1
|
Zhang Y, Du Q, Gao H, Pan Y, Liu N, Qiu C, Liu X. Prenatal risk assessment of Xp21.1 duplication involving the DMD gene by optical genome mapping. Life Sci Alliance 2024; 7:e202402780. [PMID: 39117454 PMCID: PMC11310561 DOI: 10.26508/lsa.202402780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Structural variants (SVs) of unknown significance are great challenges for prenatal risk assessment, especially when involving dose-sensitive genes such as DMD The pathogenicities of 5'-terminal DMD duplications in the database remain controversial. Four prenatal cases with Xp21.1 duplications were identified by routine prenatal genomic testing, encompassing the 5'-UTR to exons 1-2 in family 1 and family 2, and to exons 1-9 in family 3. The duplication in family 4 was non-contiguous covering the 5'-UTR to exon 1 and exons 3-7. All were traced to unaffected males in the family pedigrees. A new genome-wide approach of optical genome mapping was performed in families 1, 2, and 3 to delineate the breakpoints and orientation of the duplicated fragments. The extra copies were tandemly inserted into the upstream of DMD, preserving the integrity of ORF from the second copy. The pathogenicities were thus reclassified as likely benign. Our data highlight the importance of structural delineation by optical genome mapping in prenatal risk assessment of incidentally identified SVs involving DMD and other similar large dose-sensitive genes.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Du
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiming Gao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yujie Pan
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ningyang Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chuang Qiu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoliang Liu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Health, Liaoning Research Institute of Reproductive Health and Development, Reproductive Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Levy B, Liu J, Iqbal MA, DuPont B, Sahajpal N, Ho M, Yu J, Brody SJ, Ganapathi M, Rajkovic A, Smolarek TA, Boyar F, Bui P, Dubuc AM, Kolhe R, Stevenson RE. Multisite Evaluation and Validation of Optical Genome Mapping for Prenatal Genetic Testing. J Mol Diagn 2024; 26:906-916. [PMID: 39032820 DOI: 10.1016/j.jmoldx.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
Prenatal diagnostic testing of amniotic fluid, chorionic villi, or more rarely, fetal cord blood is recommended following a positive or unreportable noninvasive cell-free fetal DNA test, abnormal maternal biochemical serum screen, abnormal ultrasound, or increased genetic risk for a cytogenomic abnormality based on family history. Although chromosomal microarray is recommended as the first-tier prenatal diagnostic test, in practice, multiple assays are often assessed in concert to achieve a final diagnostic result. The use of multiple methodologies is costly, time consuming, and labor intensive. Optical genome mapping (OGM) is an emerging technique with application for prenatal diagnosis because of its ability to detect and resolve, in a single assay, all classes of pathogenic cytogenomic aberrations. In an effort to characterize the potential of OGM as a novel alternative to traditional standard of care (SOC) testing of prenatal samples, OGM was performed on a total of 200 samples representing 123 unique cases, which were previously tested with SOC methods (92/123 = 74.7% cases tested with at least two SOCs). OGM demonstrated an overall accuracy of 99.6% when compared with SOC methods, a positive predictive value of 100%, and 100% reproducibility between sites, operators, and instruments. The standardized workflow, cost-effectiveness, and high-resolution cytogenomic analysis demonstrate the potential of OGM to serve as a first-tier test for prenatal diagnosis.
Collapse
Affiliation(s)
- Brynn Levy
- Columbia University Irving Medical Center, New York, New York
| | - Jie Liu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - M Anwar Iqbal
- University of Rochester Medical Center, Rochester, New York
| | | | | | - Monique Ho
- University of Rochester Medical Center, Rochester, New York
| | - Jingwei Yu
- University of California San Francisco, San Francisco, California
| | - Sam J Brody
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | - Teresa A Smolarek
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Fatih Boyar
- Quest Diagnostics Nichols Institute, San Juan Capistrano, California
| | - Peter Bui
- Quest Diagnostics Nichols Institute, San Juan Capistrano, California
| | - Adrian M Dubuc
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| | | |
Collapse
|
3
|
Xiao B, Luo X, Liu Y, Ye H, Liu H, Fan Y, Yu Y. Combining optical genome mapping and RNA-seq for structural variants detection and interpretation in unsolved neurodevelopmental disorders. Genome Med 2024; 16:113. [PMID: 39300495 DOI: 10.1186/s13073-024-01382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Structural variations (SVs) are key genetic contributors to neurodevelopmental disorders (NDDs). Exome sequencing (ES), the current first-line tool for genetic testing of NDDs, falls short in SVs detection. This diagnostic gap is being actively addressed by new methods such as optical genome mapping (OGM). METHODS This study evaluated the utility of combining OGM and RNA-seq in the detection and interpretation of SVs in ES-negative NDDs. OGM was performed in 43 patients with NDDs with inconclusive ES results. Candidate SVs were selected based on disease association and pathogenicity evaluation, and further validated or reconstructed by alternative methods, including long-read sequencing for a complex rearrangement event. RNA-Seq was performed on blood samples from patients with candidate SVs to facilitate interpretation of pathogenicity. RESULTS OGM detected four candidate SVs, and RNA-seq confirmed the pathogenicity of three SVs in the patient cohort. This combined approach solved three cases-two cases with de novo SVs in genes associated with autosomal dominant NDDs, including a deletion encompassing the promoter and 5'UTR of MBD5 and an intragenic duplication of PAFAH1B1, and a third case possessing an intragenic duplication in trans with a pathogenic single-nucleotide variant of PLA2G6, associated with autosomal recessive NDDs. The expression alteration of the affected genes and the tandem positioning of two intragenic duplications were confirmed by RNA-seq. In the fourth case, OGM detected a complex rearrangement involving chromosomes 2 and 6, much more complex than the de novo t(2:6)(q13;q15) indicated by conventional cytogenetic analysis. Reconstruction showed that 17 segments of 6q15 spanning 9.3 Mb were disarranged and joined 2q11.2, with four breakpoints detected in the 5' and 3' non-coding region of the NDD-associated gene SYNCRIP. RNA-seq revealed largely preserved SYNCRIP expression, leaving the pathogenicity of this complex rearrangement event uncertain. CONCLUSIONS SVs in ES-negative NDDs can be identified by OGM, which is particularly useful for SVs in non-coding regions not covered by ES. OGM helps to construct complex SVs and provides information on the location and orientation of duplications, which is crucial for pathogenicity interpretation. The integration of RNA-seq facilitates the interpretation of the functional consequences of SVs at the transcriptional level. These findings demonstrate the utility and feasibility of combining OGM and RNA-seq in ES-negative cases with NDDs.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Xiaomei Luo
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Yi Liu
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Hui Ye
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Huili Liu
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China
| | - Yanjie Fan
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China.
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, Science and Education Building, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Room 801, No.1665, Kong Jiang Road, Shanghai, 200092, China.
| |
Collapse
|
4
|
Xie M, Zheng ZJ, Zhou Y, Zhang YX, Li Q, Tian LY, Cao J, Xu YT, Ren J, Yu Q, Wu SS, Fang S, Zhuang DY, Geng J, Chen CS, Li HB. Prospective Investigation of Optical Genome Mapping for Prenatal Genetic Diagnosis. Clin Chem 2024; 70:820-829. [PMID: 38517460 DOI: 10.1093/clinchem/hvae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Optical genome mapping (OGM) is a novel assay for detecting structural variants (SVs) and has been retrospectively evaluated for its performance. However, its prospective evaluation in prenatal diagnosis remains unreported. This study aimed to prospectively assess the technical concordance of OGM with standard of care (SOC) testing in prenatal diagnosis. METHODS A prospective cohort of 204 pregnant women was enrolled in this study. Amniotic fluid samples from these women were subjected to OGM and SOC testing, which included chromosomal microarray analysis (CMA) and karyotyping (KT) in parallel. The diagnostic yield of OGM was evaluated, and the technical concordance between OGM and SOC testing was assessed. RESULTS OGM successfully analyzed 204 cultured amniocyte samples, even with a cell count as low as 0.24 million. In total, 60 reportable SVs were identified through combined OGM and SOC testing, with 22 SVs detected by all 3 techniques. The diagnostic yield for OGM, CMA, and KT was 25% (51/204), 22.06% (45/204), and 18.14% (37/204), respectively. The highest diagnostic yield (29.41%, 60/204) was achieved when OGM and KT were used together. OGM demonstrated a concordance of 95.56% with CMA and 75.68% with KT in this cohort study. CONCLUSIONS Our findings suggest that OGM can be effectively applied in prenatal diagnosis using cultured amniocytes and exhibits high concordance with SOC testing. The combined use of OGM and KT appears to yield the most promising diagnostic outcomes.
Collapse
Affiliation(s)
- Min Xie
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China
| | - Zhao-Jing Zheng
- Laboratory of Cytogenetics & Cytogenomics, Hangzhou Juno Genomics Inc., Hangzhou, China
| | - Ying Zhou
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China
| | - Yu-Xin Zhang
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China
| | - Qiong Li
- Prenatal and Neonatal Screening Center, Ningbo Women and Children's Hospital, Ningbo, China
| | - Li-Yun Tian
- Fetal Medicine Centre, Ningbo Women and Children's Hospital, Ningbo, China
| | - Juan Cao
- Fetal Medicine Centre, Ningbo Women and Children's Hospital, Ningbo, China
| | - Yan-Ting Xu
- Laboratory of Cytogenetics & Cytogenomics, Hangzhou Juno Genomics Inc., Hangzhou, China
| | - Jie Ren
- Laboratory of Cytogenetics & Cytogenomics, Hangzhou Juno Genomics Inc., Hangzhou, China
| | - Qi Yu
- Prenatal and Neonatal Screening Center, Ningbo Women and Children's Hospital, Ningbo, China
| | - Shan-Shan Wu
- Paediatric Surgery Centre, Ningbo Women and Children's Hospital, Ningbo, China
| | - Shu Fang
- Laboratory of Cytogenetics & Cytogenomics, Hangzhou Juno Genomics Inc., Hangzhou, China
| | - Dan-Yan Zhuang
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China
| | - Juan Geng
- Laboratory of Cytogenetics & Cytogenomics, Hangzhou Juno Genomics Inc., Hangzhou, China
| | - Chang-Shui Chen
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China
| | - Hai-Bo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China
| |
Collapse
|
5
|
Mathew MT, Akkari YMN. Optical Genome Mapping in Prenatal Diagnosis: Democratizing Comprehensive Cytogenomic Testing. Clin Chem 2024; 70:783-785. [PMID: 38712659 DOI: 10.1093/clinchem/hvae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Affiliation(s)
- Mariam T Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Yassmine M N Akkari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Hu P, Xu Y, Zhang Q, Zhou R, Ji X, Wang Y, Xu Z. Prenatal diagnosis of chromosomal abnormalities using optical genome mapping vs chromosomal microarray. Am J Obstet Gynecol 2024; 230:e82-e83. [PMID: 38097028 DOI: 10.1016/j.ajog.2023.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 01/07/2024]
Affiliation(s)
- Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei St, Nanjing, China 210029.
| | - Yiyun Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei St, Nanjing, China 210029
| | - Qinxin Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei St, Nanjing, China 210029
| | - Ran Zhou
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei St, Nanjing, China 210029
| | - Xiuqing Ji
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei St, Nanjing, China 210029
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei St, Nanjing, China 210029.
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei St, Nanjing, China 210029.
| |
Collapse
|
7
|
Moore S, McGowan-Jordan J, Smith AC, Rack K, Koehler U, Stevens-Kroef M, Barseghyan H, Kanagal-Shamanna R, Hastings R. Genome Mapping Nomenclature. Cytogenet Genome Res 2024; 163:236-246. [PMID: 38071973 DOI: 10.1159/000535684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Genome Mapping Technologies (optical and electronic) use ultra-high molecular weight DNA to detect structural variation and have application in constitutional genetic disorders, hematological neoplasms, and solid tumors. Genome mapping can detect balanced and unbalanced structural variation, copy number changes, and haplotypes. The technique is analogous to chromosomal microarray analysis, although genome mapping has the added benefit of being able to detect and ascertain the nature of more abnormalities in a single assay than array, karyotyping, or FISH alone. KEY MESSAGES This paper describes a specific nomenclature for genome mapping that can be used by diagnostic and research centers to report their findings accurately. An international nomenclature is essential for patient results to be understood by different healthcare providers as well as for clear communication in publications and consistency in databases. SUMMARY Genome mapping can detect aneuploidy, balanced and unbalanced structural variation, as well as copy number changes. The Standing Committee for the International System for Human Cytogenomic Nomenclature (ISCN) recognised there was a need for a specific nomenclature for genome mapping that encompasses the range of abnormalities detected by this technique. This paper explains the general principles of the nomenclature as well as giving specific ISCN examples for the different types of numerical and structural rearrangements.
Collapse
Affiliation(s)
- Sarah Moore
- Genetics and Molecular Pathology, SA Pathology, SA Genomics Health Alliance, Adelaide, South Australia, Australia
| | - Jean McGowan-Jordan
- CHEO Department of Genetics, and Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Adam C Smith
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Katrina Rack
- Molecular Laboratory Hemato-Oncological Diseases, Center for Human Genetics, UZ Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Udo Koehler
- MGZ - Medical Genetics Center, Munich, Germany
| | - Marian Stevens-Kroef
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hayk Barseghyan
- MGZ - Medical Genetics Center, Munich, Germany
- Center for Genetic Medicine Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Ros Hastings
- GenQA, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- GenQA, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Xu Y, Zhang Q, Wang Y, Zhou R, Ji X, Meng L, Luo C, Liu A, Jiao J, Chen H, Zeng H, Hu P, Xu Z. Optical Genome Mapping for Chromosomal Aberrations Detection-False-Negative Results and Contributing Factors. Diagnostics (Basel) 2024; 14:165. [PMID: 38248042 PMCID: PMC10814618 DOI: 10.3390/diagnostics14020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Optical genome mapping (OGM) has been known as an all-in-one technology for chromosomal aberration detection. However, there are also aberrations beyond the detection range of OGM. This study aimed to report the aberrations missed by OGM and analyze the contributing factors. OGM was performed by taking both GRCh37 and GRCh38 as reference genomes. The OGM results were analyzed in blinded fashion and compared to standard assays. Quality control (QC) metrics, sample types, reference genome, effective coverage and classes and locations of aberrations were then analyzed. In total, 154 clinically reported variations from 123 samples were investigated. OGM failed to detect 10 (6.5%, 10/154) aberrations with GRCh37 assembly, including five copy number variations (CNVs), two submicroscopic balanced translocations, two pericentric inversion and one isochromosome (mosaicism). All the samples passed pre-analytical and analytical QC. With GRCh38 assembly, the false-negative rate of OGM fell to 4.5% (7/154). The breakpoints of the CNVs, balanced translocations and inversions undetected by OGM were located in segmental duplication (SD) regions or regions with no DLE-1 label. In conclusion, besides variations with centromeric breakpoints, structural variations (SVs) with breakpoints located in large repetitive sequences may also be missed by OGM. GRCh38 is recommended as the reference genome when OGM is performed. Our results highlight the necessity of fully understanding the detection range and limitation of OGM in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ping Hu
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Health Care Hospital, Nanjing 210004, China; (Y.X.); (Q.Z.); (Y.W.); (R.Z.); (X.J.); (L.M.); (C.L.); (A.L.); (J.J.); (H.C.); (H.Z.)
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Health Care Hospital, Nanjing 210004, China; (Y.X.); (Q.Z.); (Y.W.); (R.Z.); (X.J.); (L.M.); (C.L.); (A.L.); (J.J.); (H.C.); (H.Z.)
| |
Collapse
|
9
|
Mathew MT, Babcock M, Hou YCC, Hunter JM, Leung ML, Mei H, Schieffer K, Akkari Y. Clinical Cytogenetics: Current Practices and Beyond. J Appl Lab Med 2024; 9:61-75. [PMID: 38167757 DOI: 10.1093/jalm/jfad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/17/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Throughout history, the field of cytogenetics has witnessed significant changes due to the constant evolution of technologies used to assess chromosome number and structure. Similar to the evolution of single nucleotide variant detection from Sanger sequencing to next-generation sequencing, the identification of chromosome alterations has progressed from banding to fluorescence in situ hybridization (FISH) to chromosomal microarrays. More recently, emerging technologies such as optical genome mapping and genome sequencing have made noteworthy contributions to clinical laboratory testing in the field of cytogenetics. CONTENT In this review, we journey through some of the most pivotal discoveries that have shaped the development of clinical cytogenetics testing. We also explore the current test offerings, their uses and limitations, and future directions in technology advancements. SUMMARY Cytogenetics methods, including banding and targeted assessments like FISH, continue to hold crucial roles in cytogenetic testing. These methods offer a rapid turnaround time, especially for conditions with a known etiology involving recognized cytogenetic aberrations. Additionally, laboratories have the flexibility to now employ higher-throughput methodologies to enhance resolution for cases with greater complexity.
Collapse
Affiliation(s)
- Mariam T Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Melanie Babcock
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Ying-Chen Claire Hou
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Jesse M Hunter
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Marco L Leung
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Hui Mei
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Kathleen Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Yassmine Akkari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Barseghyan H, Pang AWC, Clifford B, Serrano MA, Chaubey A, Hastie AR. Comparative Benchmarking of Optical Genome Mapping and Chromosomal Microarray Reveals High Technological Concordance in CNV Identification and Additional Structural Variant Refinement. Genes (Basel) 2023; 14:1868. [PMID: 37895217 PMCID: PMC10667989 DOI: 10.3390/genes14101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The recommended practice for individuals suspected of a genetic etiology for disorders including unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), and multiple congenital anomalies (MCA) involves a genetic testing workflow including chromosomal microarray (CMA), Fragile-X testing, karyotype analysis, and/or sequencing-based gene panels. Since genomic imbalances are often found to be causative, CMA is recommended as first tier testing for many indications. Optical genome mapping (OGM) is an emerging next generation cytogenomic technique that can detect not only copy number variants (CNVs), triploidy and absence of heterozygosity (AOH) like CMA, but can also define the location of duplications, and detect other structural variants (SVs), including balanced rearrangements and repeat expansions/contractions. This study compares OGM to CMA for clinically reported genomic variants, some of these samples also have structural characterization by fluorescence in situ hybridization (FISH). OGM was performed on IRB approved, de-identified specimens from 55 individuals with genomic abnormalities previously identified by CMA (61 clinically reported abnormalities). SVs identified by OGM were filtered by a control database to remove polymorphic variants and against an established gene list to prioritize clinically relevant findings before comparing with CMA and FISH results. OGM results showed 100% concordance with CMA findings for pathogenic variants and 98% concordant for all pathogenic/likely pathogenic/variants of uncertain significance (VUS), while also providing additional insight into the genomic structure of abnormalities that CMA was unable to provide. OGM demonstrates equivalent performance to CMA for CNV and AOH detection, enhanced by its ability to determine the structure of the genome. This work adds to an increasing body of evidence on the analytical validity and ability to detect clinically relevant abnormalities identified by CMA. Moreover, OGM identifies translocations, structures of duplications and complex CNVs intractable by CMA, yielding additional clinical utility.
Collapse
Affiliation(s)
- Hayk Barseghyan
- Bionano, San Diego, CA 92121, USA; (H.B.); (A.W.C.P.); (B.C.); (A.C.)
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA
- Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | | | - Benjamin Clifford
- Bionano, San Diego, CA 92121, USA; (H.B.); (A.W.C.P.); (B.C.); (A.C.)
| | | | - Alka Chaubey
- Bionano, San Diego, CA 92121, USA; (H.B.); (A.W.C.P.); (B.C.); (A.C.)
| | - Alex R. Hastie
- Bionano, San Diego, CA 92121, USA; (H.B.); (A.W.C.P.); (B.C.); (A.C.)
| |
Collapse
|
11
|
Zhang Q, Wang Y, Xu Y, Zhou R, Huang M, Qiao F, Meng L, Liu A, Zhou J, Li L, Ji X, Xu Z, Hu P. Optical genome mapping for detection of chromosomal aberrations in prenatal diagnosis. Acta Obstet Gynecol Scand 2023. [PMID: 37366235 PMCID: PMC10378017 DOI: 10.1111/aogs.14613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Chromosomal aberrations are the most important etiological factors for birth defects. Optical genome mapping is a novel cytogenetic tool for detecting a broad range of chromosomal aberrations in a single assay, but relevant clinical feasibility studies of optical genome mapping in prenatal diagnosis are limited. MATERIAL AND METHODS We retrospectively performed optical genome mapping analysis of amniotic fluid samples from 34 fetuses with various clinical indications and chromosomal aberrations detected through standard-of-care technologies, including karyotyping, fluorescence in situ hybridization, and/or chromosomal microarray analysis. RESULTS In total, we analyzed 46 chromosomal aberrations from 34 amniotic fluid samples, including 5 aneuploidies, 10 large copy number variations, 27 microdeletions/microduplications, 2 translocations, 1 isochromosome, and 1 region of homozygosity. Overall, 45 chromosomal aberrations could be confirmed by our customized analysis strategy. Optical genome mapping reached 97.8% concordant clinical diagnosis with standard-of-care methods for all chromosomal aberrations in a blinded fashion. Compared with the widely used chromosomal microarray analysis, optical genome mapping additionally determined the relative orientation and position of repetitive segments for seven cases with duplications or triplications. The additional information provided by optical genome mapping will be conducive to characterizing complex chromosomal rearrangements and allowing us to propose mechanisms to explain rearrangements and predict the genetic recurrence risk. CONCLUSIONS Our study highlights that optical genome mapping can provide comprehensive and accurate information on chromosomal aberrations in a single test, suggesting that optical genome mapping has the potential to become a promising cytogenetic tool for prenatal diagnosis.
Collapse
Affiliation(s)
- Qinxin Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yiyun Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ran Zhou
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Mingtao Huang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Fengchang Qiao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lulu Meng
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - An Liu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jing Zhou
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Li Li
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiuqing Ji
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|