ruijs MWG, van Wezel T, van der Kolk L, Monkhorst K. Impact of genetic counseling strategy on diagnostic yield and workload for genome-sequencing-based tumor diagnostics. Genet Med 2024; 26:101032. [PMID: 38006283 DOI: 10.1016/j.gim.2023.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE Genome sequencing (GS) enables comprehensive molecular analysis of tumors and identification of hereditary cancer predisposition. According to guidelines, directly determining pathogenic germline variants (PGVs) requires pretest genetic counseling, which is cost-ineffective. Referral for genetic counseling based on tumor variants alone could miss relevant PGVs and/or result in unnecessary referrals. METHODS We validated GS for detection of germline variants and simulated 3 strategies using paired tumor-normal GS data of 937 metastatic patients. In strategy-1, genetic counseling before tumor testing allowed direct PGV analysis. In strategy-2 and -3, germline testing and referral for post-test genetic counseling is based on tumor variants using Dutch (strategy-2) or Europen Society for Medical Oncology (ESMO) Precision Medicine Working Group (strategy-3) guidelines. RESULTS In strategy-1, PGVs would be detected in 50 patients (number-needed-to counsel; NTC = 18.7). In strategy-2, 86 patients would have been referred for genetic counseling and 43 would have PGVs (NTC = 2). In strategy-3, 94 patients would have been referred for genetic counseling and 32 would have PGVs (NTC = 2.9). Hence, 43 and 62 patients, respectively, were unnecessarily referred based on a somatic variant. CONCLUSION Both post-tumor test counseling strategies (2 and 3) had significantly lower NTC, and strategy-2 had the highest PGV yield. Combining pre-tumor test mainstreaming and post-tumor test counseling may maximize the clinically relevant PGV yield and minimize unnecessary referrals.
Collapse
Affiliation(s)
- Roelof Koster
- The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Luuk J Schipper
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | - Kris G Samsom
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | | | - Linda J W Bosch
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Gerrit A Meijer
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emile E Voest
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | | | - Tom van Wezel
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Kim Monkhorst
- The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Nguyen MTN, Rajavuori A, Huhtinen K, Hietanen S, Hynninen J, Oikkonen J, Hautaniemi S. Circulating tumor DNA-based copy-number profiles enable monitoring treatment effects during therapy in high-grade serous carcinoma. Biomed Pharmacother 2023; 168:115630. [PMID: 37806091 DOI: 10.1016/j.biopha.2023.115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Circulating tumor DNA (ctDNA) analysis has emerged as a promising tool for detecting and profiling longitudinal genomics changes in cancer. While copy-number alterations (CNAs) play a major role in cancers, treatment effect monitoring using copy-number profiles has received limited attention as compared to mutations. A major reason for this is the insensitivity of CNA analysis for the real-life tumor-fraction ctDNA samples. We performed copy-number analysis on 152 plasma samples obtained from 29 patients with high-grade serous ovarian cancer (HGSC) using a sequencing panel targeting over 500 genes. Twenty-one patients had temporally matched tissue and plasma sample pairs, which enabled assessing concordance with tissues sequenced with the same panel or whole-genome sequencing and to evaluate sensitivity. Our approach could detect concordant CNA profiles in most plasma samples with as low as 5% tumor content and highly amplified regions in samples with ∼1% of tumor content. Longitudinal profiles showed changes in the CNA profiles in seven out of 11 patients with high tumor-content plasma samples at relapse. These changes included focal acquired or lost copy-numbers, even though most of the genome remained stable. Two patients displayed major copy-number profile changes during therapy. Our analysis revealed ctDNA-detectable subclonal selection resulting from both surgical operations and chemotherapy. Overall, longitudinal ctDNA data showed acquired and diminished CNAs at relapse when compared to pre-treatment samples. These results highlight the importance of genomic profiling during treatment as well as underline the usability of ctDNA.
Collapse
Affiliation(s)
- Mai T N Nguyen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland
| | - Anna Rajavuori
- Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4, Turku 20521, Finland
| | - Kaisa Huhtinen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland; Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, Turku 20014, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4, Turku 20521, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4, Turku 20521, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland.
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland.
| |
Collapse
|
15
|
Mulet Margalef N, Castillo C, Mosteiro M, Pérez X, Aguilar S, Ruíz‐Pace F, Gil M, Cuadra C, Ruffinelli JC, Martínez M, Losa F, Soler G, Teulé À, Castany R, Gallego R, Ruíz A, Garralda E, Élez E, Vivancos A, Tabernero J, Salazar R, Dienstmann R, Santos Vivas C. Genomically matched therapy in refractory colorectal cancer according to ESMO Scale for Clinical Actionability of Molecular Targets: experience of a comprehensive cancer centre network. Mol Oncol 2023; 17:1908-1916. [PMID: 37097008 PMCID: PMC10483603 DOI: 10.1002/1878-0261.13444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Efficiency of expanded genomic profiling (EGP) programmes in terms of final inclusion of patients in genomically matched therapies is still unknown. Fit patients with advanced and refractory colorectal cancer (CRC) were selected for an EGP programme. Next-generation sequencing (NGS) analysis from formalin-fixed paraffin-embedded tumour samples was performed. The purpose was to describe the prevalence of genomic alterations defined by the ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT), as well as the percentage of patients finally included in genomically guided clinical trials. In total, 187 patients were recruited. Mutational profile was obtained in 177 patients (10 patients were failure due to insufficient tumour sample), copy number alterations in 41 patients and fusions in 31 patients. ESCAT-defined alterations were detected in 28.8% of the intention-to-analyse population. BRAF V600E was clustered in ESCAT I, with a prevalence of 3.7%, KRAS G12C and ERBB2 amplification were clustered in ESCAT II, whose prevalence was 4.2% and 1.6%, respectively. Most alterations were classified in ESCAT III (mutations in ERBB2, PIK3CA or FGFR genes and MET amplification) and IV (mutations in BRAF non-V600E, ERBB3, FBXW7, NOTCH, RNF43), with a single prevalence under 5%, except for PIK3CA mutation (9%). The final rate of inclusion into genomically guided clinical trials was 2.7%, including therapies targeting BRAF V600E or RNF43 mutations in two patients each, and ERBB2 mutation in one patient. In conclusion, EGP programmes in patients with advanced CRC are feasible and identify a subset of patients with potentially druggable genomic alterations. However, further efforts must be made to increase the rate of patients treated with genomically guided therapies.
Collapse
Affiliation(s)
- Núria Mulet Margalef
- Medical Oncology DepartmentInstitut Català d'OncologiaL'Hospitalet de LlobregatSpain
- Badalona Applied Research Group in Oncology, B‐ARGOSpain
| | - Carmen Castillo
- Medical Oncology DepartmentInstitut Català d'OncologiaL'Hospitalet de LlobregatSpain
| | - Miguel Mosteiro
- Medical Oncology DepartmentInstitut Català d'OncologiaL'Hospitalet de LlobregatSpain
| | - Xavier Pérez
- Medical Oncology DepartmentInstitut Català d'OncologiaL'Hospitalet de LlobregatSpain
| | - Susana Aguilar
- Molecular Pre‐Screening ProgramVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Fiorella Ruíz‐Pace
- Oncology Data Science GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Marta Gil
- Medical Oncology DepartmentInstitut Català d'OncologiaL'Hospitalet de LlobregatSpain
| | - Carmen Cuadra
- Medical Oncology DepartmentInstitut Català d'OncologiaL'Hospitalet de LlobregatSpain
| | | | - Mercedes Martínez
- Medical Oncology DepartmentInstitut Català d'OncologiaL'Hospitalet de LlobregatSpain
| | - Ferran Losa
- Medical Oncology DepartmentInstitut Català d'OncologiaL'Hospitalet de LlobregatSpain
| | - Gema Soler
- Medical Oncology DepartmentInstitut Català d'OncologiaL'Hospitalet de LlobregatSpain
| | - Àlex Teulé
- Medical Oncology DepartmentInstitut Català d'OncologiaL'Hospitalet de LlobregatSpain
| | - Roser Castany
- Medical Oncology DepartmentInstitut Català d'OncologiaL'Hospitalet de LlobregatSpain
| | - Rosa Gallego
- Medical Oncology DepartmentInstitut Català d'OncologiaL'Hospitalet de LlobregatSpain
| | - Andrea Ruíz
- Medical Oncology DepartmentInstitut Català d'OncologiaL'Hospitalet de LlobregatSpain
| | - Elena Garralda
- Research Unit for Molecular Therapy of Cancer (UITM)Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Elena Élez
- Department of Medical OncologyVall d'Hebron Hospital Campus and Vall d'Hebron Institute of OncologyBarcelonaSpain
| | - Ana Vivancos
- Cancer Genomics GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Josep Tabernero
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO)IOB‐Quiron, UVic‐UCC, CIBERONCBarcelonaSpain
| | - Ramon Salazar
- Medical Oncology DepartmentInstitut Català d'OncologiaL'Hospitalet de LlobregatSpain
- Oncobell Program (IDIBELL), Facultat de Medicina i Ciències de la SalutUniversitat de Barcelona CIBERONCSpain
| | - Rodrigo Dienstmann
- Oncology Data Science GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Cristina Santos Vivas
- Medical Oncology DepartmentInstitut Català d'OncologiaL'Hospitalet de LlobregatSpain
- Oncobell Program (IDIBELL), Facultat de Medicina i Ciències de la SalutUniversitat de Barcelona CIBERONCSpain
| |
Collapse
|
16
|
Martínez-Jiménez F, Movasati A, Brunner SR, Nguyen L, Priestley P, Cuppen E, Van Hoeck A. Pan-cancer whole-genome comparison of primary and metastatic solid tumours. Nature 2023; 618:333-341. [PMID: 37165194 PMCID: PMC10247378 DOI: 10.1038/s41586-023-06054-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
Metastatic cancer remains an almost inevitably lethal disease1-3. A better understanding of disease progression and response to therapies therefore remains of utmost importance. Here we characterize the genomic differences between early-stage untreated primary tumours and late-stage treated metastatic tumours using a harmonized pan-cancer analysis (or reanalysis) of two unpaired primary4 and metastatic5 cohorts of 7,108 whole-genome-sequenced tumours. Metastatic tumours in general have a lower intratumour heterogeneity and a conserved karyotype, displaying only a modest increase in mutations, although frequencies of structural variants are elevated overall. Furthermore, highly variable tumour-specific contributions of mutational footprints of endogenous (for example, SBS1 and APOBEC) and exogenous mutational processes (for example, platinum treatment) are present. The majority of cancer types had either moderate genomic differences (for example, lung adenocarcinoma) or highly consistent genomic portraits (for example, ovarian serous carcinoma) when comparing early-stage and late-stage disease. Breast, prostate, thyroid and kidney renal clear cell carcinomas and pancreatic neuroendocrine tumours are clear exceptions to the rule, displaying an extensive transformation of their genomic landscape in advanced stages. Exposure to treatment further scars the tumour genome and introduces an evolutionary bottleneck that selects for known therapy-resistant drivers in approximately half of treated patients. Our data showcase the potential of pan-cancer whole-genome analysis to identify distinctive features of late-stage tumours and provide a valuable resource to further investigate the biological basis of cancer and resistance to therapies.
Collapse
Affiliation(s)
- Francisco Martínez-Jiménez
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - Ali Movasati
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sascha Remy Brunner
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Luan Nguyen
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Hartwig Medical Foundation Australia, Sydney, New South Wales, Australia
| | - Peter Priestley
- Hartwig Medical Foundation Australia, Sydney, New South Wales, Australia
| | - Edwin Cuppen
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
- Hartwig Medical Foundation, Amsterdam, The Netherlands.
| | - Arne Van Hoeck
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
17
|
Parihar A, Choudhary N, Sharma P, Khan R. Carbon nanomaterials-based electrochemical aptasensor for point-of-care diagnostics of cancer biomarkers. MATERIALS TODAY CHEMISTRY 2023; 30:101499. [DOI: 10.1016/j.mtchem.2023.101499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
18
|
Gilmore LA, Parry TL, Thomas GA, Khamoui AV. Skeletal muscle omics signatures in cancer cachexia: perspectives and opportunities. J Natl Cancer Inst Monogr 2023; 2023:30-42. [PMID: 37139970 PMCID: PMC10157770 DOI: 10.1093/jncimonographs/lgad006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 05/05/2023] Open
Abstract
Cachexia is a life-threatening complication of cancer that occurs in up to 80% of patients with advanced cancer. Cachexia reflects the systemic consequences of cancer and prominently features unintended weight loss and skeletal muscle wasting. Cachexia impairs cancer treatment tolerance, lowers quality of life, and contributes to cancer-related mortality. Effective treatments for cancer cachexia are lacking despite decades of research. High-throughput omics technologies are increasingly implemented in many fields including cancer cachexia to stimulate discovery of disease biology and inform therapy choice. In this paper, we present selected applications of omics technologies as tools to study skeletal muscle alterations in cancer cachexia. We discuss how comprehensive, omics-derived molecular profiles were used to discern muscle loss in cancer cachexia compared with other muscle-wasting conditions, to distinguish cancer cachexia from treatment-related muscle alterations, and to reveal severity-specific mechanisms during the progression of cancer cachexia from early toward severe disease.
Collapse
Affiliation(s)
- L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Traci L Parry
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Gwendolyn A Thomas
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
19
|
Martínez-Jiménez F, Priestley P, Shale C, Baber J, Rozemuller E, Cuppen E. Genetic immune escape landscape in primary and metastatic cancer. Nat Genet 2023; 55:820-831. [PMID: 37165135 PMCID: PMC10181939 DOI: 10.1038/s41588-023-01367-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/10/2023] [Indexed: 05/12/2023]
Abstract
Studies have characterized the immune escape landscape across primary tumors. However, whether late-stage metastatic tumors present differences in genetic immune escape (GIE) prevalence and dynamics remains unclear. We performed a pan-cancer characterization of GIE prevalence across six immune escape pathways in 6,319 uniformly processed tumor samples. To address the complexity of the HLA-I locus in the germline and in tumors, we developed LILAC, an open-source integrative framework. One in four tumors harbors GIE alterations, with high mechanistic and frequency variability across cancer types. GIE prevalence is generally consistent between primary and metastatic tumors. We reveal that GIE alterations are selected for in tumor evolution and focal loss of heterozygosity of HLA-I tends to eliminate the HLA allele, presenting the largest neoepitope repertoire. Finally, high mutational burden tumors showed a tendency toward focal loss of heterozygosity of HLA-I as the immune evasion mechanism, whereas, in hypermutated tumors, other immune evasion strategies prevail.
Collapse
Affiliation(s)
- Francisco Martínez-Jiménez
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands.
- Hartwig Medical Foundation, Amsterdam, the Netherlands.
- Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| | - Peter Priestley
- Hartwig Medical Foundation Australia, Sydney, New South Wales, Australia
| | - Charles Shale
- Hartwig Medical Foundation Australia, Sydney, New South Wales, Australia
| | - Jonathan Baber
- Hartwig Medical Foundation Australia, Sydney, New South Wales, Australia
| | | | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands.
- Hartwig Medical Foundation, Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Tsang ES, Csizmok V, Williamson LM, Pleasance E, Topham JT, Karasinska JM, Titmuss E, Schrader I, Yip S, Tessier-Cloutier B, Mungall K, Ng T, Sun S, Lim HJ, Loree JM, Laskin J, Marra MA, Jones SJM, Schaeffer DF, Renouf DJ. Homologous recombination deficiency signatures in gastrointestinal and thoracic cancers correlate with platinum therapy duration. NPJ Precis Oncol 2023; 7:31. [PMID: 36964191 PMCID: PMC10039042 DOI: 10.1038/s41698-023-00368-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
There is emerging evidence about the predictive role of homologous recombination deficiency (HRD), but this is less defined in gastrointestinal (GI) and thoracic malignancies. We reviewed whole genome (WGS) and transcriptomic (RNA-Seq) data from advanced GI and thoracic cancers in the Personalized OncoGenomics trial (NCT02155621) to evaluate HRD scores and single base substitution (SBS)3, which is associated with BRCA1/2 mutations and potentially predictive of defective HRD. HRD scores were calculated by sum of loss of heterozygosity, telomeric allelic imbalance, and large-scale state transitions scores. Regression analyses examined the association between HRD and time to progression on platinum (TTPp). We included 223 patients with GI (n = 154) or thoracic (n = 69) malignancies. TTPp was associated with SBS3 (p < 0.01) but not HRD score in patients with GI malignancies, whereas neither was associated with TTPp in thoracic malignancies. Tumors with gBRCA1/2 mutations and a somatic second alteration exhibited high SBS3 and HRD scores, but these signatures were also present in several tumors with germline but no somatic second alterations, suggesting silencing of the wild-type allele or BRCA1/2 haploinsufficiency. Biallelic inactivation of an HR gene, including loss of XRCC2 and BARD1, was identified in BRCA1/2 wild-type HRD tumors and these patients had prolonged response to platinum. Thoracic cases with high HRD score were associated with high RECQL5 expression (p ≤ 0.025), indicating another potential mechanism of HRD. SBS3 was more strongly associated with TTPp in patients with GI malignancies and may be complementary to using HRD and BRCA status in identifying patients who benefit from platinum therapy.
Collapse
Affiliation(s)
- Erica S Tsang
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
- Pancreas Centre BC, Vancouver, BC, Canada
| | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | | | | | - Emma Titmuss
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Intan Schrader
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Basile Tessier-Cloutier
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karen Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Tony Ng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sophie Sun
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Howard J Lim
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Jonathan M Loree
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, BC, Canada
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Daniel J Renouf
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada.
- Pancreas Centre BC, Vancouver, BC, Canada.
| |
Collapse
|
21
|
Geurts BS, Battaglia TW, van Berge Henegouwen JM, Zeverijn LJ, de Wit GF, Hoes LR, van der Wijngaart H, van der Noort V, Roepman P, de Leng WWJ, Jansen AML, Opdam FL, de Jonge MJA, Cirkel GA, Labots M, Hoeben A, Kerver ED, Bins AD, Erdkamp FGL, van Rooijen JM, Houtsma D, Hendriks MP, de Groot JWB, Verheul HMW, Gelderblom H, Voest EE. Efficacy, safety and biomarker analysis of durvalumab in patients with mismatch-repair deficient or microsatellite instability-high solid tumours. BMC Cancer 2023; 23:205. [PMID: 36870947 PMCID: PMC9985217 DOI: 10.1186/s12885-023-10663-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND In this study we aimed to evaluate the efficacy and safety of the PD-L1 inhibitor durvalumab across various mismatch repair deficient (dMMR) or microsatellite instability-high (MSI-H) tumours in the Drug Rediscovery Protocol (DRUP). This is a clinical study in which patients are treated with drugs outside their labeled indication, based on their tumour molecular profile. PATIENTS AND METHODS Patients with dMMR/MSI-H solid tumours who had exhausted all standard of care options were eligible. Patients were treated with durvalumab. The primary endpoints were clinical benefit ((CB): objective response (OR) or stable disease ≥16 weeks) and safety. Patients were enrolled using a Simon like 2-stage model, with 8 patients in stage 1, up to 24 patients in stage 2 if at least 1/8 patients had CB in stage 1. At baseline, fresh frozen biopsies were obtained for biomarker analyses. RESULTS Twenty-six patients with 10 different cancer types were included. Two patients (2/26, 8%) were considered as non-evaluable for the primary endpoint. CB was observed in 13 patients (13/26, 50%) with an OR in 7 patients (7/26, 27%). The remaining 11 patients (11/26, 42%) had progressive disease. Median progression-free survival and median overall survival were 5 months (95% CI, 2-not reached) and 14 months (95% CI, 5-not reached), respectively. No unexpected toxicity was observed. We found a significantly higher structural variant (SV) burden in patients without CB. Additionally, we observed a significant enrichment of JAK1 frameshift mutations and a significantly lower IFN-γ expression in patients without CB. CONCLUSION Durvalumab was generally well-tolerated and provided durable responses in pre-treated patients with dMMR/MSI-H solid tumours. High SV burden, JAK1 frameshift mutations and low IFN-γ expression were associated with a lack of CB; this provides a rationale for larger studies to validate these findings. TRIAL REGISTRATION Clinical trial registration: NCT02925234. First registration date: 05/10/2016.
Collapse
Affiliation(s)
- Birgit S Geurts
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Thomas W Battaglia
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - J Maxime van Berge Henegouwen
- Oncode Institute, Utrecht, the Netherlands.,Department of Medical Oncology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Laurien J Zeverijn
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Gijs F de Wit
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Louisa R Hoes
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Hanneke van der Wijngaart
- Oncode Institute, Utrecht, the Netherlands.,Department of Medical Oncology, Amsterdam University Medical Centre, location VUMC, Amsterdam, the Netherlands
| | | | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Cancer Centre Utrecht, Utrecht, the Netherlands
| | - Anne M L Jansen
- Department of Pathology, University Medical Cancer Centre Utrecht, Utrecht, the Netherlands
| | - Frans L Opdam
- Department of Clinical Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maja J A de Jonge
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Geert A Cirkel
- Department of Medical Oncology, Meander, Amersfoort, the Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Amsterdam University Medical Centre, location VUMC, Amsterdam, the Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, Department of Internal Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Emile D Kerver
- Department of Medical Oncology, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands
| | - Adriaan D Bins
- Department of Medical Oncology, Amsterdam University Medical Centre, location AUMC, Amsterdam, the Netherlands
| | - Frans G L Erdkamp
- Department of Medical Oncology, Zuyderland Hospital, Sittard-Geelen, the Netherlands
| | - Johan M van Rooijen
- Department of Medical Oncology, Martini Hospital, Groningen, the Netherlands
| | - Danny Houtsma
- Department of Medical Oncology, Haga Hospital, The Hague, the Netherlands
| | - Mathijs P Hendriks
- Department of Medical Oncology, Northwest Clinics, Alkmaar, the Netherlands
| | | | - Henk M W Verheul
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands. .,Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
22
|
van der Sluis K, van Sandick JW, van Dieren JM, Vollebergh MA, Grootscholten C, van den Berg JG, Snaebjornsson P, Hartemink KJ, Veenhof AAFA, Chalabi M, Kodach LL. The clinical impact of testing for biomarkers in gastric cancer patients: a real-world cohort. Histopathology 2023; 82:826-836. [PMID: 36694277 DOI: 10.1111/his.14869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIMS In gastric cancer (GC), HER2 was the first biomarker for guided therapy registered for clinical use. Considering the recent approvals of immune check-point blockade (ICB) in gastro-oesophageal cancers, testing for mismatch repair deficiency (dMMR), Epstein-Barr virus (EBV) and PD-L1 combined positive score (CPS) is becoming increasingly important. Here we describe a real-world cohort on biomarker assessment in GC patients. METHODS Patients diagnosed with GC between 2017 and 2021 were included. Biomarker results were retrieved from electronic patient files. PD-L1 CPS was determined retrospectively on dMMR and EBV-positive (EBV+) tumours. Data on genomic sequencing were analysed separately. RESULTS Of 363 patients identified, 45% had metastatic disease. In 335 patients (92%) at least one biomarker was tested. The prevalence of HER2+, dMMR and EBV+ tumours was 10% (32 of 319), 7% (20 of 294) and 1% (three of 235), respectively. Of the dMMR and EBV+ tumours, 95% had a PD-L1 CPS ≥ 5. Therapeutic strategy was adjusted in 31 of 55 patients and consisted of anti-HER2 therapies as well as ICB in clinical trials. Genomic alterations were found in 44 of 60 tested patients. TP53 (73%) and PIK3CA (20%) mutations were most common, followed by KRAS mutations (11%) and amplifications (11%). CONCLUSIONS In this real-world cohort, testing for HER2, dMMR and EBV status affected treatment decisions in 56% of the patients. Although most dMMR and EBV+ tumours had a PD-L1 CPS ≥ 5, not all patients with a high probability of treatment response are identified. Based on these results, a stepwise diagnostic strategy is proposed.
Collapse
Affiliation(s)
- Karen van der Sluis
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Johanna W van Sandick
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jolanda M van Dieren
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marieke A Vollebergh
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Cecile Grootscholten
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - José G van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Petur Snaebjornsson
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Koen J Hartemink
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Myriam Chalabi
- Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Liudmila L Kodach
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Schipper L, Samsom K, Snaebjornsson P, Battaglia T, Bosch L, Lalezari F, Priestley P, Shale C, van den Broek A, Jacobs N, Roepman P, van der Hoeven J, Steeghs N, Vollebergh M, Marchetti S, Cuppen E, Meijer G, Voest E, Monkhorst K. Complete genomic characterization in patients with cancer of unknown primary origin in routine diagnostics. ESMO Open 2022; 7:100611. [PMID: 36463731 PMCID: PMC9808446 DOI: 10.1016/j.esmoop.2022.100611] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In ∼3%-5% of patients with metastatic disease, tumor origin remains unknown despite modern imaging techniques and extensive pathology work-up. With long diagnostic delays and limited and ineffective therapy options, the clinical outcome of patients with cancer of unknown primary (CUP) remains poor. Large-scale genome sequencing studies have revealed that tumor types can be predicted based on distinct patterns of somatic variants and other genomic characteristics. Moreover, actionable genomic events are present in almost half of CUP patients. This study investigated the clinical value of whole genome sequencing (WGS) in terms of primary tumor identification and detection of actionable events, in the routine diagnostic work-up of CUP patients. PATIENTS AND METHODS A WGS-based tumor type 'cancer of unknown primary prediction algorithm' (CUPPA) was developed based on previously described principles and validated on a large pan-cancer WGS database of metastatic cancer patients (>4000 samples) and 254 independent patients, respectively. We assessed the clinical value of this prediction algorithm as part of routine WGS-based diagnostic work-up for 72 CUP patients. RESULTS CUPPA correctly predicted the primary tumor type in 78% of samples in the independent validation cohort (194/254 patients). High-confidence predictions (>95% precision) were obtained for 162/254 patients (64%). When integrated in the diagnostic work-up of CUP patients, CUPPA could identify a primary tumor type for 49/72 patients (68%). Most common diagnoses included non-small-cell lung (n = 7), gastroesophageal (n = 4), pancreatic (n = 4), and colorectal cancer (n = 3). Actionable events with matched therapy options in clinical trials were identified in 47% of patients. CONCLUSIONS Genome-based tumor type prediction can predict cancer diagnoses with high accuracy when integrated in the routine diagnostic work-up of patients with metastatic cancer. With identification of the primary tumor type in the majority of patients and detection of actionable events, WGS is a valuable diagnostic tool for patients with CUP.
Collapse
Affiliation(s)
- L.J. Schipper
- Department of Molecular Oncology, Netherlands Cancer Institute, Amsterdam,Oncode Institute, Utrecht, The Netherlands
| | - K.G. Samsom
- Department of Pathology, Netherlands Cancer Institute, Amsterdam
| | - P. Snaebjornsson
- Department of Pathology, Netherlands Cancer Institute, Amsterdam
| | - T. Battaglia
- Department of Molecular Oncology, Netherlands Cancer Institute, Amsterdam
| | - L.J.W. Bosch
- Department of Pathology, Netherlands Cancer Institute, Amsterdam
| | - F. Lalezari
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - P. Priestley
- Hartwig Medical Foundation Australia, Sydney, Australia
| | - C. Shale
- Hartwig Medical Foundation Australia, Sydney, Australia
| | | | - N. Jacobs
- Hartwig Medical Foundation, Amsterdam
| | | | | | - N. Steeghs
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam
| | - M.A. Vollebergh
- Department of Gastroenterology, Netherlands Cancer Institute, Amsterdam
| | - S. Marchetti
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam
| | - E. Cuppen
- Oncode Institute, Utrecht, The Netherlands,Hartwig Medical Foundation, Amsterdam,Center for Molecular Medicine, UMC Utrecht, Utrecht
| | - G.A. Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam
| | - E.E. Voest
- Department of Molecular Oncology, Netherlands Cancer Institute, Amsterdam,Oncode Institute, Utrecht, The Netherlands,Department of Gastroenterology, Netherlands Cancer Institute, Amsterdam
| | - K. Monkhorst
- Department of Pathology, Netherlands Cancer Institute, Amsterdam,Correspondence to: Dr Kim Monkhorst, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands. Tel: +0205122948
| |
Collapse
|
24
|
Lakbir S, Lahoz S, Cuatrecasas M, Camps J, Glas RA, Heringa J, Meijer GA, Abeln S, Fijneman RJA. Tumour break load is a biologically relevant feature of genomic instability with prognostic value in colorectal cancer. Eur J Cancer 2022; 177:94-102. [PMID: 36334560 DOI: 10.1016/j.ejca.2022.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Clinically implemented prognostic biomarkers are lacking for the 80% of colorectal cancers (CRCs) that exhibit chromosomal instability (CIN). CIN is characterised by chromosome segregation errors and double-strand break repair defects that lead to somatic copy number aberrations (SCNAs) and chromosomal rearrangement-associated structural variants (SVs), respectively. We hypothesise that the number of SVs is a distinct feature of genomic instability and defined a new measure to quantify SVs: the tumour break load (TBL). The present study aimed to characterise the biological impact and clinical relevance of TBL in CRC. METHODS Disease-free survival and SCNA data were obtained from The Cancer Genome Atlas and two independent CRC studies. TBL was defined as the sum of SCNA-associated SVs. RNA gene expression data of microsatellite stable (MSS) CRC samples were used to train an RNA-based TBL classifier. Dichotomised DNA-based TBL data were used for survival analysis. RESULTS TBL shows large variation in CRC with poor correlation to tumour mutational burden and fraction of genome altered. TBL impact on tumour biology was illustrated by the high accuracy of classifying cancers in TBL-high and TBL-low (area under the receiver operating characteristic curve [AUC]: 0.88; p < 0.01). High TBL was associated with disease recurrence in 85 stages II-III MSS CRCs from The Cancer Genome Atlas (hazard ratio [HR]: 6.1; p = 0.007) and in two independent validation series of 57 untreated stages II-III (HR: 4.1; p = 0.012) and 74 untreated stage II MSS CRCs (HR: 2.4; p = 0.01). CONCLUSION TBL is a prognostic biomarker in patients with non-metastatic MSS CRC with great potential to be implemented in routine molecular diagnostics.
Collapse
Affiliation(s)
- Soufyan Lakbir
- Bioinformatics Group, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam 1081HV, the Netherlands; Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Sara Lahoz
- Translational Colorectal Cancer Genomics, Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, 08036, Spain
| | - Miriam Cuatrecasas
- Pathology Department, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Universitat de Barcelona (UB), Barcelona, 08036, Spain
| | - Jordi Camps
- Translational Colorectal Cancer Genomics, Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, 08036, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, 08193, Spain
| | - Roel A Glas
- Bioinformatics Group, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam 1081HV, the Netherlands; Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Jaap Heringa
- Bioinformatics Group, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam 1081HV, the Netherlands; AIMMS - Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam 1081HV, the Netherlands
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Sanne Abeln
- Bioinformatics Group, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam 1081HV, the Netherlands; Life Sciences and Health Research Group, Centrum Wiskunde & Informatica (CWI), Science Park 123, Amsterdam 1098 XG, the Netherlands.
| | - Remond J A Fijneman
- Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands.
| |
Collapse
|
25
|
Cuppen E, Elemento O, Rosenquist R, Nikic S, IJzerman M, Zaleski ID, Frederix G, Levin LÅ, Mullighan CG, Buettner R, Pugh TJ, Grimmond S, Caldas C, Andre F, Custers I, Campo E, van Snellenberg H, Schuh A, Nakagawa H, von Kalle C, Haferlach T, Fröhling S, Jobanputra V. Implementation of Whole-Genome and Transcriptome Sequencing Into Clinical Cancer Care. JCO Precis Oncol 2022; 6:e2200245. [PMID: 36480778 PMCID: PMC10166391 DOI: 10.1200/po.22.00245] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/30/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The combination of whole-genome and transcriptome sequencing (WGTS) is expected to transform diagnosis and treatment for patients with cancer. WGTS is a comprehensive precision diagnostic test that is starting to replace the standard of care for oncology molecular testing in health care systems around the world; however, the implementation and widescale adoption of this best-in-class testing is lacking. METHODS Here, we address the barriers in integrating WGTS for cancer diagnostics and treatment selection and answer questions regarding utility in different cancer types, cost-effectiveness and affordability, and other practical considerations for WGTS implementation. RESULTS We review the current studies implementing WGTS in health care systems and provide a synopsis of the clinical evidence and insights into practical considerations for WGTS implementation. We reflect on regulatory, costs, reimbursement, and incidental findings aspects of this test. CONCLUSION WGTS is an appropriate comprehensive clinical test for many tumor types and can replace multiple, cascade testing approaches currently performed. Decreasing sequencing cost, increasing number of clinically relevant aberrations and discovery of more complex biomarkers of treatment response, should pave the way for health care systems and laboratories in implementing WGTS into clinical practice, to transform diagnosis and treatment for patients with cancer.
Collapse
Affiliation(s)
- Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, the Netherlands
- Center for Molecular Medicine and Oncode Institute, University Medical Center, Utrecht, the Netherlands
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Svetlana Nikic
- Illumina Productos de España, S.L.U., Plaza Pablo Ruiz Picasso, Madrid, Spain
| | - Maarten IJzerman
- Erasmus School of Health Policy & Management, Erasmus University, Rotterdam, the Netherlands
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Isabelle Durand Zaleski
- Université de Paris, CRESS, INSERM, INRA, URCEco, AP-HP, Hôpital de l'Hôtel Dieu, Paris, France
| | - Geert Frederix
- Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands
| | - Lars-Åke Levin
- Department of Health, Medicine and Caring Sciences (HMV), Linköping University, Linköping, Sweden
| | | | | | - Trevor J. Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Sean Grimmond
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Elias Campo
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red, Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Unit, Hospital Clínic of Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | | | - Anna Schuh
- University of Oxford, Oxford, United Kingdom
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Christof von Kalle
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Clinical Study Center, Berlin, Germany
| | | | - Stefan Fröhling
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Vaidehi Jobanputra
- New York Genome Center; Department of Pathology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
26
|
van Opijnen MP, Broekman MLD, de Vos FYF, Cuppen E, van der Hoeven JJM, van Linde ME, Compter A, Beerepoot LV, van den Bent MJ, Vos MJ, Fiebrich HB, Koekkoek JAF, Hoeben A, Kho KH, Driessen CML, Jeltema HR, Robe PAJT, Maas SLN. Study protocol of the GLOW study: maximising treatment options for recurrent glioblastoma patients by whole genome sequencing-based diagnostics—a prospective multicenter cohort study. BMC Med Genomics 2022; 15:233. [PMID: 36333718 PMCID: PMC9636658 DOI: 10.1186/s12920-022-01343-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022] Open
Abstract
Background Glioblastoma (GBM), the most common glial primary brain tumour, is without exception lethal. Every year approximately 600 patients are diagnosed with this heterogeneous disease in The Netherlands. Despite neurosurgery, chemo -and radiation therapy, these tumours inevitably recur. Currently, there is no gold standard at time of recurrence and treatment options are limited. Unfortunately, the results of dedicated trials with new drugs have been very disappointing. The goal of the project is to obtain the evidence for changing standard of care (SOC) procedures to include whole genome sequencing (WGS) and consequently adapt care guidelines for this specific patient group with very poor prognosis by offering optimal and timely benefit from novel therapies, even in the absence of traditional registration trials for this small volume cancer indication. Methods The GLOW study is a prospective diagnostic cohort study executed through collaboration of the Hartwig Medical Foundation (Hartwig, a non-profit organisation) and twelve Dutch centers that perform neurosurgery and/or treat GBM patients. A total of 200 patients with a first recurrence of a glioblastoma will be included. Dual primary endpoint is the percentage of patients who receive targeted therapy based on the WGS report and overall survival. Secondary endpoints include WGS report success rate and number of targeted treatments available based on WGS reports and number of patients starting a treatment in presence of an actionable variant. At recurrence, study participants will undergo SOC neurosurgical resection. Tumour material will then, together with a blood sample, be sent to Hartwig where it will be analysed by WGS. A diagnostic report with therapy guidance, including potential matching off-label drugs and available clinical trials will then be sent back to the treating physician for discussing of the results in molecular tumour boards and targeted treatment decision making. Discussion The GLOW study aims to provide the scientific evidence for changing the SOC diagnostics for patients with a recurrent glioblastoma by investigating complete genome diagnostics to maximize treatment options for this patient group. Trial registration: ClinicalTrials.gov Identifier: NCT05186064. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01343-4.
Collapse
|
27
|
Jobanputra V, Wrzeszczynski KO, Buttner R, Caldas C, Cuppen E, Grimmond S, Haferlach T, Mullighan C, Schuh A, Elemento O. Clinical interpretation of whole-genome and whole-transcriptome sequencing for precision oncology. Semin Cancer Biol 2022; 84:23-31. [PMID: 34256129 DOI: 10.1016/j.semcancer.2021.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023]
Abstract
Whole-genome sequencing either alone or in combination with whole-transcriptome sequencing has started to be used to analyze clinical tumor samples to improve diagnosis, provide risk stratification, and select patient-specific therapies. Compared with current genomic testing strategies, largely focused on small number of genes tested individually or targeted panels, whole-genome and transcriptome sequencing (WGTS) provides novel opportunities to identify and report a potentially much larger number of actionable alterations with diagnostic, prognostic, and/or predictive impact. Such alterations include point mutations, indels, copy- number aberrations and structural variants, but also germline variants, fusion genes, noncoding alterations and mutational signatures. Nevertheless, these comprehensive tests are accompanied by many challenges ranging from the extent and diversity of sequence alterations detected by these methods to the complexity and limited existing standardization in interpreting them. We describe the challenges of WGTS interpretation and the opportunities with comprehensive genomic testing.
Collapse
Affiliation(s)
- Vaidehi Jobanputra
- New York Genome Center, 101 Avenue of the Americas, New York, NY 100132, United States; Columbia University Medical Center, 650 W 168th St, New York, NY 10032, United States.
| | | | | | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, University of Cambridge, United Kingdom
| | - Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, Netherlands; Center for Molecular Medicine and Oncode Institute, University Medical Center, Utrecht, Netherlands
| | - Sean Grimmond
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | | | - Charles Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, United States
| | - Anna Schuh
- NIHR Oxford Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, United States; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, United States.
| |
Collapse
|
28
|
Hassan S, Shehzad A, Khan SA, Miran W, Khan S, Lee YS. Diagnostic and Therapeutic Potential of Circulating-Free DNA and Cell-Free RNA in Cancer Management. Biomedicines 2022; 10:2047. [PMID: 36009594 PMCID: PMC9405989 DOI: 10.3390/biomedicines10082047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 11/20/2022] Open
Abstract
Over time, molecular biology and genomics techniques have been developed to speed up the early diagnosis and clinical management of cancer. These therapies are often most effective when administered to the subset of malignancies harboring the target identified by molecular testing. Important advances in applying molecular testing involve circulating-free DNA (cfDNA)- and cell-free RNA (cfRNA)-based liquid biopsies for the diagnosis, prognosis, prediction, and treatment of cancer. Both cfDNA and cfRNA are sensitive and specific biomarkers for cancer detection, which have been clinically proven through multiple randomized and prospective trials. These help in cancer management based on the noninvasive evaluation of size, quantity, and point mutations, as well as copy number alterations at the tumor site. Moreover, personalized detection of ctDNA helps in adjuvant therapeutics and predicts the chances of recurrence of cancer and resistance to cancer therapy. Despite the controversial diagnostic values of cfDNA and cfRNA, many clinical trials have been completed, and the Food and Drug Administration has approved many multigene assays to detect genetic alterations in the cfDNA of cancer patients. In this review, we underpin the recent advances in the physiological roles of cfDNA and cfRNA, as well as their roles in cancer detection by highlighting recent clinical trials and their roles as prognostic and predictive markers in cancer management.
Collapse
Affiliation(s)
- Sadia Hassan
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Adeeb Shehzad
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Waheed Miran
- Department of Chemical Engineering, School of Chemical and Materials Engineering National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Salman Khan
- Department of pharmacy, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Young-Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
29
|
Pinilla K, Drewett LM, Lucey R, Abraham JE. Precision Breast Cancer Medicine: Early Stage Triple Negative Breast Cancer-A Review of Molecular Characterisation, Therapeutic Targets and Future Trends. Front Oncol 2022; 12:866889. [PMID: 36003779 PMCID: PMC9393396 DOI: 10.3389/fonc.2022.866889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Personalised approaches to the management of all solid tumours are increasing rapidly, along with wider accessibility for clinicians. Advances in tumour characterisation and targeted therapies have placed triple-negative breast cancers (TNBC) at the forefront of this approach. TNBC is a highly heterogeneous disease with various histopathological features and is driven by distinct molecular alterations. The ability to tailor individualised and effective treatments for each patient is of particular importance in this group due to the high risk of distant recurrence and death. The mainstay of treatment across all subtypes of TNBC has historically been cytotoxic chemotherapy, which is often associated with off-target tissue toxicity and drug resistance. Neoadjuvant chemotherapy is commonly used as it allows close monitoring of early treatment response and provides valuable prognostic information. Patients who achieve a complete pathological response after neoadjuvant chemotherapy are known to have significantly improved long-term outcomes. Conversely, poor responders face a higher risk of relapse and death. The identification of those subgroups that are more likely to benefit from breakthroughs in the personalised approach is a challenge of the current era where several targeted therapies are available. This review presents an overview of contemporary practice, and promising future trends in the management of early TNBC. Platinum chemotherapy, DNA damage response (DDR) inhibitors, immune checkpoint inhibitors, inhibitors of the PI3K-AKT-mTOR, and androgen receptor (AR) pathways are some of the increasingly studied therapies which will be reviewed. We will also discuss the growing evidence for less-developed agents and predictive biomarkers that are likely to contribute to the forthcoming advances in this field. Finally, we will propose a framework for the personalised management of TNBC based upon the integration of clinico-pathological and molecular features to ensure that long-term outcomes are optimised.
Collapse
Affiliation(s)
- Karen Pinilla
- Precision Breast Cancer Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lynsey M. Drewett
- Precision Breast Cancer Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Rebecca Lucey
- Precision Breast Cancer Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Jean E. Abraham
- Precision Breast Cancer Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Nguyen L, Van Hoeck A, Cuppen E. Machine learning-based tissue of origin classification for cancer of unknown primary diagnostics using genome-wide mutation features. Nat Commun 2022; 13:4013. [PMID: 35817764 PMCID: PMC9273599 DOI: 10.1038/s41467-022-31666-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/23/2022] [Indexed: 12/25/2022] Open
Abstract
Cancers of unknown primary (CUP) origin account for ∼3% of all cancer diagnoses, whereby the tumor tissue of origin (TOO) cannot be determined. Using a uniformly processed dataset encompassing 6756 whole-genome sequenced primary and metastatic tumors, we develop Cancer of Unknown Primary Location Resolver (CUPLR), a random forest TOO classifier that employs 511 features based on simple and complex somatic driver and passenger mutations. CUPLR distinguishes 35 cancer (sub)types with ∼90% recall and ∼90% precision based on cross-validation and test set predictions. We find that structural variant derived features increase the performance and utility for classifying specific cancer types. With CUPLR, we could determine the TOO for 82/141 (58%) of CUP patients. Although CUPLR is based on machine learning, it provides a human interpretable graphical report with detailed feature explanations. The comprehensive output of CUPLR complements existing histopathological procedures and can enable improved diagnostics for CUP patients.
Collapse
Affiliation(s)
- Luan Nguyen
- University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Arne Van Hoeck
- University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Edwin Cuppen
- University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
- Hartwig Medical Foundation, Science Park 408, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Samsom KG, Schipper LJ, Roepman P, Bosch LJ, Lalezari F, Klompenhouwer EG, de Langen AJ, Buffart TE, Riethorst I, Schoenmaker L, Schout D, van der Noort V, van den Berg JG, de Bruijn E, van der Hoeven JJ, van Snellenberg H, van der Kolk LE, Cuppen E, Voest EE, Meijer GA, Monkhorst K. Feasibility of whole genome sequencing based tumor diagnostics in routine pathology practice. J Pathol 2022; 258:179-188. [PMID: 35792649 PMCID: PMC9546477 DOI: 10.1002/path.5988] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022]
Abstract
The current increase in number and diversity of targeted anticancer agents poses challenges to the logistics and timeliness of molecular diagnostics (MolDx), resulting in underdiagnosis and treatment. Whole‐genome sequencing (WGS) may provide a sustainable solution for addressing current as well as future diagnostic challenges. The present study therefore aimed to prospectively assess feasibility, validity, and value of WGS in routine clinical practice. WGS was conducted independently of, and in parallel with, standard of care (SOC) diagnostics on routinely obtained tumor samples from 1,200 consecutive patients with metastatic cancer. Results from both tests were compared and discussed in a dedicated tumor board. From 1,200 patients, 1,302 samples were obtained, of which 1,216 contained tumor cells. WGS was successful in 70% (854/1,216) of samples with a median turnaround time of 11 days. Low tumor purity (<20%) was the main reason for not completing WGS. WGS identified 99.2% and SOC MolDx 99.7% of the total of 896 biomarkers found in genomic regions covered by both tests. Actionable biomarkers were found in 603/848 patients (71%). Of the 936 associated therapy options identified by WGS, 343 were identified with SOC MolDx (36.6%). Biomarker‐based therapy was started in 147 patients. WGS revealed 49 not previously identified pathogenic germline variants. Fresh‐frozen, instead of formalin‐fixed and paraffin‐embedded, sample logistics were easily adopted as experienced by the professionals involved. WGS for patients with metastatic cancer is well feasible in routine clinical practice, successfully yielding comprehensive genomic profiling for the vast majority of patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kris G. Samsom
- Department of Pathology Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
| | - Luuk J. Schipper
- Department of Molecular Oncology Netherlands Cancer Institute 1066 CX Plesmanlaan 121 Amsterdam The Netherlands
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM) Jaarbeursplein 6 3521 AL Utrecht The Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, Science Park, 1098 XH Amsterdam The Netherlands
| | - Linda J.W. Bosch
- Department of Pathology Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
| | - Ferry Lalezari
- Department of Radiology Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
| | | | - Adrianus J. de Langen
- Department of Thoracic Oncology Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
| | - Tineke E. Buffart
- Department of Gastrointestinal Oncology Netherlands Cancer Institute 1066 CX Plesmanlaan 121 Amsterdam The Netherlands
| | - Immy Riethorst
- Hartwig Medical Foundation, Science Park, 1098 XH Amsterdam The Netherlands
| | - Lieke Schoenmaker
- Hartwig Medical Foundation, Science Park, 1098 XH Amsterdam The Netherlands
| | - Daoin Schout
- Department of Pathology Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
| | - Vincent van der Noort
- Department of Biometrics Netherlands Cancer Institute 1066 CX Plesmanlaan 121 Amsterdam The Netherlands
| | - Jose G. van den Berg
- Department of Pathology Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
| | - Ewart de Bruijn
- Hartwig Medical Foundation, Science Park, 1098 XH Amsterdam The Netherlands
| | | | | | - Lizet E. van der Kolk
- Family Cancer Clinic Netherlands Cancer Institute 1066 CX Plesmanlaan 121 Amsterdam The Netherlands
| | - Edwin Cuppen
- Hartwig Medical Foundation, Science Park, 1098 XH Amsterdam The Netherlands
- Center for Molecular Medicine University Medical Centre Utrecht 3584 CX Heidelberglaan 100 Utrecht The Netherlands
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM) Jaarbeursplein 6 3521 AL Utrecht The Netherlands
| | - Emile E. Voest
- Department of Molecular Oncology Netherlands Cancer Institute 1066 CX Plesmanlaan 121 Amsterdam The Netherlands
- Department of Medical Oncology Netherlands Cancer Institute 1066 CX Plesmanlaan 121 Amsterdam The Netherlands
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM) Jaarbeursplein 6 3521 AL Utrecht The Netherlands
| | - Gerrit A. Meijer
- Department of Pathology Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
| | - Kim Monkhorst
- Department of Pathology Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
| |
Collapse
|
32
|
van Berge Henegouwen JM, Jebbink M, Hoes LR, van der Wijngaart H, Zeverijn LJ, van der Velden DL, Roepman P, de Leng WWJ, Jansen AML, van Werkhoven E, van der Noort V, van der Wekken AJ, de Langen AJ, Voest EE, Verheul HMW, Smit EF, Gelderblom H. Trastuzumab and pertuzumab combination therapy for advanced pre-treated HER2 exon 20-mutated non-small cell lung cancer. Eur J Cancer 2022; 171:114-123. [PMID: 35716537 DOI: 10.1016/j.ejca.2022.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION In 1-3% of non-small cell lung cancer (NSCLC) human epidermal growth factor 2 (HER2) mutations are identified as a genomic driver. Nevertheless, no HER2-targeted treatment is approved for NSCLC. In the Drug Rediscovery Protocol (DRUP), patients are treated with off-label drugs based on their molecular profile. Here, we present the results of the cohort 'trastuzumab/pertuzumab for HER2 exon20 mutation positive (HER2m+) NSCLC'. METHODS Patients with treatment refractory, advanced HER2m+ NSCLC with measurable disease (RECISTv1.1) were eligible. Treatment with intravenous trastuzumab combined with pertuzumab every 3 weeks was administered. The primary end-point was clinical benefit (CB: either objective response or stable disease ≥ 16 weeks). Patients were enrolled using a Simon-like 2-stage design, with 8 patients in stage 1 and up to 24 patients in stage 2 if at least 1 patient had CB in stage 1. At baseline, a biopsy for biomarker analysis, including whole genome sequencing, was obtained. RESULTS Twenty-four evaluable patients were enrolled and treated between May 2017 and August 2020. CB was observed in 9 patients (38%); including an objective response rate of 8.3% (2 patients had a partial response) and 7 patients with stable disease ≥ 16 weeks. The most frequently observed HER2 mutation was p.Y772_A775dup (71%, n = 20). Median follow-up was 13 months, median progression-free survival and overall survival 4 (95% CI 3-6) and 10 months (95% CI 4 - not reached), respectively. Whole genome sequencing data (available for 67% of patients) confirmed the inclusion mutation in all cases. No unexpected toxicity was observed. CONCLUSION Despite the fact that the study did meet its primary end-point, trastuzumab/pertuzumab was only marginally active in a subset of patients with heavily pre-treated HER2m+ NSCLC.
Collapse
Affiliation(s)
- J M van Berge Henegouwen
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands; Oncode Institute, the Netherlands
| | - M Jebbink
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - L R Hoes
- Oncode Institute, the Netherlands; Department of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - H van der Wijngaart
- Oncode Institute, the Netherlands; Department of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - L J Zeverijn
- Oncode Institute, the Netherlands; Department of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - D L van der Velden
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - P Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - W W J de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - A M L Jansen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - E van Werkhoven
- Biometrics Department, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - V van der Noort
- Biometrics Department, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A J van der Wekken
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - A J de Langen
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - E E Voest
- Oncode Institute, the Netherlands; Department of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - H M W Verheul
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - E F Smit
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
33
|
Abstract
SUMMARY Li and colleagues present REFLECT, a computational approach to precision oncology that nominates effective drug combinations by utilizing a diverse compendium of publicly available preclinical and clinical genomic, transcriptomic, and proteomic data. The preliminary validation of the REFLECT system in preclinical and clinical trial settings showcases potential for clinical implementation, although challenges remain. See related article by Li et al., p. 1542 (4).
Collapse
Affiliation(s)
- Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario
| |
Collapse
|
34
|
Personalised selection of experimental treatment in patients with advanced solid cancer is feasible using whole-genome sequencing. Br J Cancer 2022; 127:776-783. [PMID: 35606463 PMCID: PMC9381598 DOI: 10.1038/s41416-022-01841-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/04/2022] [Accepted: 05/04/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Biomarker-guided therapy in an experimental setting has been suggested to improve patient outcomes. However, trial-specific pre-screening tests are time and tissue consuming and complicate the personalised treatment of patients eligible for early-phase clinical trials. In this study the feasibility of whole-genome sequencing (WGS) as a one-test-for-all for guided inclusion in early-phase trials was investigated. METHODS Phase I Molecular Tumor Board (MTB) at the Erasmus MC Cancer Institute reviewed patients with advanced cancer without standard-of-care treatment (SOC) options for a 'fresh-frozen' (FF) tumour biopsy for WGS based on clinical-pathological features. Clinical grade WGS was performed by Hartwig Medical Foundation. MTB matched the patient with a trial, if available. RESULTS From September 2019-March 2021, 31 patients with highly diverse tumour types underwent a tumour biopsy for WGS. The median turnaround time (TAT) was 15 days [10-42 days]. At least one actionable event was found in 84% of the patients (26/31). One-third of the patients (11/31) received matched experimental treatment. CONCLUSIONS WGS on fresh FF biopsies is a feasible tool for the selection of personalised experimental therapy in patients with advanced cancer without SOC options. WGS is now possible in an acceptable TAT and thus could fulfil the role of a universal genomic pre-screening test.
Collapse
|
35
|
Shukla N, Levine MF, Gundem G, Domenico D, Spitzer B, Bouvier N, Arango-Ossa JE, Glodzik D, Medina-Martínez JS, Bhanot U, Gutiérrez-Abril J, Zhou Y, Fiala E, Stockfisch E, Li S, Rodriguez-Sanchez MI, O'Donohue T, Cobbs C, Roehrl MHA, Benhamida J, Iglesias Cardenas F, Ortiz M, Kinnaman M, Roberts S, Ladanyi M, Modak S, Farouk-Sait S, Slotkin E, Karajannis MA, Dela Cruz F, Glade Bender J, Zehir A, Viale A, Walsh MF, Kung AL, Papaemmanuil E. Feasibility of whole genome and transcriptome profiling in pediatric and young adult cancers. Nat Commun 2022; 13:2485. [PMID: 35585047 PMCID: PMC9117241 DOI: 10.1038/s41467-022-30233-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
The utility of cancer whole genome and transcriptome sequencing (cWGTS) in oncology is increasingly recognized. However, implementation of cWGTS is challenged by the need to deliver results within clinically relevant timeframes, concerns about assay sensitivity, reporting and prioritization of findings. In a prospective research study we develop a workflow that reports comprehensive cWGTS results in 9 days. Comparison of cWGTS to diagnostic panel assays demonstrates the potential of cWGTS to capture all clinically reported mutations with comparable sensitivity in a single workflow. Benchmarking identifies a minimum of 80× as optimal depth for clinical WGS sequencing. Integration of germline, somatic DNA and RNA-seq data enable data-driven variant prioritization and reporting, with oncogenic findings reported in 54% more patients than standard of care. These results establish key technical considerations for the implementation of cWGTS as an integrated test in clinical oncology. Cancer whole-genome and transcriptome sequencing (cWGTS) has been challenging to implement in clinical settings. Here, the authors develop a workflow to deliver robust cWGTS analyses and reports within clinically-relevant timeframes for paediatric, adolescent and young adult solid tumour patients.
Collapse
Affiliation(s)
- N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M F Levine
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - G Gundem
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - D Domenico
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - B Spitzer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - N Bouvier
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J E Arango-Ossa
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - D Glodzik
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J S Medina-Martínez
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - U Bhanot
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Precision Pathology Biobanking Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J Gutiérrez-Abril
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Y Zhou
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Fiala
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Stockfisch
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Li
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - T O'Donohue
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C Cobbs
- Integrated Genomics Operation Core, Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M H A Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Precision Pathology Biobanking Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J Benhamida
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - F Iglesias Cardenas
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Kinnaman
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Farouk-Sait
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - F Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J Glade Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Viale
- Integrated Genomics Operation Core, Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M F Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - E Papaemmanuil
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
36
|
Hou YCC, Neidich JA, Duncavage EJ, Spencer DH, Schroeder MC. Clinical whole-genome sequencing in cancer diagnosis. Hum Mutat 2022; 43:1519-1530. [PMID: 35471774 DOI: 10.1002/humu.24381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 11/10/2022]
Abstract
Characterizing the genomic landscape of cancers is a routine part of clinical care that began with the discovery of the Philadelphia chromosome and has since coevolved with genomic technologies. Genomic analysis of tumors at the nucleotide level using DNA sequencing has revolutionized the understanding of cancer biology and identified new molecular drivers of disease that have led to therapeutic advances and improved patient outcomes. However, the application of next-generation sequencing in the clinical laboratory has generally been limited until very recently to targeted analysis of selected genes. Recent technological innovations and reductions in sequencing costs are now able to deliver the long-promised goal of tumor whole-genome sequencing as a practical clinical assay.
Collapse
Affiliation(s)
- Ying-Chen C Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julie A Neidich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David H Spencer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Molly C Schroeder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
37
|
Akkari YM, Baughn LB, Dubuc AM, Smith AC, Mallo M, Dal Cin P, Diez Campelo M, Gallego MS, Granada Font I, Haase DT, Schlegelberger B, Slavutsky I, Mecucci C, Levine RL, Hasserjian RP, Solé F, Levy B, Xu X. Guiding the global evolution of cytogenetic testing for hematologic malignancies. Blood 2022; 139:2273-2284. [PMID: 35167654 PMCID: PMC9710485 DOI: 10.1182/blood.2021014309] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
Cytogenetics has long represented a critical component in the clinical evaluation of hematologic malignancies. Chromosome banding studies provide a simultaneous snapshot of genome-wide copy number and structural variation, which have been shown to drive tumorigenesis, define diseases, and guide treatment. Technological innovations in sequencing have ushered in our present-day clinical genomics era. With recent publications highlighting novel sequencing technologies as alternatives to conventional cytogenetic approaches, we, an international consortium of laboratory geneticists, pathologists, and oncologists, describe herein the advantages and limitations of both conventional chromosome banding and novel sequencing technologies and share our considerations on crucial next steps to implement these novel technologies in the global clinical setting for a more accurate cytogenetic evaluation, which may provide improved diagnosis and treatment management. Considering the clinical, logistic, technical, and financial implications, we provide points to consider for the global evolution of cytogenetic testing.
Collapse
Affiliation(s)
- Yassmine M.N. Akkari
- Departments of Cytogenetics and Molecular Pathology, Legacy Health, Portland, OR
| | - Linda B. Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Adrian M. Dubuc
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Adam C. Smith
- Laboratory Medicine Program, University Health Network and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Mar Mallo
- MDS Group, Microarrays Unit, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Paola Dal Cin
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Maria Diez Campelo
- Hematology Department University Hospital of Salamanca, IBSAL, Salamanca, Spain
| | - Marta S. Gallego
- Laboratory of Cytogenetics and Molecular Cytogenetics, Department of Clinical Pathology, Italian Hospital, Buenos Aires, Argentina
| | - Isabel Granada Font
- Hematology Laboratory, Germans Trias i Pujol University Hospital–Catalan Institute of Oncology, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Detlef T. Haase
- Clinics of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Irma Slavutsky
- Laboratory Genetics of Lymphoid Malignancies, Institute of Experimental Medicine, Buenos Aires, Argentina
| | - Cristina Mecucci
- Laboratory of Cytogenetics and Molecular Medicine, Hematology University of Perugia, Perugia, Italy
| | - Ross L. Levine
- Department of Medicine, Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - Francesc Solé
- MDS Group, Microarrays Unit, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Brynn Levy
- College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY
| | - Xinjie Xu
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
38
|
van de Ven M, IJzerman M, Retèl V, van Harten W, Koffijberg H. Developing a dynamic simulation model to support the nationwide implementation of whole genome sequencing in lung cancer. BMC Med Res Methodol 2022; 22:83. [PMID: 35350994 PMCID: PMC8962015 DOI: 10.1186/s12874-022-01571-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study shows how dynamic simulation modeling can be applied in the context of the nationwide implementation of Whole Genome Sequencing (WGS) for non-small cell lung cancer (NSCLC) to inform organizational decisions regarding the use of complex and disruptive health technologies and how these decisions affect their potential value. METHODS Using the case of the nationwide implementation of WGS into clinical practice in lung cancer in the Dutch healthcare system, we developed a simulation model to show that including service delivery features across the diagnostic pathway can provide essential insight into the affordability and accessibility of care at the systems level. The model was implemented as a hybrid Agent-Based Model and Discrete-Event Simulation model in AnyLogic and included 78 hospital agents, 7 molecular tumor board agents, 1 WGS facility agent, and 5313 patient agents each year in simulation time. RESULTS The model included patient and provider heterogeneity, including referral patterns, capacity constraints, and diagnostic workflows. Patient preference and adoption by healthcare professionals were also modeled. The model was used to analyze a scenario in which only academic hospitals have implemented WGS. To prevent delays in the diagnostic pathway, the capacity to sequence at least 1600 biopsies yearly should be present. There is a two-fold increase in mean diagnostic pathway duration between no patients referred or all patients referred for further diagnostics. CONCLUSIONS The systems model can complement conventional health economic evaluations to investigate how the organization of the workflow can influence the actual use and impact of WGS. Insufficient capacity to provide WGS and referral patterns can substantially impact the duration of the diagnostic pathway and thus should be considered in the implementation of WGS.
Collapse
Affiliation(s)
- Michiel van de Ven
- University of Twente, Department of Health Technology and Services Research, TechMed Centre, Enschede, the Netherlands
| | - Maarten IJzerman
- University of Twente, Department of Health Technology and Services Research, TechMed Centre, Enschede, the Netherlands.,University of Melbourne, University of Melbourne Centre for Cancer Research (UMCCR), Parkville, Australia.,Peter MacCallum Cancer Centre, Department of Cancer Research, Parkville, Australia.,University of Melbourne, Centre for Health Policy, Parkville, Australia
| | - Valesca Retèl
- University of Twente, Department of Health Technology and Services Research, TechMed Centre, Enschede, the Netherlands.,Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, the Netherlands
| | - Wim van Harten
- University of Twente, Department of Health Technology and Services Research, TechMed Centre, Enschede, the Netherlands.,Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, the Netherlands.,Rijnstate General Hospital, Arnhem, the Netherlands
| | - Hendrik Koffijberg
- University of Twente, Department of Health Technology and Services Research, TechMed Centre, Enschede, the Netherlands.
| |
Collapse
|
39
|
Berglund E, Barbany G, Orsmark-Pietras C, Fogelstrand L, Abrahamsson J, Golovleva I, Hallböök H, Höglund M, Lazarevic V, Levin LÅ, Nordlund J, Norèn-Nyström U, Palle J, Thangavelu T, Palmqvist L, Wirta V, Cavelier L, Fioretos T, Rosenquist R. A Study Protocol for Validation and Implementation of Whole-Genome and -Transcriptome Sequencing as a Comprehensive Precision Diagnostic Test in Acute Leukemias. Front Med (Lausanne) 2022; 9:842507. [PMID: 35402448 PMCID: PMC8987911 DOI: 10.3389/fmed.2022.842507] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Background Whole-genome sequencing (WGS) and whole-transcriptome sequencing (WTS), with the ability to provide comprehensive genomic information, have become the focal point of research interest as novel techniques that can support precision diagnostics in routine clinical care of patients with various cancer types, including hematological malignancies. This national multi-center study, led by Genomic Medicine Sweden, aims to evaluate whether combined application of WGS and WTS (WGTS) is technically feasible and can be implemented as an efficient diagnostic tool in patients with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). In addition to clinical impact assessment, a health-economic evaluation of such strategy will be performed. Methods and Analysis The study comprises four phases (i.e., retrospective, prospective, real-time validation, and follow-up) including approximately 700 adult and pediatric Swedish AML and ALL patients. Results of WGS for tumor (90×) and normal/germline (30×) samples as well as WTS for tumors only will be compared to current standard of care diagnostics. Primary study endpoints are diagnostic efficiency and improved diagnostic yield. Secondary endpoints are technical and clinical feasibility for routine implementation, clinical utility, and health-economic impact. Discussion Data from this national multi-center study will be used to evaluate clinical performance of the integrated WGTS diagnostic workflow compared with standard of care. The study will also elucidate clinical and health-economic impacts of a combined WGTS strategy when implemented in routine clinical care. Clinical Trial Registration [https://doi.org/10.1186/ISRCTN66987142], identifier [ISRCTN66987142].
Collapse
Affiliation(s)
- Eva Berglund
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Christina Orsmark-Pietras
- Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Linda Fogelstrand
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Clinical Genomics Gothenburg, Science for Life Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Abrahamsson
- Clinical Sciences, Queen Silvias Childrens Hospital, Gothenburg, Sweden
| | - Irina Golovleva
- Department of Medical Biosciences, University of Umeå, Umeå, Sweden
| | - Helene Hallböök
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Höglund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Vladimir Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Lars-Åke Levin
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Josefine Palle
- Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Tharshini Thangavelu
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Lars Palmqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Clinical Genomics Gothenburg, Science for Life Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Valtteri Wirta
- Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Stockholm, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- *Correspondence: Richard Rosenquist,
| |
Collapse
|
40
|
de Witte CJ, Kutzera J, van Hoeck A, Nguyen L, Boere IA, Jalving M, Ottevanger PB, van Schaik-van de Mheen C, Stevense M, Kloosterman WP, Zweemer RP, Cuppen E, Witteveen PO. Distinct Genomic Profiles Are Associated with Treatment Response and Survival in Ovarian Cancer. Cancers (Basel) 2022; 14:1511. [PMID: 35326660 PMCID: PMC8946149 DOI: 10.3390/cancers14061511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
The majority of patients with ovarian cancer ultimately develop recurrent chemotherapy-resistant disease. Treatment stratification is mainly based on histological subtype and stage, prior response to platinum-based chemotherapy, and time to recurrent disease. Here, we integrated clinical treatment, treatment response, and survival data with whole-genome sequencing profiles of 132 solid tumor biopsies of metastatic epithelial ovarian cancer to explore genome-informed stratification opportunities. Samples from primary and recurrent disease harbored comparable numbers of single nucleotide variants and structural variants. Mutational signatures represented platinum exposure, homologous recombination deficiency, and aging. Unsupervised hierarchical clustering based on genomic input data identified specific ovarian cancer subgroups, characterized by homologous recombination deficiency, genome stability, and duplications. The clusters exhibited distinct response rates and survival probabilities which could thus potentially be used for genome-informed therapy stratification for more personalized ovarian cancer treatment.
Collapse
Affiliation(s)
- Chris J. de Witte
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.J.d.W.); (J.K.); (A.v.H.); (L.N.); (W.P.K.)
| | - Joachim Kutzera
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.J.d.W.); (J.K.); (A.v.H.); (L.N.); (W.P.K.)
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - Arne van Hoeck
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.J.d.W.); (J.K.); (A.v.H.); (L.N.); (W.P.K.)
| | - Luan Nguyen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.J.d.W.); (J.K.); (A.v.H.); (L.N.); (W.P.K.)
| | - Ingrid A. Boere
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Mathilde Jalving
- Department of Medical Oncology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Petronella B. Ottevanger
- Department of Medical Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | | | - Marion Stevense
- Department of Medical Oncology, Amphia Hospital, 4818 CK Breda, The Netherlands;
| | - Wigard P. Kloosterman
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.J.d.W.); (J.K.); (A.v.H.); (L.N.); (W.P.K.)
| | - Ronald P. Zweemer
- Department of Gynaecological Oncology, Cancer Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.J.d.W.); (J.K.); (A.v.H.); (L.N.); (W.P.K.)
- Hartwig Medical Foundation, 1098 XH Amsterdam, The Netherlands
| | - Petronella O. Witteveen
- Department of Medical Oncology, Cancer Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
41
|
Schipper LJ, Monkhorst K, Samsom KG, Bosch LJ, Snaebjornsson P, van Boven H, Roepman P, van der Kolk LE, van Houdt WJ, van der Graaf WT, Meijer GA, Voest EE. Clinical Impact of Prospective Whole Genome Sequencing in Sarcoma Patients. Cancers (Basel) 2022; 14:436. [PMID: 35053600 PMCID: PMC8773512 DOI: 10.3390/cancers14020436] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
With more than 70 different histological sarcoma subtypes, accurate classification can be challenging. Although characteristic genetic events can largely facilitate pathological assessment, large-scale molecular profiling generally is not part of regular diagnostic workflows for sarcoma patients. We hypothesized that whole genome sequencing (WGS) optimizes clinical care of sarcoma patients by detection of diagnostic and actionable genomic characteristics, and of underlying hereditary conditions. WGS of tumor and germline DNA was incorporated in the diagnostic work-up of 83 patients with a (presumed) sarcomas in a tertiary referral center. Clinical follow-up data were collected prospectively to assess impact of WGS on clinical decision making. In 12/83 patients (14%), the genomic profile led to revision of cancer diagnosis, with change of treatment plan in eight. All twelve patients had undergone multiple tissue retrieval procedures and immunohistopathological assessments by regional and expert pathologists prior to WGS analysis. Actionable biomarkers with therapeutic potential were identified for 30/83 patients. Pathogenic germline variants were present in seven patients. In conclusion, unbiased genomic characterization with WGS identifies genomic biomarkers with direct clinical implications for sarcoma patients. Given the diagnostic complexity and high unmet need for new treatment opportunities in sarcoma patients, WGS can be an important extension of the diagnostic arsenal of pathologists.
Collapse
Affiliation(s)
- Luuk J. Schipper
- Department of Molecular Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Kim Monkhorst
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (K.M.); (K.G.S.); (L.J.W.B.); (P.S.); (H.v.B.); (G.A.M.)
| | - Kris G. Samsom
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (K.M.); (K.G.S.); (L.J.W.B.); (P.S.); (H.v.B.); (G.A.M.)
| | - Linda J.W. Bosch
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (K.M.); (K.G.S.); (L.J.W.B.); (P.S.); (H.v.B.); (G.A.M.)
| | - Petur Snaebjornsson
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (K.M.); (K.G.S.); (L.J.W.B.); (P.S.); (H.v.B.); (G.A.M.)
| | - Hester van Boven
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (K.M.); (K.G.S.); (L.J.W.B.); (P.S.); (H.v.B.); (G.A.M.)
| | - Paul Roepman
- Hartwig Medical Foundation, 1098 XH Amsterdam, The Netherlands;
| | - Lizet E. van der Kolk
- Family Cancer Clinic, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Winan J. van Houdt
- Department of Surgical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | | | - Gerrit A. Meijer
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (K.M.); (K.G.S.); (L.J.W.B.); (P.S.); (H.v.B.); (G.A.M.)
| | - Emile E. Voest
- Department of Molecular Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| |
Collapse
|
42
|
Validation of HER2 Status in Whole Genome Sequencing Data of Breast Cancers with the Ploidy-Corrected Copy Number Approach. Mol Diagn Ther 2021; 26:105-116. [PMID: 34932189 PMCID: PMC8766398 DOI: 10.1007/s40291-021-00571-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND OBJECTIVE Human epidermal growth factor receptor 2 (HER2) protein overexpression is one of the most significant biomarkers for breast cancer diagnostics, treatment prediction, and prognostics. The high accessibility of HER2 inhibitors in routine clinical practice directly translates into the diagnostic need for precise and robust marker identification. Even though multigene next-generation sequencing methodologies have slowly taken over the field of single-biomarker molecular tests, the copy number alterations such as amplification of the HER2-coding ERBB2 gene are hard to validate on next-generation sequencing platforms as they are characterized by chromosomal structural heterogeneity, polysomy, and genomic context of ploidy. In our study, we tested the approach of using whole genome sequencing instead of next-generation sequencing panels to determine HER2 status in the clinical set-up. METHODS We used a large dataset of 876 patients with breast cancer whole genomes with curated clinical data and an additional set of 551 patients' external genomic data. We used the decision-tree-based algorithm for optimization of the diagnostic tool for HER2 status assessment by whole genome sequencing. RESULTS The most efficient approach to assess HER2 status in whole genome sequencing data was the ploidy-corrected copy number, utilizing ERBB2 copy number and mean tumor ploidy. The classifier achieved sensitivity of 91.18% and specificity of 98.69% on the internal validation dataset and 89.86% and 96.06% on the external data, which is similar to other next-generation sequencing methods, currently tested in the clinic. CONCLUSIONS We provide evidence that the HER2 status may be reliably determined by whole genome sequencing and is applicable across different laboratory protocols and pipelines. We suggest using the ploidy-corrected copy number for diagnostic purposes.
Collapse
|
43
|
Dong X, Fu R. Single whole-genome sequencing analysis of metastatic biopsy is sufficient for investigational treatment opportunities in cancer. Cancer Commun (Lond) 2021; 41:1417-1419. [PMID: 34657396 PMCID: PMC8696208 DOI: 10.1002/cac2.12232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/02/2021] [Indexed: 01/20/2023] Open
Affiliation(s)
- Xifeng Dong
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, P. R. China
| |
Collapse
|
44
|
van de Haar J, Hoes LR, Roepman P, Lolkema MP, Verheul HMW, Gelderblom H, de Langen AJ, Smit EF, Cuppen E, Wessels LFA, Voest EE. Limited evolution of the actionable metastatic cancer genome under therapeutic pressure. Nat Med 2021; 27:1553-1563. [PMID: 34373653 DOI: 10.1038/s41591-021-01448-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/23/2021] [Indexed: 11/08/2022]
Abstract
Genomic profiling is critical for the identification of treatment options for patients with metastatic cancer, but it remains unclear how frequently this procedure should be repeated during the course of the disease. To address this, we analyzed whole-genome sequencing (WGS) data of 250 biopsy pairs, longitudinally collected over the treatment course of 231 adult patients with a representative variety of metastatic solid malignancies. Within the biopsy interval (median, 6.4 months), patients received one or multiple lines of (mostly) standard-of-care (SOC) treatments, with all major treatment modalities being broadly represented. SOC biomarkers and biomarkers for clinical trial enrollment could be identified in 23% and 72% of biopsies, respectively. For SOC genomic biomarkers, we observed full concordance between the first and the second biopsy in 99% of pairs. Of the 219 biomarkers for clinical trial enrollment that were identified in the first biopsies, we recovered 94% in the follow-up biopsies. Furthermore, a second WGS analysis did not identify additional biomarkers for clinical trial enrollment in 91% of patients. More-frequent genomic evolution was observed when considering specific genes targeted by small-molecule inhibitors or hormonal therapies (21% and 22% of cases, respectively). Together, our data demonstrate that there is limited evolution of the actionable genome of treated metastases. A single WGS analysis of a metastatic biopsy is generally sufficient to identify SOC genomic biomarkers and to identify investigational treatment opportunities.
Collapse
Affiliation(s)
- Joris van de Haar
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Louisa R Hoes
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Adrianus J de Langen
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Egbert F Smit
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Edwin Cuppen
- Oncode Institute, Amsterdam, the Netherlands
- Hartwig Medical Foundation, Amsterdam, the Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
- Faculty of EEMCS, Delft University of Technology, Delft, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Oncode Institute, Amsterdam, the Netherlands.
- Center for Personalized Cancer Treatment, Rotterdam, the Netherlands.
| |
Collapse
|
45
|
Nelson AC, Yohe SL. Cancer Whole-Genome Sequencing: The Quest for Comprehensive Genomic Profiling in Routine Oncology Care. J Mol Diagn 2021; 23:784-787. [PMID: 34020043 DOI: 10.1016/j.jmoldx.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Andrew C Nelson
- Division of Molecular Pathology and Genomics, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| | - Sophia L Yohe
- Division of Molecular Pathology and Genomics, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|