1
|
Wang H, Zhao J, Ji S, Liu T, Cheng Z, Huang Z, Zang Y, Chen J, Zhang J, Ding Z. Metallofullerenol alleviates alcoholic liver damage via ROS clearance under static magnetic and electric fields. Free Radic Biol Med 2024; 220:236-248. [PMID: 38704052 DOI: 10.1016/j.freeradbiomed.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Alcoholic liver disease (ALD) is a common chronic redox disease caused by increased alcohol consumption. Abstinence is a major challenge for people with alcohol dependence, and approved drugs have limited efficacy. Therefore, this study aimed to explore a new treatment strategy for ALD using ferroferric oxide endohedral fullerenol (Fe3O4@C60(OH)n) in combination with static magnetic and electric fields (sBE). The primary hepatocytes of 8-9-week-old female BALB/c mice were used to evaluate the efficacy of the proposed combination treatment. A mouse chronic binge ethanol feeding model was established to determine the alleviatory effect of Fe3O4@C60(OH)n on liver injury under sBE exposure. Furthermore, the ability of Fe3O4@C60(OH)n to eliminate •OH was evaluated. Alcohol-induced hepatocyte and mitochondrial damage were reversed in vitro. Additionally, the combination therapy reduced liver damage, alleviated oxidative stress by improving antioxidant levels, and effectively inhibited liver lipid accumulation in animal experiments. Here, we used a combination of magnetic derivatives of fullerenol and sBE to further improve the ROS clearance rate, thereby alleviating ALD. The developed combination treatment may effectively improve alcohol-induced liver damage and maintain redox balance without apparent toxicity, thereby enhancing therapy aimed at ALD and other redox diseases.
Collapse
Affiliation(s)
- Haoyu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Junqi Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shiliang Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Department of Pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, 215153, China
| | - Tingjun Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhisheng Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, 210023, China; Changzhou High-Tech Research Institute of Nanjing University, Changzhou, 213164, China.
| |
Collapse
|
2
|
Polienko YF, Dobrynin SA, Lomanovich KA, Brovko AO, Bagryanskaya EG, Kirilyuk IA. Origin of Long-Range Hyperfine Couplings in the EPR Spectra of 2,2,5,5-Tetraethylpyrrolidine-1-oxyls. ACS OMEGA 2023; 8:38723-38732. [PMID: 37867656 PMCID: PMC10586448 DOI: 10.1021/acsomega.3c06090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023]
Abstract
Cyclic nitroxides with several bulky alkyl substituents adjacent to the nitroxide group are known to demonstrate a much higher stability to bioreduction than their tetramethyl analogues. Among these so-called "sterically shielded" nitroxides, the pyrrolidine derivatives are the most stable. The EPR spectra of some sterically shielded pyrrolidine-1-oxyls were reported to show one or two large additional doublet splittings with a hyperfine coupling (hfc) constant (ca. 0.2-0.4 mT). To determine the origin of these hfc, a series of 2-R-2,5,5-triethyl-3,4-bis(hydroxymethyl)-pyrrolidine-1-oxyls with methylene groups stereospecifically enriched with deuterium were prepared, and their CW EPR spectra were studied. In addition, these nitroxides were investigated using quantum chemical calculations on the UB3LYP/def2-TZVP level and NBO analysis. The apparent constants were assigned to hfc with γ-hydrogen in the side chain, with the contribution of the NBO orbital βπ*(N-O) to the natural localized molecular orbital βσ(C-H) playing the major role. This interaction is efficient if the ethyl substituent is in the pseudoaxial position of the ring and the CH2-CH3 bond is codirected with (parallel to) N-O. The apparent constant aH increases with the Boltzmann population of this conformation.
Collapse
Affiliation(s)
- Yuliya F. Polienko
- N.N.
Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Sergey A. Dobrynin
- N.N.
Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| | | | - Anastasiya O. Brovko
- N.N.
Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Department
of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena G. Bagryanskaya
- N.N.
Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Igor A. Kirilyuk
- N.N.
Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Campanella AJ, Üngör Ö, Zadrozny JM. Quantum Mimicry With Inorganic Chemistry. COMMENT INORG CHEM 2023; 44:11-53. [PMID: 38515928 PMCID: PMC10954259 DOI: 10.1080/02603594.2023.2173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Quantum objects, such as atoms, spins, and subatomic particles, have important properties due to their unique physical properties that could be useful for many different applications, ranging from quantum information processing to magnetic resonance imaging. Molecular species also exhibit quantum properties, and these properties are fundamentally tunable by synthetic design, unlike ions isolated in a quadrupolar trap, for example. In this comment, we collect multiple, distinct, scientific efforts into an emergent field that is devoted to designing molecules that mimic the quantum properties of objects like trapped atoms or defects in solids. Mimicry is endemic in inorganic chemistry and featured heavily in the research interests of groups across the world. We describe a new field of using inorganic chemistry to design molecules that mimic the quantum properties (e.g. the lifetime of spin superpositions, or the resonant frequencies thereof) of other quantum objects, "quantum mimicry." In this comment, we describe the philosophical design strategies and recent exciting results from application of these strategies.
Collapse
Affiliation(s)
- Anthony J. Campanella
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| | - Ökten Üngör
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| | - Joseph M. Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Yamasaki T, Sano K, Mukai T. Redox Monitoring in Nuclear Medical Imaging. Antioxid Redox Signal 2022; 36:797-810. [PMID: 34847731 DOI: 10.1089/ars.2021.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: The imbalance in redox homeostasis is known as oxidative stress, which is relevant to many diseases such as cancer, arteriosclerosis, and neurodegenerative disorders. Overproduction of reactive oxygen species (ROS) is one of the factors that trigger the redox state imbalance in vivo. The ROS have high reactivity and impair biomolecules, whereas antioxidants and antioxidant enzymes, such as ascorbate and glutathione, reduce the overproduction of ROS to rectify the redox imbalance. Owing to this, redox monitoring tools have been developed to understand the redox fluctuations in oxidative stress-related diseases. Recent Advances: In an attempt to monitor redox substances, including ROS and radical species, versatile modalities have been developed, such as electron spin resonance, chemiluminescence, and fluorescence. In particular, many fluorescent probes have been developed that are selective for ROS. This has significantly contributed to understanding the relevance of ROS in disease onset and progression. Critical Issues: To date, the dynamics of ROS and radical fluctuation in in vivo redox states remain unclear, and there are a few methods for the in vivo detection of redox fluctuations. Future Directions: In this review, we summarize the development of radiolabeled probes for monitoring redox-relevant species by nuclear medical imaging that is applicable in vivo. In the future, translational research is likely to be advanced through the development of highly sensitive and in vivo applicable detection methods, such as nuclear medical imaging, to clarify the underlying dynamics of ROS, radicals, and redox substances in many diseases. Antioxid. Redox Signal. 36, 797-810.
Collapse
Affiliation(s)
- Toshihide Yamasaki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Kohei Sano
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Takahiro Mukai
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
5
|
Campanella AJ, Ozvat TM, Zadrozny JM. Ligand design of zero-field splitting in trigonal prismatic Ni(II) cage complexes. Dalton Trans 2022; 51:3341-3348. [PMID: 35137732 PMCID: PMC8992015 DOI: 10.1039/d1dt02156g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complexes of encapsulated metal ions are promising potential metal-based electron paramagnetic resonance imaging (EPRI) agents due to zero-field splitting. Herein, we synthesize and magnetically characterize a series of five new Ni(II) complexes based on a clathrochelate ligand to provide a new design strategy for zero-field splitting in an encaged environment. UV-Vis and X-ray single-crystal diffraction experiments demonstrate slight physical and electronic structure changes as a function of the differing substituents. The consequence of these changes at the remote apical and sidearm positions of the encaging ligands is a zero-field splitting parameter (D) that varies over a large range of 11 cm-1. These results demonstrate a remarkable flexibility of the zero-field splitting and electronic structure in nickelous cages and give a clear toolkit for modifying zero-field splitting in highly stable ligand shells.
Collapse
Affiliation(s)
- Anthony J Campanella
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Tyler M Ozvat
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
6
|
Koyasu N, Hyodo F, Iwasaki R, Eto H, Elhelaly AE, Tomita H, Shoda S, Takasu M, Mori T, Murata M, Hara A, Noda Y, Kato H, Matsuo M. Spatiotemporal imaging of redox status using in vivo dynamic nuclear polarization magnetic resonance imaging system for early monitoring of response to radiation treatment of tumor. Free Radic Biol Med 2022; 179:170-180. [PMID: 34968704 DOI: 10.1016/j.freeradbiomed.2021.12.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
In general, the effectiveness of radiation treatment is evaluated through the observation of morphological changes with computed tomography (CT) or magnetic resonance imaging (MRI) images after treatment. However, the evaluation of the treatment effects can be very time consuming, and thus can delay the verification of patient cases where treatment has not been fully effective. It is known that the treatment efficacy depends on redox modulation in tumor tissues, which is an indirect effect of oxidizing redox molecules such as hydroxyl radicals and of reactive oxygen species generated by radiation treatment. In vivo dynamic nuclear polarization-MRI (DNP-MRI) using carbamoyl-PROXYL (CmP) as a redox sensitive DNP probe enables the accurate monitoring of the anatomical distribution of free radicals based on interactions of electrons and nuclear spin, known as Overhauser effect. However, spatiotemporal response of the redox status in tumor tissues post-irradiation remains unknown. In this study, we demonstrate the usefulness of spatiotemporal redox status as an early imaging biomarker of tumor response after irradiation using in vivo DNP-MRI. Our results highlight that in vivo DNP-MRI/CmP allowed us to visualize the tumor redox status responses significantly faster and earlier compared to the verification of morphological changes observed with 1.5 T MRI and cancer metabolism (Warburg effect) obtained by hyperpolarized 13C pyruvate MRS. Our findings suggest that the early assessment of redox status alterations with in vivo DNP-MRI/CmP probe may provide very efficient information regarding the effectiveness of the subsequent radiation treatment.
Collapse
Affiliation(s)
| | - Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, Japan.
| | - Ryota Iwasaki
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hinako Eto
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan
| | - Abdelazim Elsayed Elhelaly
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, Japan; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | | | | | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Takashi Mori
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Masaharu Murata
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University, Gifu, Japan
| | | | - Hiroki Kato
- Department of Radiology, Gifu University, Gifu, Japan
| | | |
Collapse
|
7
|
Kimura K, Iguchi N, Nakano H, Yasui H, Matsumoto S, Inanami O, Hirata H. Redox-Sensitive Mapping of a Mouse Tumor Model Using Sparse Projection Sampling of Electron Paramagnetic Resonance. Antioxid Redox Signal 2022; 36:57-69. [PMID: 33847172 PMCID: PMC8823265 DOI: 10.1089/ars.2021.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/08/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022]
Abstract
Aims: This work aimed to establish an accelerated imaging system for redox-sensitive mapping in a mouse tumor model using electron paramagnetic resonance (EPR) and nitroxyl radicals. Results: Sparse sampling of EPR spectral projections was demonstrated for a solution phantom. The reconstructed three-dimensional (3D) images with filtered back-projection (FBP) and compressed sensing image reconstruction were quantitatively assessed for the solution phantom. Mouse xenograft models of a human-derived pancreatic ductal adenocarcinoma cell line, MIA PaCa-2, were also measured for redox-sensitive mapping with the sparse sampling technique. Innovation: A short-lifetime redox-sensitive nitroxyl radical (15N-labeled perdeuterated Tempone) could be measured to map the decay rates of the EPR signals for the mouse xenograft models. Acceleration of 3D EPR image acquisition broadened the choices of nitroxyl radical probes with various redox sensitivities to biological environments. Conclusion: Sparse sampling of EPR spectral projections accelerated image acquisition in the 3D redox-sensitive mapping of mouse tumor-bearing legs fourfold compared with conventional image acquisition with FBP. Antioxid. Redox Signal. 36, 57-69.
Collapse
Affiliation(s)
- Kota Kimura
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Nami Iguchi
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Hitomi Nakano
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Enomoto A, Kato N, Shirouzu N, Tamura C, Ichikawa K. Imaging analysis for multiple paramagnetic agents using OMRI and electrophoresis. J Clin Biochem Nutr 2022; 70:103-107. [PMID: 35400821 PMCID: PMC8921720 DOI: 10.3164/jcbn.20-172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/05/2021] [Indexed: 11/22/2022] Open
Abstract
Nitroxides have been widely used as a molecular probe for analysis of various diseases models. This article describes an analytical method for separation and semi-quantification of multiple paramagnetic contrast agents with simple procedure combining electrophoresis and Overhauser enhancement magnetic resonance imaging (OMRI) imaging. We used three nitroxides, 3-carbamoyl PROXYL, 3-carboxy PROXYL, and CAT-1, which have different ionic charges in the molecule. In addition, we showed that this method could apply for in vitro measurement using biological sample. The results showed the nitroxides were successfully separated with electrophoresis depending on their charge, and their separation was visualized with OMRI after electrophoresis. Vehicle media such as whole blood did not affect the electrophoresis results and OMRI enhancement factor. Thus, the method can be used to analyze the redox status of biological samples without preprocessing. This analytical method enables in vitro measurement of biological samples to determine the redox status of specific tissue layers using paramagnetic agents, which is helpful for detailed analysis of redox-related diseases.
Collapse
Affiliation(s)
- Ayano Enomoto
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Nao Kato
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Naomi Shirouzu
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Chihiro Tamura
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Kazuhiro Ichikawa
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
9
|
Amphiphilic chitosan-polyaminoxyls loaded with daunorubicin: Synthesis, antioxidant activity, and drug delivery capacity. Int J Biol Macromol 2021; 193:965-979. [PMID: 34751143 DOI: 10.1016/j.ijbiomac.2021.10.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
The binding of aminoxyls to polymers extends their potential use as antioxidants and EPR-reporting groups and opens up new horizons for tailoring new smart materials. In this work, we synthesized and characterized non-sulfated and N-sulfated water-soluble amphiphilic chitosans with a critical micelle concentration of 0.02-0.05 mg/mL that contain 13-18% of aminoglycosides bound with various aminoxyls. Chitosan-polyaminoxyls (CPAs) formed micelles with hydrodynamic radii Rh of ca. 100 nm. The EPR spectra of CPAs were found to depend on the rigidity of the aminoxyl-polymer bond and structural changes caused by sulfation. CPAs demonstrated antioxidant capacity/activity in three tests against reactive oxygen species (ROS) of various nature. The charge of micelles and structure of aminoxyls significantly affected their antioxidant properties. CPAs were low toxic against tumor (HepG2, HeLa, A-172) and non-cancerous (Vero) cells (IC50 > 0.8 mM of aminoglycosides). Sulfated CPAs showed better water solubility and the ability of binding and retaining the anti-tumor antibiotic daunorubicin (DAU). DAU-loaded micelles of CPAs (CPAs-DAU) demonstrated a 1.5-4-fold potentiation of DAU cytotoxicity against several cell lines. CPAs-DAU micelles were found to affect the cell cycle in a manner markedly different from that of free DAU. Our results demonstrated the ability of CPAs to act as bioactive drug delivery vehicles.
Collapse
|
10
|
Fehling P, Buckenmaier K, Dobrynin SA, Morozov DA, Polienko YF, Khoroshunova YV, Borozdina Y, Mayer P, Engelmann J, Scheffler K, Angelovski G, Kirilyuk IA. The effects of nitroxide structure upon 1H Overhauser dynamic nuclear polarization efficacy at ultralow-field. J Chem Phys 2021; 155:144203. [PMID: 34654311 DOI: 10.1063/5.0064342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The efficacy in 1H Overhauser dynamic nuclear polarization in liquids at ultralow magnetic field (ULF, B0 = 92 ± 0.8 µT) and polarization field (Bp = 1-10 mT) was studied for a broad variety of 26 different spin probes. Among others, piperidine, pyrrolidine, and pyrroline radicals specifically synthesized for this study, along with some well-established commercially available nitroxides, were investigated. Isotope-substituted variants, some sterically shielded reduction-resistant nitroxides, and some biradicals were included in the measurements. The maximal achievable enhancement, Emax, and the radio frequency power, P1/2, needed for reaching Emax/2 were measured. Physico-chemical features such as molecular weight, spectral linewidth, heterocyclic structure, different types of substituents, deuteration, and 15N-labeling as well as the difference between monoradicals and biradicals were investigated. For the unmodified nitroxide radicals, the Emax values correlate with the molecular weight. The P1/2 values correlate with the spectral linewidth and are additionally influenced by the type of substituents neighboring the nitroxide group. The nitroxide biradicals with high intramolecular spin-spin coupling show low performance. Nitroxides enriched with 15N and/or 2H afford significantly higher |Emax| and require lower power to do so, compared to their unmodified counterparts containing at natural abundance predominantly 14N and 1H. The results allow for a correlation of chemical features with physical hyperpolarization-related properties and indicate that small nitroxides with narrow spectral lines have clear advantages for the use in Overhauser dynamic nuclear polarization experiments. Perdeuteration and 15N-labeling can be used to additionally boost the spin probe performance.
Collapse
Affiliation(s)
- Paul Fehling
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Kai Buckenmaier
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Sergey A Dobrynin
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Denis A Morozov
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Yuliya F Polienko
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Yulia V Khoroshunova
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Yulia Borozdina
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Philipp Mayer
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Jörn Engelmann
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Klaus Scheffler
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Goran Angelovski
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Igor A Kirilyuk
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
11
|
Campanella AJ, Nguyen MT, Zhang J, Ngendahimana T, Antholine WE, Eaton GR, Eaton SS, Glezakou VA, Zadrozny JM. Ligand control of low-frequency electron paramagnetic resonance linewidth in Cr(III) complexes. Dalton Trans 2021; 50:5342-5350. [PMID: 33881070 PMCID: PMC8173706 DOI: 10.1039/d1dt00066g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding how the ligand shell controls low-frequency electron paramagnetic resonance (EPR) spectroscopic properties of metal ions is essential if they are to be used in EPR-based bioimaging schemes. In this work, we probe how specific variations in the ligand structure impact L-band (ca. 1.3 GHz) EPR spectroscopic linewidths in the trichloride salts of five Cr(iii) complexes: [Cr(RR-dphen)3]3+ (RR-dphen = (1R,2R)-(+)-diphenylethylenediamine, 1), [Cr(en)3]3+ (en = ethylenediamine, 2), [Cr(me-en)3]3+ (me-en = 1,2-diaminopropane, 3), [Cr(tn)3]3+ (tn = 1,3-diaminopropane, 4) [Cr(trans-chxn)3]3+ (trans-chxn = trans-(±)-1,2-diaminocyclohexane, 5). Spectral broadening varies in a nonintuitive manner across the series, showing the sharpest peaks for 1 and broadest for 5. Molecular dynamics simulations provide evidence that the broadening is correlated to rigidity in the inner coordination sphere and reflected in ligand-dependent distribution of Cr-N bond distances that can be found in frozen solution.
Collapse
Affiliation(s)
- Anthony J Campanella
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Manh-Thuong Nguyen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Jun Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Thacien Ngendahimana
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - William E Antholine
- National Biomedical EPR Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | | | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
12
|
Kühl A, Dixon A, Hali M, Apawu AK, Muca A, Sinan M, Warila J, Braun RD, Berkowitz BA, Holt AG. Novel QUEST MRI In Vivo Measurement of Noise-induced Oxidative Stress in the Cochlea. Sci Rep 2019; 9:16265. [PMID: 31700007 PMCID: PMC6838338 DOI: 10.1038/s41598-019-52439-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/13/2019] [Indexed: 01/10/2023] Open
Abstract
Effective personalized therapeutic treatment for hearing loss is currently not available. Cochlear oxidative stress is commonly identified in the pathogenesis of hearing loss based upon findings from excised tissue, thus suggesting a promising druggable etiology. However, the timing and site(s) to target for anti-oxidant treatment in vivo are not clear. Here, we address this long-standing problem with QUEnch-assiSTed Magnetic Resonance Imaging (QUEST MRI), which non-invasively measures excessive production of free radicals without an exogenous contrast agent. QUEST MRI is hypothesized to be sensitive to noise-evoked cochlear oxidative stress in vivo. Rats exposed to a loud noise event that resulted in hair cell loss and reduced hearing capability had a supra-normal MRI R1 value in their cochleae that could be corrected with anti-oxidants, thus non-invasively indicating cochlear oxidative stress. A gold-standard oxidative damage biomarker [heme oxidase 1 (HO-1)] supported the QUEST MRI result. The results from this study highlight QUEST MRI as a potentially transformative measurement of cochlear oxidative stress in vivo that can be used as a biomarker for improving individual evaluation of anti-oxidant treatment efficacy in currently incurable oxidative stress-based forms of hearing loss.
Collapse
Affiliation(s)
- André Kühl
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Angela Dixon
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mirabela Hali
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aaron K Apawu
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Antonela Muca
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Moaz Sinan
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - James Warila
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Rod D Braun
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Avril Genene Holt
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA.
- John D. Dingell Veteran Affairs Medical Center, Detroit, Michigan, USA.
| |
Collapse
|
13
|
Li C, Huang Z, Gao N, Zheng J, Guan J. Injectable, thermosensitive, fast gelation, bioeliminable, and oxygen sensitive hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1191-1198. [PMID: 30889653 PMCID: PMC7368179 DOI: 10.1016/j.msec.2019.02.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 01/09/2023]
Abstract
The decrease of tissue oxygen content due to pathological conditions leads to severe cell death and tissue damage. Restoration of tissue oxygen content is the primary treatment goal. To accurately and efficiently assess efficacy of a treatment, minimally invasive, and long-term detection of oxygen concentration in the same tissue location represents a clinically attractive strategy. Among the different oxygen concentration measurement approaches, electron paramagnetic resonance (EPR) has the potential to accomplish this. Yet there lacks injectable EPR probes that can maintain a consistent concentration at the same tissue location during treatment period to acquire a stable EPR signal, and can finally be eliminated from body without retrieval. Herein, we developed injectable and bioeliminable hydrogel-based polymeric EPR probes that exhibited fast gelation rate, slow weight loss rate, and high oxygen sensitivity. The probe was based on N-Isopropylacrylamide (NIPAAm), 2-hydroxyethyl methacrylate (HEMA), dimethyl-γ-butyrolactone acrylate (DBA), and tetrathiatriarylmethyl (TAM) radical. The injectable probes can be implanted into tissues using a minimally invasive injection approach. The high gelation rate (~10 s) allowed the probes to quickly solidify upon injection to have a high retention in tissues. The polymeric probes overcame the toxicity issue of current small molecule EPR probes. The probes can be gradually hydrolyzed. Upon complete hydrolysis, the probes became water soluble at 37 °C, thus having the potential to be removed from the body by urinary system. The probes showed slow weight loss rate so as to maintain EPR signal intensity for extended periods while retaining in a certain tissue location. The probes remained their high oxygen sensitivity after in vitro hydrolysis and in vivo implantation for 4 weeks. These hydrogel-based EPR probes have attractive properties for in vivo oxygen detection.
Collapse
Affiliation(s)
- Chao Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Zheng Huang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ning Gao
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
14
|
Bonnitcha P, Grieve S, Figtree G. Clinical imaging of hypoxia: Current status and future directions. Free Radic Biol Med 2018; 126:296-312. [PMID: 30130569 DOI: 10.1016/j.freeradbiomed.2018.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022]
Abstract
Tissue hypoxia is a key feature of many important causes of morbidity and mortality. In pathologies such as stroke, peripheral vascular disease and ischaemic heart disease, hypoxia is largely a consequence of low blood flow induced ischaemia, hence perfusion imaging is often used as a surrogate for hypoxia to guide clinical diagnosis and treatment. Importantly, ischaemia and hypoxia are not synonymous conditions as it is not universally true that well perfused tissues are normoxic or that poorly perfused tissues are hypoxic. In pathologies such as cancer, for instance, perfusion imaging and oxygen concentration are less well correlated, and oxygen concentration is independently correlated to radiotherapy response and overall treatment outcomes. In addition, the progression of many diseases is intricately related to maladaptive responses to the hypoxia itself. Thus there is potentially great clinical and scientific utility in direct measurements of tissue oxygenation. Despite this, imaging assessment of hypoxia in patients is rarely performed in clinical settings. This review summarises some of the current methods used to clinically evaluate hypoxia, the barriers to the routine use of these methods and the newer agents and techniques being explored for the assessment of hypoxia in pathological processes.
Collapse
Affiliation(s)
- Paul Bonnitcha
- Northern and Central Clinical Schools, Faculty of Medicine, Sydney University, Sydney, NSW 2006, Australia; Chemical Pathology Department, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales 2065, Australia.
| | - Stuart Grieve
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre and Sydney Medical School, University of Sydney, NSW 2050, Australia
| | - Gemma Figtree
- Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales 2065, Australia; Cardiology Department, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| |
Collapse
|
15
|
Uchida T, Togashi H, Kuroda Y, Haga K, Sadahiro M, Kayama T. In vivo visualization of redox status by high-resolution whole body magnetic resonance imaging using nitroxide radicals. J Clin Biochem Nutr 2018; 63:192-196. [PMID: 30487668 PMCID: PMC6252305 DOI: 10.3164/jcbn.18-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 11/30/2022] Open
Abstract
Various diseases are known to be associated with an imbalance of the redox state, but in vivo detection of free radicals is difficult. The purpose of this study is to establish a method for in vivo visualization of redox status by high-resolution whole-body MRI using nitroxide radicals. A redox-sensitive nitroxide probe, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (carbamoyl-PROXYL), was administered to rats intravenously, and in vivo T1-weighted MRI was performed to virtually visualize the redox status of various organs. In experiments using phantoms, a linear relationship between the MRI signal and the carbamoyl-PROXYL concentration persisted up to 80 mM. Among the phantoms, a sample containing 1 mM carbamoyl-PROXYL was readily identifiable. After intravenous injection of carbamoyl-PROXYL, whole-body T1-weighted MRI of the rat provided clear images with good spatial and temporal resolution. The signal intensities of four selected organs (heart, liver, kidney, and intestine) were analyzed quantitatively. The carbamoyl-PROXYL signal peaked and gradually declined due to reduction after intravenous injection. Among the four organs, the organ-specific reduction rate of carbamoyl-PROXYL was highest in the heart, followed by (in order) the liver, kidney, and intestine, and statistical analysis showed that the inter-organ differences were significant. In conclusion, T1-weighted carbamoyl-PROXYL-enhanced MRI provides excellent spatial and temporal imaging of carbamoyl-PROXYL distribution. Furthermore, it provides important functional information pertaining to blood flow and tissue redox activity in individual organs. MRI in combination with carbamoyl-PROXYL has potential clinical application for evaluation of redox activity in whole organs.
Collapse
Affiliation(s)
- Tetsuro Uchida
- Second Department of Surgery, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Hitoshi Togashi
- Health Administration Center, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yoshinori Kuroda
- Second Department of Surgery, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Kazuyuki Haga
- Radiation Department, Yamagata University Hospital, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Mitsuaki Sadahiro
- Second Department of Surgery, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Takamasa Kayama
- Department of Advanced Cancer Science, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| |
Collapse
|
16
|
Berkowitz BA. Oxidative stress measured in vivo without an exogenous contrast agent using QUEST MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:94-100. [PMID: 29705036 PMCID: PMC5963509 DOI: 10.1016/j.jmr.2018.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/09/2018] [Accepted: 01/24/2018] [Indexed: 05/10/2023]
Abstract
Decades of experimental studies have implicated excessive generation of reactive oxygen species (ROS) in the decline of tissue function during normal aging, and as a pathogenic factor in a vast array of fatal or debilitating morbidities. This massive body of work has important clinical implications since many antioxidants are FDA approved, readily cross blood-tissue barriers, and are effective at improving disease outcomes. Yet, the potential benefits of antioxidants have remained largely unrealized in patients because conventional methods cannot determine the dose, timing, and drug combinations to be used in clinical trials to localize and decrease oxidative stress. To address this major problem and improve translational success, new methods are urgently needed that non-invasively measure the same ROS biomarker both in animal models and patients with high spatial resolution. Here, we summarize a transformative solution based on a novel method: QUEnch-assiSTed MRI (QUEST MRI). The QUEST MRI index is a significant antioxidant-induced improvement in pathophysiology, or a reduction in 1/T1 (i.e., R1). The latter form of QUEST MRI provides a unique measure of uncontrolled production of endogenous, paramagnetic reactive oxygen species (ROS). QUEST MRI results to-date have been validated by gold standard oxidative stress assays. QUEST MRI has high translational potential because it does not use an exogenous contrast agent and requires only standard MRI equipment. Summarizing, QUEST MRI is a powerful non-invasive approach with unprecedented potential for (i) bridging antioxidant treatment in animal models and patients, (ii) identifying tissue subregions exhibiting oxidative stress, and (iii) coupling oxidative stress localization with behavioral dysfunction, disease pathology, and genetic vulnerabilities to serve as a marker of susceptibility.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| |
Collapse
|
17
|
Kishimoto S, Krishna MC, Khramtsov VV, Utsumi H, Lurie DJ. In Vivo Application of Proton-Electron Double-Resonance Imaging. Antioxid Redox Signal 2018; 28:1345-1364. [PMID: 28990406 PMCID: PMC5910041 DOI: 10.1089/ars.2017.7341] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/05/2017] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE Proton-electron double-resonance imaging (PEDRI) employs electron paramagnetic resonance irradiation with low-field magnetic resonance imaging so that the electron spin polarization is transferred to nearby protons, resulting in higher signals. PEDRI provides information about free radical distribution and, indirectly, about the local microenvironment such as partial pressure of oxygen (pO2), tissue permeability, redox status, and acid-base balance. Recent Advances: Local acid-base balance can be imaged by exploiting the different resonance frequency of radical probes between R and RH+ forms. Redox status can also be imaged by using the loss of radical-related signal after reduction. These methods require optimized radical probes and pulse sequences. CRITICAL ISSUES High-power radio frequency irradiation is needed for optimum signal enhancement, which may be harmful to living tissue by unwanted heat deposition. Free radical probes differ depending on the purpose of PEDRI. Some probes are less effective for enhancing signal than others, which can reduce image quality. It is so far not possible to image endogenous radicals by PEDRI because low concentrations and broad line widths of the radicals lead to negligible signal enhancement. FUTURE DIRECTIONS PEDRI has similarities with electron paramagnetic resonance imaging (EPRI) because both techniques observe the EPR signal, directly in the case of EPRI and indirectly with PEDRI. PEDRI provides information that is vital to research on homeostasis, development of diseases, or treatment responses in vivo. It is expected that the development of new EPR techniques will give insights into novel PEDRI applications and vice versa. Antioxid. Redox Signal. 28, 1345-1364.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia
| | - Hideo Utsumi
- School of Pharmaceutical Sciences, The University of Shizuoka, Shizuoka, Japan
| | - David J. Lurie
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
18
|
Matsumoto KI, Mitchell JB, Krishna MC. Comparative studies with EPR and MRI on the in vivo tissue redox status estimation using redox-sensitive nitroxyl probes: influence of the choice of the region of interest. Free Radic Res 2018; 52:248-255. [PMID: 29320888 DOI: 10.1080/10715762.2018.1427235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In vivo decay rates of a nitroxyl contrast agent were estimated by a MR redox imaging (MRRI) technique and compared with the decay rates obtained by the electron paramagnetic resonance spectroscopy (EPRS) and imaging (EPRI). MRRI is a dynamic imaging technique employing T1-weighted pulse sequence, which can visualise a nitroxyl-induced enhancement of signal intensity by T1-weighted contrast. EPR techniques can directly measure the paramagnetic nitroxyl radical. Both the squamous cell carcinoma (SCC) tumour-bearing and normal legs of a female C3H mouse were scanned by T1-weighted SPGR sequence at 4.7 T with the nitroxyl radical, carbamoyl-proxyl (CmP), as the contrast agent. Similarly, the time course of CmP in normal muscle and tumour tissues was obtained using a 700-MHz EPR spectrometer with a surface coil. The time course imaging of CmP was also performed by 300 MHz CW EPR imager. EPRS and EPRI gave slower decay rates of CmP compared to the MRRI. Relatively slow decay rate at peripheral region of the tumour tissues, which was found in the image obtained by MRRI, may contribute to the slower decay rates observed by EPRS and/or the EPRI measurements. To reliably determine the tissue redox status from the reduction rates of nitroxyls such as CmP, heterogenic structure in the tumour tissue must be considered. The high spatial and temporal resolution of T1-weighted MRI and the T1-enhancing capabilities of nitroxyls support the use of this method to map tissue redox status which can be a useful biomarker to guide appropriate treatments based on the tumour microenvironment.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- a Quantitative Redox Sensing Team, Department of Basic Medical Sciences for Radiation Damages , National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba-shi , Japan
| | - James B Mitchell
- b Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Murali C Krishna
- b Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
19
|
Berkowitz BA, Podolsky RH, Lenning J, Khetarpal N, Tran C, Wu JY, Berri AM, Dernay K, Shafie-Khorassani F, Roberts R. Sodium Iodate Produces a Strain-Dependent Retinal Oxidative Stress Response Measured In Vivo Using QUEST MRI. Invest Ophthalmol Vis Sci 2017; 58:3286-3293. [PMID: 28666279 PMCID: PMC5493331 DOI: 10.1167/iovs.17-21850] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose We identify noninvasive biomarkers that measure the severity of oxidative stress within retina layers in sodium iodate (SI)-atrophy vulnerable (C57BL/6 [B6]) and SI-atrophy resistant (129S6/SvEvTac [S6]) mice. Methods At 24 hours after administering systemic SI to B6 and S6 mice we measured: (1) superoxide production in whole retina ex vivo, (2) excessive free radical production in vivo based on layer-specific 1/T1 values before and after α-lipoic acid (ALA) administration while the animal was inside the magnet (QUEnch-assiSTed MRI [QUEST MRI]), and (3) visual performance (optokinetic tracking) ± antioxidants; control mice were similarly assessed. Retinal layer spacing and thickness in vivo also were evaluated (optical coherence tomography, MRI). Results SI-treated B6 mice retina had a significantly higher superoxide production than SI-treated S6 mice. ALA-injected SI-treated B6 mice had reduced 1/T1 in more retinal layers in vivo than in SI-treated S6 mice. Uninjected and saline-injected SI-treated B6 mice had similar transretinal 1/T1 profiles. Notably, the inner segment layer 1/T1 of SI-treated B6 mice was responsive to ALA but was unresponsive in SI-treated S6 mice. In both SI-treated strains, antioxidants improved contrast sensitivity to similar extents; antioxidants did not change acuity in either group. Retinal thicknesses were normal in both SI-treated strains at 24 hours after treatment. Conclusions QUEST MRI uniquely measured severity of excessive free radical production within retinal layers of the same subject. Identifying the mechanisms underlying genetic vulnerabilities to oxidative stress is expected to help in understanding the pathogenesis of retinal degeneration.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States 2Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Deptarment of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Jacob Lenning
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Nikita Khetarpal
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Catherine Tran
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Johnny Y Wu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ali M Berri
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kristin Dernay
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Fatema Shafie-Khorassani
- Deptarment of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
20
|
Berkowitz BA, Lenning J, Khetarpal N, Tran C, Wu JY, Berri AM, Dernay K, Haacke EM, Shafie-Khorassani F, Podolsky RH, Gant JC, Maimaiti S, Thibault O, Murphy GG, Bennett BM, Roberts R. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome. FASEB J 2017; 31:4179-4186. [PMID: 28592637 DOI: 10.1096/fj.201700229r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022]
Abstract
Hippocampus oxidative stress is considered pathogenic in neurodegenerative diseases, such as Alzheimer disease (AD), and in neurodevelopmental disorders, such as Angelman syndrome (AS). Yet clinical benefits of antioxidant treatment for these diseases remain unclear because conventional imaging methods are unable to guide management of therapies in specific hippocampus subfields in vivo that underlie abnormal behavior. Excessive production of paramagnetic free radicals in nonhippocampus brain tissue can be measured in vivo as a greater-than-normal 1/T1 that is quenchable with antioxidant as measured by quench-assisted (Quest) MRI. Here, we further test this approach in phantoms, and we present proof-of-concept data in models of AD-like and AS hippocampus oxidative stress that also exhibit impaired spatial learning and memory. AD-like models showed an abnormal gradient along the CA1 dorsal-ventral axis of excessive free radical production as measured by Quest MRI, and redox-sensitive calcium dysregulation as measured by manganese-enhanced MRI and electrophysiology. In the AS model, abnormally high free radical levels were observed in dorsal and ventral CA1. Quest MRI is a promising in vivo paradigm for bridging brain subfield oxidative stress and behavior in animal models and in human patients to better manage antioxidant therapy in devastating neurodegenerative and neurodevelopmental diseases.-Berkowitz, B. A., Lenning, J., Khetarpal, N., Tran, C., Wu, J. Y., Berri, A. M., Dernay, K., Haacke, E. M., Shafie-Khorassani, F., Podolsky, R. H., Gant, J. C., Maimaiti, S., Thibault, O., Murphy, G. G., Bennett, B. M., Roberts, R. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA; .,Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jacob Lenning
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nikita Khetarpal
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Catherine Tran
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Johnny Y Wu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ali M Berri
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kristin Dernay
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Fatema Shafie-Khorassani
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Robert H Podolsky
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - John C Gant
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Shaniya Maimaiti
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Geoffrey G Murphy
- Department of Molecular and Integrative Physiology, Molecular Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brian M Bennett
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Robin Roberts
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
21
|
Liu W, Nie J, Tan X, Liu H, Yu N, Han G, Zhu Y, Villamena FA, Song Y, Zweier JL, Liu Y. Synthesis and Characterization of PEGylated Trityl Radicals: Effect of PEGylation on Physicochemical Properties. J Org Chem 2016; 82:588-596. [DOI: 10.1021/acs.joc.6b02590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Wenbo Liu
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Jiangping Nie
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Xiaoli Tan
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Huiqiang Liu
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Nannan Yu
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Guifang Han
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Yutian Zhu
- State
Key
Laboratory of Polymer Physics and Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Frederick A. Villamena
- Department
of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuguang Song
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Jay L. Zweier
- Center
for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung
Research Institute, the Division of Cardiovascular Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yangping Liu
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
- Center
for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung
Research Institute, the Division of Cardiovascular Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
Gallez B. Contribution of Harold M. Swartz to In Vivo EPR and EPR Dosimetry. RADIATION PROTECTION DOSIMETRY 2016; 172:16-37. [PMID: 27421469 DOI: 10.1093/rpd/ncw157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 2015, we are celebrating half a century of research in the application of Electron Paramagnetic Resonance (EPR) as a biodosimetry tool to evaluate the dose received by irradiated people. During the EPR Biodose 2015 meeting, a special session was organized to acknowledge the pioneering contribution of Harold M. (Hal) Swartz in the field. The article summarizes his main contribution in physiology and medicine. Four emerging themes have been pursued continuously along his career since its beginning: (1) radiation biology; (2) oxygen and oxidation; (3) measuring physiology in vivo; and (4) application of these measurements in clinical medicine. The common feature among all these different subjects has been the use of magnetic resonance techniques, especially EPR. In this article, you will find an impressionist portrait of Hal Swartz with the description of the 'making of' this pioneer, a time-line perspective on his career with the creation of three National Institutes of Health-funded EPR centers, a topic-oriented perspective on his career with a description of his major contributions to Science, his role as a mentor and his influence on his academic children, his active role as founder of scientific societies and organizer of scientific meetings, and the well-deserved international recognition received so far.
Collapse
Affiliation(s)
- Bernard Gallez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Avenue Mounier 73.08, B-1200, Brussels, Belgium
| |
Collapse
|
23
|
Meenakumari V, Utsumi H, Jawahar A, Milton Franklin Benial A. ESR line width and line shape dependence of Overhauser-enhanced magnetic resonance imaging. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:874-879. [PMID: 27432403 DOI: 10.1002/mrc.4489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 07/10/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Electron spin resonance and Overhauser-enhanced magnetic resonance imaging studies were carried out for various concentrations of 14 N-labeled 3-carbamoyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl in pure water. Overhauser-enhancement factor attains maxima in the range of 2.5-3 mm concentration. The leakage factor showed an asymptotic increase with increasing agent concentration. The coupling parameter showed the interaction between the electron and nuclear spins to be mainly dipolar in origin. The electron spin resonance parameters, such as the line width, line shape and g-factor, were determined. The line width analysis confirms that the line broadening is proportional to the agent concentration, and also the agent concentration is optimized in the range of 2.5-3 mm. The line shape analysis shows that the observed electron spin resonance line shape is a Voigt line shape, in which the Lorentzian component is dominant. The contribution of Lorentzian component was estimated using the winsim package. The Lorentzian component of the resonance line attains maxima in the range of 2.5-3 mm concentration. Therefore, this study reveals that the agent concentration, line width and Lorentzian component are the important factors in determining the Overhauser-enhancement factor. Hence, the agent concentration was optimized as 2.5-3 mm for in vivo/in vitro electron spin resonance imaging and Overhauser-enhanced magnetic resonance imaging phantom studies. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- V Meenakumari
- Department of Physics, NMSSVN College, Madurai, Tamil Nadu, India
| | - Hideo Utsumi
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - A Jawahar
- Department of Chemistry, NMSSVN College, Madurai, Tamil Nadu, India
| | | |
Collapse
|
24
|
Takeshita K, Okazaki S, Hirose Y. Pharmacokinetics of lipophilically different 3-substituted 2,2,5,5-tetramethylpyrrolidine-N-oxyl radicals frequently used as redox probes in in vivo magnetic resonance studies. Free Radic Biol Med 2016; 97:263-273. [PMID: 27302159 DOI: 10.1016/j.freeradbiomed.2016.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/25/2022]
Abstract
3-Carboxy-, 3-carbamoyl-, 3-hydroxymethyl, and 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl radicals (CxP, CmP, HMP, and MCP, respectively) have been widely used as redox probes in in vivo magnetic resonance studies. Knowledge of the pharmacokinetics of these probes is essential for redox analyses. The apparent partition coefficient (Kp) of these probes at neutral pH was in the order of MCP>HMP>CmP>CxP. After these probes had been injected intravenously, their blood levels decayed in a bi-phasic manner, namely, fast decay followed by slow decay. The order of the area under the curve (AUC) was CxP»HMP>MCP≥CmP, which roughly coincided with that of Kp in the opposite direction, except for CmP. Decay in the slow phase largely affected the AUC of these probes. The reduction of these probes contributed to their decay in the slow phase. A two-compartment model analysis of blood levels, cyclic voltammetry, and magnetic resonance imaging provided the following pharmacokinetic information. The distribution of the probes between the central and peripheral compartments rapidly reached an equilibrium. In addition to lipophilicity, reduction potential may also be involved in the rate of in vivo reduction of the probes. Hydrophilic probes, such as CxP and CmP, were predominantly excreted in the urine. MCP was distributed to the peripheral tissues and then rapidly reduced. HMP was unique due to its moderate lipophilicity and slower reduction. Among the probes examined, the liver and kidney appear to be included in the central compartment in the two-compartment model analysis. MCP and HMP were rapidly distributed to the brain.
Collapse
Affiliation(s)
- Keizo Takeshita
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan.
| | - Shoko Okazaki
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Yuriko Hirose
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| |
Collapse
|
25
|
Maulucci G, Bačić G, Bridal L, Schmidt HH, Tavitian B, Viel T, Utsumi H, Yalçın AS, De Spirito M. Imaging Reactive Oxygen Species-Induced Modifications in Living Systems. Antioxid Redox Signal 2016; 24:939-58. [PMID: 27139586 PMCID: PMC4900226 DOI: 10.1089/ars.2015.6415] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Reactive Oxygen Species (ROS) may regulate signaling, ion channels, transcription factors, and biosynthetic processes. ROS-related diseases can be due to either a shortage or an excess of ROS. RECENT ADVANCES Since the biological activity of ROS depends on not only concentration but also spatiotemporal distribution, real-time imaging of ROS, possibly in vivo, has become a need for scientists, with potential for clinical translation. New imaging techniques as well as new contrast agents in clinically established modalities were developed in the previous decade. CRITICAL ISSUES An ideal imaging technique should determine ROS changes with high spatio-temporal resolution, detect physiologically relevant variations in ROS concentration, and provide specificity toward different redox couples. Furthermore, for in vivo applications, bioavailability of sensors, tissue penetration, and a high signal-to-noise ratio are additional requirements to be satisfied. FUTURE DIRECTIONS None of the presented techniques fulfill all requirements for clinical translation. The obvious way forward is to incorporate anatomical and functional imaging into a common hybrid-imaging platform. Antioxid. Redox Signal. 24, 939-958.
Collapse
Affiliation(s)
- Giuseppe Maulucci
- 1 Institute of Physics, Catholic University of Sacred Heart , Roma, Italy
| | - Goran Bačić
- 2 Faculty of Physical Chemistry, University of Belgrade , Belgrade, Serbia
| | - Lori Bridal
- 3 Laboratoire d'Imagerie Biomédicale, Sorbonne Universités and UPMC Univ Paris 06 and CNRS and INSERM , Paris, France
| | - Harald Hhw Schmidt
- 4 Department of Pharmacology and Personalised Medicine, CARIM, Faculty of Health, Medicine & Life Science, Maastricht University , Maastricht, the Netherlands
| | - Bertrand Tavitian
- 5 Laboratoire de Recherche en Imagerie, Université Paris Descartes, Hôpital Européen Georges Pompidou , Service de Radiologie, Paris, France
| | - Thomas Viel
- 5 Laboratoire de Recherche en Imagerie, Université Paris Descartes, Hôpital Européen Georges Pompidou , Service de Radiologie, Paris, France
| | - Hideo Utsumi
- 6 Innovation Center for Medical Redox Navigation, Kyushu University , Fukuoka, Japan
| | - A Süha Yalçın
- 7 Department of Biochemistry, School of Medicine, Marmara University , İstanbul, Turkey
| | - Marco De Spirito
- 1 Institute of Physics, Catholic University of Sacred Heart , Roma, Italy
| |
Collapse
|
26
|
Ito S, Hyodo F. Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals. Sci Rep 2016; 6:21407. [PMID: 26892591 PMCID: PMC4759784 DOI: 10.1038/srep21407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/22/2016] [Indexed: 11/14/2022] Open
Abstract
Highly water-soluble ubiquinone-0 (CoQ0) reacts with ascorbate monoanion (Asc) to mediate the production of ascorbyl free radicals (AFR). Using aqueous reaction mixture of CoQ0 and Asc, we obtained positively enhanced dynamic nuclear polarization (DNP)-magnetic resonance (MR) images of the AFR at low frequency (ranging from 515 to 530 MHz) of electron spin resonance (ESR) irradiation. The shape of the determined DNP spectrum was similar to ESR absorption spectra with doublet spectral peaks. The relative locational relationship of spectral peaks in the DNP spectra between the AFR (520 and 525 MHz), 14N-labeled carbamoyl-PROXYL (14N-CmP) (526.5 MHz), and Oxo63 (522 MHz) was different from that in the X-band ESR spectra, but were similar to that in the 300-MHz ESR spectra. The ratio of DNP enhancement to radical concentration for the AFR was higher than those for 14N-CmP, Oxo63, and flavin semiquinone radicals. The spectroscopic DNP properties observed for the AFR were essentially the same as those for AFR mediated by pyrroloquinoline quinone. Moreover, we made a success of in vivo DNP-MR imaging of the CoQ0-mediated AFR which was administered by the subcutaneous and oral injections as an imaging probe.
Collapse
Affiliation(s)
- Shinji Ito
- Innovation Center for Medical Redox Navigation, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Fuminori Hyodo
- Innovation Center for Medical Redox Navigation, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
27
|
Eto H, Hyodo F, Nakano K, Utsumi H. Selective Imaging of Malignant Ascites in a Mouse Model of Peritoneal Metastasis Using in Vivo Dynamic Nuclear Polarization-Magnetic Resonance Imaging. Anal Chem 2016; 88:2021-7. [PMID: 26796949 DOI: 10.1021/acs.analchem.5b04821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The presence of malignant ascites in advanced cancer patients is associated with both a poor prognosis and quality of life with a risk of abdominal infection and sepsis. Contemporary noninvasive visualization methods such as ultrasound, computed tomography, and magnetic resonance imaging (MRI) often struggle to differentiate malignant ascites from surrounding tissues. This study aimed to determine the utility of selective H2O imaging in the abdominal cavity with a free radical probe and deuterium oxide (D2O) contrast agent using in vivo dynamic nuclear polarization-MRI (DNP-MRI). Phantom imaging experiments established a linear relationship between H2O volume and image intensity using in vivo DNP-MRI. Similar results were obtained when the radical-D2O probe was used to determine selective and spatial information on H2O in vivo, modeled by the injection of saline into the abdominal cavity of mice. To demonstrate the utility of this method for disease, malignant ascites in peritoneal metastasis animal model was selected as one of the typical examples. In vivo DNP-MRI of peritoneal metastasis animal model was performed 7-21 days after intraperitoneal injection of luciferase, stably expressing the human pancreatic carcinoma (SUIT-2). The image intensity with increasing malignant ascites was significantly increased at days 7, 16, and 21. This increase corresponded to in vivo tumor progression, as measured by bioluminescent imaging. These results suggest that H2O signal enhancement in DNP-MRI using radical-D2O contrast is positively associated with the progression of dissemination and could be a useful biomarker for malignant ascites with cancer metastasis.
Collapse
Affiliation(s)
- Hinako Eto
- Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Fuminori Hyodo
- Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenji Nakano
- Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideo Utsumi
- Innovation Center for Medical Redox Navigation, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
28
|
Kaur A, Kolanowski JL, New EJ. Reversible Fluorescent Probes for Biological Redox States. Angew Chem Int Ed Engl 2015; 55:1602-13. [DOI: 10.1002/anie.201506353] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Amandeep Kaur
- School of Chemistry; The University of Sydney; NSW 2006 Australia
| | | | - Elizabeth J. New
- School of Chemistry; The University of Sydney; NSW 2006 Australia
| |
Collapse
|
29
|
Kaur A, Kolanowski JL, New EJ. Reversible Fluoreszenzsonden für biologische Redoxzustände. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506353] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Amandeep Kaur
- School of Chemistry; The University of Sydney; NSW 2006 Australia
| | | | - Elizabeth J. New
- School of Chemistry; The University of Sydney; NSW 2006 Australia
| |
Collapse
|
30
|
Bačić G, Pavićević A, Peyrot F. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques. Redox Biol 2015; 8:226-42. [PMID: 26827126 PMCID: PMC4753396 DOI: 10.1016/j.redox.2015.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/25/2015] [Indexed: 12/22/2022] Open
Abstract
Free radicals, particularly reactive oxygen species (ROS), are involved in various pathologies, injuries related to radiation, ischemia-reperfusion or ageing. Unfortunately, it is virtually impossible to directly detect free radicals in vivo, but the redox status of the whole organism or particular organ can be studied in vivo by using magnetic resonance techniques (EPR and MRI) and paramagnetic stable free radicals - nitroxides. Here we review results obtained in vivo following the pharmacokinetics of nitroxides on experimental animals (and a few in humans) under various conditions. The focus was on conditions where the redox status has been altered by induced diseases or harmful agents, clearly demonstrating that various EPR/MRI/nitroxide combinations can reliably detect metabolically induced changes in the redox status of organs. These findings can improve our understanding of oxidative stress and provide a basis for studying the effectiveness of interventions aimed to modulate oxidative stress. Also, we anticipate that the in vivo EPR/MRI approach in studying the redox status can play a vital role in the clinical management of various pathologies in the years to come providing the development of adequate equipment and probes.
Collapse
Affiliation(s)
- Goran Bačić
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Pavićević
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS - Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; ESPE of Paris, Paris Sorbonne Université, 75016 Paris, France
| |
Collapse
|
31
|
Matsumoto KI, Yamasaki T, Nakamura M, Ishikawa J, Ueno M, Nakanishi I, Sekita A, Ozawa Y, Kamada T, Aoki I, Yamada KI. Brain contrasting ability of blood-brain-barrier-permeable nitroxyl contrast agents for magnetic resonance redox imaging. Magn Reson Med 2015; 76:935-45. [PMID: 26414669 DOI: 10.1002/mrm.25918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE The detailed in vivo T1 -weighted contrasting abilities of nitroxyl contrast agents, which have been used as redox responsive contrast agents in several magnetic resonance-based imaging modalities, in mouse brain were investigated. METHODS Distribution and pharmacokinetics of five types of five-membered-ring nitroxyl radical compound were compared using T1 -weighted MRI. RESULTS The blood-brain barrier (BBB) -impermeable 3-carboxy-2,2,5,5-tetramethylpyrrolidine-N-oxyl (CxP) could not be distributed in the brain. The slightly lipophilic 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl (CmP) showed slight distribution only in the ventricle, but not in the medulla and cortex. The amphiphilic 3-methoxy-carbonyl-2,2,5,5-tetramethyl-pyrrolidine-N-oxyl (MCP) had good initial uniform distribution in the brain and showed typical 2-phase signal decay profiles. A brain-seeking nitroxyl probe, acetoxymethyl-2,2,5,5-tetramethyl-pyrrolidine-N-oxyl-3-carboxylate (CxP-AM), showed an accumulating phase, and then its accumulation was maintained in the medulla and ventricle regions, but not in the cortex. The lipophilic 4-(N-methyl piperidine)-2,2,5,5-tetramethylpyrroline-N-oxyl (23c) was well distributed in the cortex and medulla, but slightly in the ventricle, and showed relatively rapid linear signal decay. CONCLUSION Nitroxyl contrast agents equipped with a suitable lipophilic substitution group could be BBB-permeable functional contrast agents. MR redox imaging, which can estimate not only the redox characteristics but also the detailed distribution of the contrast agents, is a good candidate for a theranostic tool. Magn Reson Med 76:935-945, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba-shi, Chiba, Japan
| | - Toshihide Yamasaki
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Mizuki Nakamura
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba-shi, Chiba, Japan.,Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| | - Junji Ishikawa
- Translational Research Group, Health Science Research Center, FANCL Research Institute, Totsuka-ku, Yokohama, Japan
| | - Megumi Ueno
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba-shi, Chiba, Japan
| | - Ikuo Nakanishi
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba-shi, Chiba, Japan
| | - Aiko Sekita
- Multimodal Molecular Imaging Team, Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | - Yoshikazu Ozawa
- Multimodal Molecular Imaging Team, Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | - Tadashi Kamada
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan.,Research Center Hospital, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba-shi, Chiba, Japan
| | - Ichio Aoki
- Multimodal Molecular Imaging Team, Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | - Ken-Ichi Yamada
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.,JST, PRESTO, Kawaguchi, Saitama, Japan
| |
Collapse
|
32
|
Affiliation(s)
- Fuminori Hyodo
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Shinji Ito
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Hideo Utsumi
- Innovation Center for Medical Redox Navigation, Kyushu University
| |
Collapse
|
33
|
Togashi H, Aoyama M, Oikawa K. Imaging of reactive oxygen species generated in vivo. Magn Reson Med 2015; 75:1375-9. [PMID: 25885107 DOI: 10.1002/mrm.25582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/18/2014] [Accepted: 11/21/2014] [Indexed: 11/10/2022]
Abstract
PURPOSE We sought to image the biodistribution of reactive oxygen species (ROS) within the living body using an in vivo electron spin resonance (ESR) imaging system using a spin probe, 1-acetoxy-3-carbamoyl-2,2,5,5-tetramethylpyrroline (ACP) that produces ESR-detectable nitroxide upon reaction with ROS. METHODS Acute hepatic injury was induced in mice by priming with heat-killed Corynebacterium parvum followed by injection of a low dose of lipopolysaccharide. ACP was administered intravenously and an in vivo ESR imaging system was used to visualize hepatic oxidative stress. RESULTS In this immune-mediated hepatic injury model, significant oxidative stress was evident at 3 h after lipopolysaccharide administration before the onset of massive hepatic injury. ACP was administered intravenously at 3 h after lipopolysaccharide injection when significant hepatic oxidative stress had been observed, and the ESR imaging system detected a high signal for 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine (carbamoyl-PROXYL), which had originated from the ACP-derived hydroxylamine and produced large amount of ROS within the living body. Using the ESR imaging system with ACP, we were able to visualize ROS in the abdomen before onset of hepatic injury. CONCLUSION We have succeeded in visualizing ROS within the body before onset of organ damage, representing a significant development in imaging for toxic molecules.
Collapse
Affiliation(s)
- Hitoshi Togashi
- Yamagata University Health Administration Center, Yamagata, Japan
| | - Masaaki Aoyama
- Institute for Life Support Technology, Yamagata Public Corporation for Development of Industry, Yamagata, Japan
| | - Kazuo Oikawa
- Yamagata Research Institute of Technology, Yamagata, Japan
| |
Collapse
|
34
|
Soikkeli M, Sievänen K, Peltonen J, Kaasalainen T, Timonen M, Heinonen P, Rönkkö S, Lehto VP, Kavakka JS, Heikkinen S. Synthesis and in vitro phantom NMR and MRI studies of fully organic free radicals, TEEPO-glucose and TEMPO-glucose, potential contrast agents for MRI. RSC Adv 2015. [DOI: 10.1039/c4ra11455h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two organic radical contrast agents, TEMPO-Glc and TEEPO-Glc, were synthesized and their stabilities and contrast enhancing properties were tested with in vitro NMR and MRI experiments.
Collapse
Affiliation(s)
- M. Soikkeli
- Laboratory of Organic Chemistry
- Department of Chemistry
- University of Helsinki
- Finland
| | - K. Sievänen
- Laboratory of Organic Chemistry
- Department of Chemistry
- University of Helsinki
- Finland
| | - J. Peltonen
- HUS Helsinki Medical Imaging Center
- Helsinki
- Finland
| | | | - M. Timonen
- HUS Helsinki Medical Imaging Center
- Helsinki
- Finland
| | - P. Heinonen
- Laboratory of Organic Chemistry
- Department of Chemistry
- University of Helsinki
- Finland
| | - S. Rönkkö
- Department of Applied Physics
- University of Eastern Finland
- FIN-70211 Kuopio
- Finland
| | - V.-P. Lehto
- Department of Applied Physics
- University of Eastern Finland
- FIN-70211 Kuopio
- Finland
| | - J. S. Kavakka
- Laboratory of Organic Chemistry
- Department of Chemistry
- University of Helsinki
- Finland
| | - S. Heikkinen
- Laboratory of Organic Chemistry
- Department of Chemistry
- University of Helsinki
- Finland
| |
Collapse
|
35
|
Danhier P, Gallez B. Electron paramagnetic resonance: a powerful tool to support magnetic resonance imaging research. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 10:266-81. [PMID: 25362845 DOI: 10.1002/cmmi.1630] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022]
Abstract
The purpose of this paper is to describe some of the areas where electron paramagnetic resonance (EPR) has provided unique information to MRI developments. The field of application mainly encompasses the EPR characterization of MRI paramagnetic contrast agents (gadolinium and manganese chelates, nitroxides) and superparamagnetic agents (iron oxide particles). The combined use of MRI and EPR has also been used to qualify or disqualify sources of contrast in MRI. Illustrative examples are presented with attempts to qualify oxygen sensitive contrast (i.e. T1 - and T2 *-based methods), redox status or melanin content in tissues. Other areas are likely to benefit from the combined EPR/MRI approach, namely cell tracking studies. Finally, the combination of EPR and MRI studies on the same models provides invaluable data regarding tissue oxygenation, hemodynamics and energetics. Our description will be illustrative rather than exhaustive to give to the readers a flavour of 'what EPR can do for MRI'.
Collapse
Affiliation(s)
- Pierre Danhier
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
36
|
Ratnakar SJ, Soesbe TC, Lumata LL, Do QN, Viswanathan S, Lin CY, Sherry AD, Kovacs Z. Modulation of CEST images in vivo by T1 relaxation: a new approach in the design of responsive PARACEST agents. J Am Chem Soc 2013; 135:14904-7. [PMID: 24050192 DOI: 10.1021/ja406738y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel approach for the design of responsive paramagnetic chemical exchange saturation transfer (PARACEST) magnetic resonance imaging (MRI) agents has been developed where the signal is "turned on" by altering the longitudinal relaxation time (T1) of bulk water protons. To demonstrate this approach, a model Eu(DOTA-tetraamide) complex (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) containing two nitroxide free radical units was synthesized. The nitroxide groups substantially shortened the T1 of the bulk water protons which, in turn, resulted in quenching of the CEST signal. Reduction of paramagnetic nitroxide moieties to a diamagnetic species resulted in the appearance of CEST. The modulation of CEST by T1 relaxation provides a new platform for designing biologically responsive MRI agents.
Collapse
Affiliation(s)
- S James Ratnakar
- Advanced Imaging Research Center, UT Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bakalova R, Zhelev Z, Aoki I, Saga T. Tissue redox activity as a hallmark of carcinogenesis: from early to terminal stages of cancer. Clin Cancer Res 2013; 19:2503-17. [PMID: 23532887 DOI: 10.1158/1078-0432.ccr-12-3726] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The study aimed to clarify the dynamics of tissue redox activity (TRA) in cancer progression and assess the importance of this parameter for therapeutic strategies. EXPERIMENTAL DESIGN The experiments were carried out on brain tissues of neuroblastoma-bearing, glioma-bearing, and healthy mice. TRA was visualized in vivo by nitroxide-enhanced MRI on anesthetized animals or in vitro by electron paramagnetic resonance spectroscopy on isolated tissue specimens. Two biochemical parameters were analyzed in parallel: tissue total antioxidant capacity (TTAC) and plasma levels of matrix metalloproteinases (MMP). RESULTS In the early stage of cancer, the brain tissues were characterized by a shorter-lived MRI signal than that from healthy brains (indicating a higher reducing activity for the nitroxide radical), which was accompanied by an enhancement of TTAC and MMP9 plasma levels. In the terminal stage of cancer, tissues in both hemispheres were characterized by a longer-lived MRI signal than in healthy brains (indicating a high-oxidative activity) that was accompanied by a decrease in TTAC and an increase in the MMP2/MMP9 plasma levels. Cancer progression also affected the redox potential of tissues distant from the primary tumor locus (liver and lung). Their oxidative status increased in both stages of cancer. CONCLUSIONS The study shows that tissue redox balance is very sensitive to the progression of cancer and can be used as a diagnostic marker of carcinogenesis. The study also suggests that the noncancerous tissues of a cancer-bearing organism are susceptible to oxidative damage and should be considered a therapeutic target.
Collapse
Affiliation(s)
- Rumiana Bakalova
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan.
| | | | | | | |
Collapse
|
38
|
Tissue redox activity as a sensing platform for imaging of cancer based on nitroxide redox cycle. Eur J Cancer 2012; 49:1467-78. [PMID: 23265713 DOI: 10.1016/j.ejca.2012.10.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 10/19/2012] [Accepted: 10/30/2012] [Indexed: 01/24/2023]
Abstract
The experience in free radical biology and medicine shows the crucial role of redox signalling in carcinogenesis. The cells and tissues of healthy mammals are characterised by a low level of reactive oxygen species (ROS) and some constant (reference) level of reducing equivalents. Increasing of ROS above the critical level provokes genomic instability. The present study describes universal methodology for direct imaging of tissue redox activity in carcinogenesis, which allows a differentiation of cancer development from normal condition. The experiments were conducted on: neuroblastoma-bearing mice; colon cancer-bearing mice; and healthy mice. The tissue redox activity was visualised in vivo by nitroxide-enhanced magnetic resonance imaging (MRI) on anesthetised animals. The method is based on nitroxide redox cycle, coupled with appearance/disappearance of MRI signal. The half-life (τ1/2) of nitroxide-enhanced MRI signal in the respective tissue was used as a diagnostic marker. The study provides direct evidence that healthy and cancer-bearing mammalian tissues are characterised by different redox activities - a basis for cancer diagnosis. The tissues (cancer and 'normal') of cancer-bearing mammals were characterised by a long-lived MRI signal (τ1/2>14 min), indicating a high oxidative activity. The tissues of healthy organism were characterised by a short-lived MRI signal (τ1/2=1-3 min), indicating a high reducing activity. The study shows that tissue redox activity is a sensing platform for imaging of cancer using nitroxide-enhanced MRI. It also suggests that 'normal' tissues of cancer-bearing organism are susceptible to oxidative damage.
Collapse
|
39
|
Abstract
Cellular redox states can regulate cell metabolism, growth, differentiation, motility, apoptosis, signaling pathways, and gene expressions etc. A growing body of literature suggest the importance of redox status for cancer progression. While most studies on redox state were done on cells and tissue lysates, it is important to understand the role of redox state in a tissue in vivo/ex vivo and image its heterogeneity. Redox scanning is a clinical-translatable method for imaging tissue mitochondrial redox potential with a submillimeter resolution. Redox scanning data in mouse models of human cancers demonstrate a correlation between mitochondrial redox state and tumor metastatic potential. I will discuss the significance of this correlation and possible directions for future research.
Collapse
Affiliation(s)
- Lin Z Li
- Molecular Imaging Laboratory, Department of Radiology, Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Kirschenbaum LJ, Riesz P. Sonochemical degradation of cyclic nitroxides in aqueous solution. ULTRASONICS SONOCHEMISTRY 2012; 19:1114-1119. [PMID: 22361491 DOI: 10.1016/j.ultsonch.2012.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 01/06/2012] [Accepted: 01/28/2012] [Indexed: 05/31/2023]
Abstract
The sonochemical degradation of eight five- and six-membered nitroxides has been studied by EPR spectroscopy after exposure to ultrasound at a frequency of 354 kHz in argon-saturated aqueous solution. Concentration vs. time profiles do not follow a simple rate law. Octanol/water partition functions have been determined for all eight nitroxides, and an excellent linear correlation has been found between initial decomposition rates and hydrophobicity (log K(octanol/water)). Variation of initial rate with concentration was investigated for one compound (TEMPONE) and is largely consistent with an equilibrium distribution of substrate between bulk solution and the gas/liquid interface.
Collapse
|
41
|
Kosem N, Naganuma T, Ichikawa K, Phumala Morales N, Yasukawa K, Hyodo F, Yamada KI, Utsumi H. Whole-body kinetic image of a redox probe in mice using Overhauser-enhanced MRI. Free Radic Biol Med 2012; 53:328-36. [PMID: 22579576 DOI: 10.1016/j.freeradbiomed.2012.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 02/03/2023]
Abstract
Overhauser-enhanced MRI (OMRI) enables visualization of free radicals in animals based on dynamic nuclear polarization. Real-time data of tissue redox status gathered from kinetic images of redox-sensitive nitroxyl radical probes using OMRI provided both anatomic and physiological information. Phantom experiments demonstrated the linear correlation between the enhancement factor and the concentration of a membrane-impermeable probe, carboxy-PROXYL (3-carboxy-2,2,5,5-tetramethyl- pyrrolidine-1-oxyl). Whole-body OMRI images illustrated the in vivo kinetics of carboxy-PROXYL for 25 min. Initial distribution was observed in lung, heart, liver, and kidney, but not brain, corresponding to its minimal lipophilicity. Based on these images (pixel size, 1.33 × 1.33 mm; slice thickness, 50mm), a time-concentration curve with low coefficient of variance (<0.21) was created to assess pharmacokinetic behaviors. A biexponential curve showed a distribution phase from 1 to 10 min and an elimination phase from 15 to 25 min. The α rate constant was greater than the β rate constant in ROIs, confirming that its pharmacokinetics obeyed a two-compartment model. As a noninvasive technique, combining OMRI imaging with redox probes to monitor tissue redox status may be useful in acquiring valuable information regarding organ function for preclinical and clinical studies of oxidative diseases.
Collapse
Affiliation(s)
- Nuttavut Kosem
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hirosawa S, Arai S, Takeoka S. A TEMPO-conjugated fluorescent probe for monitoring mitochondrial redox reactions. Chem Commun (Camb) 2012; 48:4845-7. [PMID: 22506265 DOI: 10.1039/c2cc30603d] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a mitochondrial targeted redox probe (MitoRP) that comprises a nitroxide radical (TEMPO) moiety and coumarin 343. Using isolated mitochondria in the presence/absence of substrates and inhibitors of oxidative phosphorylation, we demonstrated that MitoRP is a useful probe to monitor the electron flow associated with complex I.
Collapse
Affiliation(s)
- Shota Hirosawa
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo 162-8480, Japan
| | | | | |
Collapse
|
43
|
Caia GL, Efimova OV, Velayutham M, El-Mahdy MA, Abdelghany TM, Kesselring E, Petryakov S, Sun Z, Samouilov A, Zweier JL. Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:21-7. [PMID: 22296801 PMCID: PMC4073597 DOI: 10.1016/j.jmr.2011.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 05/31/2023]
Abstract
In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz)/proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3-carbamoyl-proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease.
Collapse
Affiliation(s)
- George L. Caia
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Olga V. Efimova
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Murugesan Velayutham
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Mohamed A. El-Mahdy
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Tamer M. Abdelghany
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Eric Kesselring
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Sergey Petryakov
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Ziqi Sun
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Alexandre Samouilov
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Jay L. Zweier
- Center for Biomedical EPR Spectroscopy and Imaging and Center for Environmental and Smoking Induced Disease, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| |
Collapse
|
44
|
Ichikawa K, Yasukawa K. Imagingin vivoredox status in high spatial resolution with OMRI. Free Radic Res 2012; 46:1004-10. [DOI: 10.3109/10715762.2012.670874] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Elas M, Ichikawa K, Halpern HJ. Oxidative stress imaging in live animals with techniques based on electron paramagnetic resonance. Radiat Res 2012; 177:514-23. [PMID: 22348251 DOI: 10.1667/rr2668.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oxidative stress has been the object of considerable biological and biochemical investigation. Quantification has been difficult although the quantitative level of products of biological oxidations in tissues and tissue products has emerged as a widely used technique. The relationship between these products and the amount of oxidative stress is less clear. Imaging oxidative stress with electron paramagnetic resonance related magnetic resonance imaging, while not addressing the specific issue of quantification of initiating events, focuses on the anatomic specific location of the oxidative stress. Moreover, the relative quantification of oxidative stress of one location against another is possible, sharpening our understanding of oxidative stress. This promises to improve our understanding of oxidative stress and its deleterious consequences and enhance our understanding of the effectiveness of interventions to modulate oxidative stress and its consequences.
Collapse
Affiliation(s)
- Martyna Elas
- Department of Radiation and Cellular Oncology, University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | | | | |
Collapse
|
46
|
Davis RM, Mitchell JB, Krishna MC. Nitroxides as cancer imaging agents. Anticancer Agents Med Chem 2011; 11:347-58. [PMID: 21434855 DOI: 10.2174/187152011795677526] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/09/2011] [Indexed: 01/13/2023]
Abstract
Nitroxides are low molecular weight (150-400 Da) superoxide dismutase mimics that exhibit antioxidant, radical scavenging, and radioprotective activity. Additionally, the paramagnetic nature of nitroxides makes them viable as both spin probes for electron paramagnetic resonance imaging as well as contrast agents for magnetic resonance imaging. These imaging techniques enable in vivo monitoring of nitroxide metabolism. In biological systems, nitroxide metabolism occurs predominantly via reduction of the nitroxide to a hydroxylamine. The rate of nitroxide reduction can increase or decrease due to either oxidative stress, suggesting that nitroxides can provide an imaging-based assay of tissue redox status. The current review briefly summarizes the potential clinical applications of nitroxides, and focuses on the biochemical and tumor microenvironmental factors that affect the rate of nitroxide reduction. The potential therapeutic applications and bio-reduction mechanisms are discussed in the context of their relevance to oncology.
Collapse
Affiliation(s)
- Ryan M Davis
- Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
47
|
Davis RM, Matsumoto S, Bernardo M, Sowers A, Matsumoto KI, Krishna MC, Mitchell JB. Magnetic resonance imaging of organic contrast agents in mice: capturing the whole-body redox landscape. Free Radic Biol Med 2011; 50:459-68. [PMID: 21130158 PMCID: PMC3031128 DOI: 10.1016/j.freeradbiomed.2010.11.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/15/2010] [Accepted: 11/22/2010] [Indexed: 11/18/2022]
Abstract
Nitroxides are a class of stable free radicals that have several biomedical applications including radioprotection and noninvasive assessment of tissue redox status. For both of these applications, it is necessary to understand the in vivo biodistribution and reduction of nitroxides. In this study, magnetic resonance imaging was used to compare tissue accumulation (concentration) and reduction of two commonly studied nitroxides: the piperidine nitroxide Tempol and the pyrrolidine nitroxide 3-CP. It was found that 3-CP was reduced 3 to 11 times slower (depending on the tissue) than Tempol in vivo and that maximum tissue concentration varies substantially between tissues (0.6-7.2mM). For a given tissue, the maximum concentration usually did not vary between the two nitroxides. Furthermore, using electron paramagnetic resonance spectroscopy, we showed that the nitroxide reduction rate depends only weakly on cellular pO(2) in the oxygen range expected in vivo. These observations, taken with the marked variation in nitroxide reduction rates observed between tissues, suggest that tissue pO(2) is not a major determinant of the nitroxide reduction rate in vivo. For the purpose of redox imaging, 3-CP was shown to be an optimal choice based on the achievable concentrations and bioreduction observed in vivo.
Collapse
Affiliation(s)
- Ryan M Davis
- Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Liu Y, Zhu M, Xu J, Zhang H, Tian M. Using a TEMPO-based fluorescent probe for monitoring oxidative stress in living cells. Analyst 2011; 136:4316-20. [DOI: 10.1039/c1an15417f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
In vivo electron spin resonance: An effective new tool for reactive oxygen species/reactive nitrogen species measurement. Arch Pharm Res 2010; 33:1293-9. [DOI: 10.1007/s12272-010-0901-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/08/2010] [Accepted: 08/11/2010] [Indexed: 11/25/2022]
|
50
|
MATSUMOTO KI, AOKI I, NAKANISHI I, MATSUMOTO A, NYUI M, ENDO K, ANZAI K. Distribution of Hydrogen Peroxide-dependent Reaction in a Gelatin Sample Irradiated by Carbon Ion Beam. Magn Reson Med Sci 2010; 9:131-40. [DOI: 10.2463/mrms.9.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|