1
|
Lo E, Blair J, Yamamoto N, Diaz-Miranda MA, Bedoukian E, Gray C, Lawrence A, Dedhia K, Elden LM, Germiller JA, Kazahaya K, Sobol SE, Luo M, Krantz ID, Hartman TR. Recurrent missense variant identified in two unrelated families with MPZL2-related hearing loss, expanding the variant spectrum associated with DFNB111. Am J Med Genet A 2024; 194:e63530. [PMID: 38197511 DOI: 10.1002/ajmg.a.63530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
MPZL2-related hearing loss is a rare form of autosomal recessive hearing loss characterized by progressive, mild sloping to severe sensorineural hearing loss. Thirty-five previously reported patients had biallelic truncating variants in MPZL2, with the exception of one patient with a missense variant of uncertain significance and a truncating variant. Here, we describe the clinical characteristics and genotypes of five patients from four families with confirmed MPZL2-related hearing loss. A rare missense likely pathogenic variant [NM_005797.4(MPZL2):c.280C>T,p.(Arg94Trp)] located in exon 3 was confirmed to be in trans with a recurrent pathogenic truncating variant that segregated with hearing loss in three of the patients from two unrelated families. This is the first recurrent likely pathogenic missense variant identified in MPZL2. Apparently milder or later-onset hearing loss associated with rare missense variants in MPZL2 indicates that some missense variants in this gene may cause a milder phenotype than that resulting from homozygous or compound heterozygous truncating variants. This study, along with the identification of truncating loss of function and missense MPZL2 variants in several diverse populations, suggests that MPZL2-related hearing loss may be more common than previously appreciated and demonstrates the need for MPZL2 inclusion in hearing loss testing panels.
Collapse
Affiliation(s)
- Emma Lo
- Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Justin Blair
- Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nobuko Yamamoto
- Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Otolaryngology, Department of Surgical Specialties, National Center for Children's Health and Development, Tokyo, Japan
| | - Maria Alejandra Diaz-Miranda
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Emma Bedoukian
- Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christopher Gray
- Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Audrey Lawrence
- Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kavita Dedhia
- Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lisa M Elden
- Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Germiller
- Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ken Kazahaya
- Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven E Sobol
- Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Minjie Luo
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian D Krantz
- Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tiffiney R Hartman
- Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Kriukelis R, Gabbett MT, Beswick R, McInerney-Leo AM, Driscoll C, Liddle K. The congenital hearing phenotype in GJB2 in Queensland, Australia: V37I and mild hearing loss predominates. Eur J Hum Genet 2024:10.1038/s41431-024-01584-0. [PMID: 38486023 DOI: 10.1038/s41431-024-01584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
GJB2 was originally identified in severe, non-syndromic sensorineural hearing loss (SNHL), but was subsequently associated with mild and moderate SNHL. Given the increasing utilisation of genetic testing pre-conceptually, prenatally, and neonatally, it is crucial to understand genotype-phenotype correlations. This study evaluated the nature and frequency of GJB2 variants in an Australian paediatric population with varying degrees of SNHL ascertained through newborn hearing screening. Audiograms from individuals with GJB2 variants and/or a GJB6 deletion (GJB6-D13S11830) were retrospectively reviewed (n = 127). Two-thirds were biallelic (homozygous/compound heterozygous) for pathogenic/likely pathogenic variants of GJB2 and/or GJB6 (n = 80). The most frequent variant was c.109 G > A, followed by c.35delG and c.101 T > C. Compared to biallelic carriage of other GJB2 variants, c.109 G > A positive individuals (homozygous/compound heterozygous) were more likely to have mild HL at their initial and latest audiograms (p = 0.0004). Biallelic carriage of c.35delG was associated with moderately-severe or greater SNHL at both initial and latest audiograms (p = 0.007). The c.101 T > C variant presented with milder SNHL and U-shaped audiograms (p = 0.02). In this agnostically identified cohort, mild SNHL predominated in GJB2/GJB6 carriers in contrast to previous studies targeting individuals with significant loss. Consequently, c.109 G > A, associated with milder phenotypes, was the most frequent. This study provides valuable data to support prognostic confidence in genetic counselling.
Collapse
Affiliation(s)
| | - Michael T Gabbett
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rachael Beswick
- University of Queensland Centre for Children's Health Research, South Brisbane, QLD, Australia
- Healthy Hearing Program, Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Aideen M McInerney-Leo
- Frazer Institute, University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Carlie Driscoll
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Karen Liddle
- Queensland Children's Hospital, South Brisbane, QLD, Australia.
- University of Queensland Centre for Children's Health Research, South Brisbane, QLD, Australia.
- Frazer Institute, University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Franz L, Incognito A, Gallo C, Turolla L, Scquizzato E, Cenedese R, Matarazzo A, Savegnago D, Zanatta P, Genovese E, de Filippis C, Marioni G. Audiological Phenotypes of Connexin Gene Mutation Patterns: A Glance at Different GJB2/GJB6 Gene Mutation Profiles. CHILDREN (BASEL, SWITZERLAND) 2024; 11:194. [PMID: 38397306 PMCID: PMC10887074 DOI: 10.3390/children11020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
GJB2 mutations are the most common cause of autosomal-recessive non-syndromic sensorineural hearing loss (SNHL). The available evidence shows large phenotypic variability across different genotypes and allelic variants. The aim of this study was to investigate the clinical and audiological features of a cohort of subjects with different GJB2/GJB6 gene mutation profiles from a tertiary referral center in Northeastern Italy. We considered 57 patients with GJB2/GJB6 mutations presenting with congenital, non-syndromic SNHL, mainly coming from the Veneto region (Italy). The samples were screened for mutations in exons 1 and 2 of the GJB2 gene and for the GJB6 gene deletion del (GJB6-D13S1830). Free-field and air-conduction frequency-specific thresholds and the pure-tone average (PTA) were considered in the statistical analysis. Five patients (8.87%) had connexin gene mutations in simple heterozygosis, 15 (26.31%) in compound heterozygosis, 34 (59.64%) in homozygosis, and 3 (5.26%) with digenic patterns. The frequency-specific air-conduction thresholds showed significantly different mean values across the different genotypes (Roy's largest-root test, p = 0.0473). Despite the evidence already available on genetic SNHL, many new insights are to be expected. Further large-scale prospective studies including different populations are necessary to confirm these preliminary findings about the clinical and audiological features of patients with different GJB2/GJB6 gene mutation patterns.
Collapse
Affiliation(s)
- Leonardo Franz
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 35122 Treviso, Italy; (L.F.); (A.I.); (C.G.); (R.C.); (D.S.); (C.d.F.)
| | - Alessandro Incognito
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 35122 Treviso, Italy; (L.F.); (A.I.); (C.G.); (R.C.); (D.S.); (C.d.F.)
| | - Chiara Gallo
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 35122 Treviso, Italy; (L.F.); (A.I.); (C.G.); (R.C.); (D.S.); (C.d.F.)
| | - Licia Turolla
- Medical Genetics Unit, Treviso Hospital, 31100 Treviso, Italy;
| | - Elisa Scquizzato
- Molecular Pathology Laboratory, Unit of Pathological Anatomy, Treviso Hospital, 31100 Treviso, Italy;
| | - Roberta Cenedese
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 35122 Treviso, Italy; (L.F.); (A.I.); (C.G.); (R.C.); (D.S.); (C.d.F.)
| | - Alessandro Matarazzo
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 35122 Treviso, Italy; (L.F.); (A.I.); (C.G.); (R.C.); (D.S.); (C.d.F.)
| | - Daniel Savegnago
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 35122 Treviso, Italy; (L.F.); (A.I.); (C.G.); (R.C.); (D.S.); (C.d.F.)
| | - Paolo Zanatta
- Department of Anesthesiology and Critical Care, Treviso Hospital, 31100 Treviso, Italy;
| | - Elisabetta Genovese
- Otorhinolaryngology Unit, Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Cosimo de Filippis
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 35122 Treviso, Italy; (L.F.); (A.I.); (C.G.); (R.C.); (D.S.); (C.d.F.)
| | - Gino Marioni
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, 35122 Treviso, Italy; (L.F.); (A.I.); (C.G.); (R.C.); (D.S.); (C.d.F.)
| |
Collapse
|
4
|
Chiang YT, Lin PH, Lo MY, Chen HL, Lee CY, Tsai CY, Lin YH, Tsai SF, Liu TC, Hsu CJ, Chen PL, Hsu JSJ, Wu CC. Genetic Factors Contribute to the Phenotypic Variability in GJB2-Related Hearing Impairment. J Mol Diagn 2023; 25:827-837. [PMID: 37683890 DOI: 10.1016/j.jmoldx.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 09/10/2023] Open
Abstract
Recessive variants in GJB2 are the most important genetic cause of sensorineural hearing impairment (SNHI) worldwide. Phenotypes vary significantly in GJB2-related SNHI, even in patients with identical variants. For instance, patients homozygous for the GJB2 p.V37I variant, which is highly prevalent in the Asian populations, usually present with mild-to-moderate SNHI; yet severe-to-profound SNHI is occasionally observed in approximately 10% of p.V37I homozygotes. To investigate the genomic underpinnings of the phenotypic variability, we performed next-generation sequencing of GJB2 and other deafness genes in 63 p.V37I homozygotes with extreme phenotypic severities. Additional pathogenic variants of other deafness genes were identified in five of the 35 patients with severe-to-profound SNHI. Furthermore, case-control association analyses were conducted for 30 unrelated p.V37I homozygotes with severe-to-profound SNHI against 28 p.V37I homozygotes with mild-to-moderate SNHI, and 120 population controls from the Taiwan Biobank. The severe-to-profound group exhibited a higher frequency of the crystallin lambda 1 (CRYL1) variant (rs14236), located upstream of GJB2, than the mild-to-moderate and Taiwan Biobank groups. Our results demonstrated that pathogenic variants in other deafness genes and a possible modifier, the CRYL1 rs14236 variant, may contribute to phenotypic variability in GJB2-realted SNHI, highlighting the importance of comprehensive genomic surveys to delineate the genotype-phenotype correlations.
Collapse
Affiliation(s)
- Yu-Ting Chiang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Hsuan Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Otolaryngology Head and Neck Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Yu Lo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Lin Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Surgical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chen-Yu Lee
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Cheng-Yu Tsai
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin-Hung Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Feng Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Tien-Chen Liu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chuan-Jen Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Otolaryngology Head and Neck Surgery, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Jacob Shu-Jui Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chen-Chi Wu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| |
Collapse
|
5
|
Riza AL, Alkhzouz C, Farcaș M, Pîrvu A, Miclea D, Mihuț G, Pleșea RM, Ștefan D, Drodar M, Lazăr C, Study OBOTHINT, Study OBOTFUSE, Ioana M, Popp R. Non-Syndromic Hearing Loss in a Romanian Population: Carrier Status and Frequent Variants in the GJB2 Gene. Genes (Basel) 2022; 14:69. [PMID: 36672810 PMCID: PMC9858611 DOI: 10.3390/genes14010069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The genetic causes of autosomal recessive nonsyndromic hearing loss (ARNSHL) are heterogeneous and highly ethnic-specific. We describe GJB2 (connexin 26) variants and carrier frequencies as part of our study and summarize previously reported ones for the Romanian population. In total, 284 unrelated children with bilateral congenital NSHL were enrolled between 2009 and 2018 in northwestern Romania. A tiered diagnostic approach was used: all subjects were tested for c.35delG, c.71G>A and deletions in GJB6 (connexin 30) using PCR-based methods. Furthermore, 124 cases undiagnosed at this stage were analyzed by multiplex-ligation-dependent probe amplifications (MLPA), probe mix P163, and sequencing of GJB2 exon 2. Targeted allele-specific PCR/restriction fragment length polymorphism (RFLP) established definite ethio-pathogenical diagnosis for 72/284 (25.35%) of the cohort. Out of the 124 further analyzed, in 12 cases (9.67%), we found compound heterozygous point mutations in GJB2. We identified one case of deletion of exon 1 of the WFS1 (wolframin) gene. Carrier status evaluation used Illumina Infinium Global Screening Array (GSA) genotyping: the HINT cohort-416 individuals in northwest Romania, and the FUSE cohort-472 individuals in southwest Romania. GSA variants yielded a cumulated risk allele presence of 0.0284. A tiered diagnostic approach may be efficient in diagnosing ARNSHL. The summarized contributions to Romanian descriptive epidemiology of ARNSHL shows that pathogenic variants in the GJB2 gene are frequent among NSHL cases and have high carrier rates, especially for c.35delG and c.71G>A. These findings may serve in health strategy development.
Collapse
Affiliation(s)
- Anca-Lelia Riza
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Camelia Alkhzouz
- First Pediatric Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Clinical Emergency Hospital for Children, 400394 Cluj-Napoca, Romania
| | - Marius Farcaș
- Molecular Sciences Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Pîrvu
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Diana Miclea
- First Pediatric Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Clinical Emergency Hospital for Children, 400394 Cluj-Napoca, Romania
| | - Gheorghe Mihuț
- ENT Department, Clinical Emergency Hospital for Children, 400394 Cluj-Napoca, Romania
| | - Răzvan-Mihail Pleșea
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Delia Ștefan
- Molecular Sciences Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Mihaela Drodar
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Călin Lazăr
- First Pediatric Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Clinical Emergency Hospital for Children, 400394 Cluj-Napoca, Romania
| | | | | | - Mihai Ioana
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Radu Popp
- Molecular Sciences Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Comprehensive Etiologic Analyses in Pediatric Cochlear Implantees and the Clinical Implications. Biomedicines 2022; 10:biomedicines10081846. [PMID: 36009393 PMCID: PMC9405031 DOI: 10.3390/biomedicines10081846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Cochlear implantation is the treatment of choice for children with profound sensorineural hearing impairment (SNHI), yet the outcomes of cochlear implants (CI) vary significantly across individuals. To investigate the CI outcomes in pediatric patients with SNHI due to various etiologies, we prospectively recruited children who underwent CI surgery at two tertiary referral CI centers from 2010 to 2021. All patients underwent comprehensive history taking, next generation sequencing (NGS)-based genetic examinations, and imaging studies. The CI outcomes were evaluated using Categories of Auditory Performance (CAP) and Speech Intelligibility Rating (SIR) scores. Of the 160 pediatric cochlear implantees (76 females and 84 males) included in this study, comprehensive etiological work-up helped achieve clinical diagnoses in 83.1% (133/160) of the patients, with genetic factors being the leading cause (61.3%). Imaging studies identified certain findings in 31 additional patients (19.3%). Four patients (2.5%) were identified with congenital cytomegalovirus infection (cCMV), and 27 patients (16.9%) remained with unknown etiologies. Pathogenic variants in the four predominant non-syndromic SNHI genes (i.e., SLC26A4, GJB2, MYO15A, and OTOF) were associated with favorable CI outcomes (Chi-square test, p = 0.023), whereas cochlear nerve deficiency (CND) on imaging studies was associated with unfavorable CI outcomes (Chi-square test, p < 0.001). Our results demonstrated a clear correlation between the etiologies and CI outcomes, underscoring the importance of thorough etiological work-up preoperatively in pediatric CI candidates.
Collapse
|
7
|
Tassano E, Uccella S, Ronchetto P, Martinheira Da Silva JS, Viaggi S, Mancardi M, Ramenghi L, Murri A, Biondi M, Gimelli G, Morerio C, Malacarne M, Coviello D. Interstitial 2q24.2q24.3 Microdeletion: Two New Cases with Similar Clinical Features with the Exception of Profound Deafness. Cytogenet Genome Res 2022; 162:132-139. [PMID: 35896065 DOI: 10.1159/000525181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/28/2022] [Indexed: 11/19/2022] Open
Abstract
Interstitial 2q24.2q24.3 microdeletions are rare cytogenetic aberrations associated with heterogeneous clinical features depending on the size of the deletion. Here, we describe 2 patients with overlapping de novo 2q24.2q24.3 deletions, characterized by array-CGH. This is the smallest 2q24.2q24.3 region of overlap described in the literature encompassing only 9 genes (SLC4A10, DPP4, GCG, FAP, IFIH1, GCA, KCNH7, FIGN, GRB14). We focused our attention on SLC4A10, DPP4, and KCNH7, genes associated with neurological features. Our patients presented similar features: intellectual disability, developmental and language delay, hypotonia, joint laxity, and dysmorphic features. Only patient 2 showed profound deafness and also carried a heterozygous mutation of the GJB2 gene responsible for autosomal recessive deafness 1A (DFNB1A: OMIM 220290). Could the disruption of a gene present in the 2q24.2q24.3 deleted region be responsible for her profound hearing loss?
Collapse
Affiliation(s)
- Elisa Tassano
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy,
| | - Sara Uccella
- Department of Medical and Surgical Neuroscience and Rehabilitation, University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Neonatolgy Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia Ronchetto
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Joana Soraia Martinheira Da Silva
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Silvia Viaggi
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,DISTAV, University of Genoa, Genoa, Italy
| | | | - Luca Ramenghi
- Neonatolgy Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandra Murri
- Unità Operativa di Otorinolaringoiatria, Ospedale Guglielmo da Saliceto, Piacenza, Italy
| | - Marina Biondi
- Unità Operativa di Radiologia, Ospedale Guglielmo da Saliceto, Piacenza, Italy
| | - Giorgio Gimelli
- Laboratory of Cytogenetics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Cristina Morerio
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michela Malacarne
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Domenico Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
8
|
Lin PH, Wu HP, Wu CM, Chiang YT, Hsu JS, Tsai CY, Wang H, Tseng LH, Chen PY, Yang TH, Hsu CJ, Chen PL, Wu CC, Liu TC. Cochlear Implantation Outcomes in Patients with Auditory Neuropathy Spectrum Disorder of Genetic and Non-Genetic Etiologies: A Multicenter Study. Biomedicines 2022; 10:biomedicines10071523. [PMID: 35884828 PMCID: PMC9313466 DOI: 10.3390/biomedicines10071523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/04/2023] Open
Abstract
With diverse etiologies and clinical features, the management of pediatric auditory neuropathy spectrum disorder (ANSD) is often challenging, and the outcomes of cochlear implants (CIs) are variable. This study aimed to investigate CI outcomes in pediatric patients with ANSD of different etiologies. Thirty-six children with ANSD who underwent cochlear implantation between 2001 and 2021 were included. Comprehensive etiological analyses were conducted, including a history review, next-generation sequencing-based genetic examinations, and imaging studies using high-resolution computed tomography and magnetic resonance imaging. Serial behavioral and speech audiometry were performed before and after surgery, and the outcomes with CI were evaluated using the Categories of Auditory Performance (CAP) and Speech Intelligibility Rating (SIR) scores. By etiology, 18, 1, 1, and 10 patients had OTOF-related, WFS1-related, OPA1-related, and cochlear nerve deficiency (CND)-related ANSD, respectively. Six patients had no definite etiology. The average CI-aided behavioral threshold was 28.3 ± 7.8 dBHL, and those with CND-related ANSD were significantly worse than OTOF-related ANSD. The patients’ median CAP and SIR scores were 6 and 4, respectively. Favorable CI outcomes were observed in patients with certain etiologies of ANSD, particularly those with OTOF (CAP/SIR scores 5–7/2–5), WFS1 (CAP/SIR score 6/5), and OPA1 variants (CAP/SIR score 7/5). Patients with CND had suboptimal CI outcomes (CAP/SIR scores 2–6/1–3). Identifying the etiologies in ANSD patients is crucial before surgery and can aid in predicting prognoses.
Collapse
Affiliation(s)
- Pei-Hsuan Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (P.-H.L.); (P.-L.C.)
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Department of Otolaryngology, National Taiwan University Hospital Yunlin Branch, Yunlin 64041, Taiwan
| | - Hung-Pin Wu
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan;
| | - Che-Ming Wu
- Department of Otolaryngology & Head and Neck Surgery, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City 23652, Taiwan;
- Department of Otolaryngology & Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taoyuan 33305, Taiwan
| | - Yu-Ting Chiang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Han Wang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
| | - Li-Hui Tseng
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
| | - Pey-Yu Chen
- Department of Otolaryngology, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan;
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (P.-H.L.); (P.-L.C.)
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10002, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 30261, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 30261, Taiwan
- Hearing and Speech Center, National Taiwan University Hospital, Taipei 10002, Taiwan
- Correspondence: (C.-C.W.); (T.-C.L.)
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Correspondence: (C.-C.W.); (T.-C.L.)
| |
Collapse
|