1
|
Novikov DS, Fieremans E, Jespersen SN, Kiselev VG. Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation. NMR IN BIOMEDICINE 2019; 32:e3998. [PMID: 30321478 PMCID: PMC6481929 DOI: 10.1002/nbm.3998] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 06/11/2018] [Accepted: 06/28/2018] [Indexed: 05/18/2023]
Abstract
We review, systematize and discuss models of diffusion in neuronal tissue, by putting them into an overarching physical context of coarse-graining over an increasing diffusion length scale. From this perspective, we view research on quantifying brain microstructure as occurring along three major avenues. The first avenue focusses on transient, or time-dependent, effects in diffusion. These effects signify the gradual coarse-graining of tissue structure, which occurs qualitatively differently in different brain tissue compartments. We show that transient effects contain information about the relevant length scales for neuronal tissue, such as the packing correlation length for neuronal fibers, as well as the degree of structural disorder along the neurites. The second avenue corresponds to the long-time limit, when the observed signal can be approximated as a sum of multiple nonexchanging anisotropic Gaussian components. Here, the challenge lies in parameter estimation and in resolving its hidden degeneracies. The third avenue employs multiple diffusion encoding techniques, able to access information not contained in the conventional diffusion propagator. We conclude with our outlook on future directions that could open exciting possibilities for designing quantitative markers of tissue physiology and pathology, based on methods of studying mesoscopic transport in disordered systems.
Collapse
Affiliation(s)
- Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Sune N. Jespersen
- CFIN/MINDLab, Department of Clinical Medicine and Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Valerij G. Kiselev
- Medical Physics, Deptartment of Radiology, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
2
|
Yang G, Tian Q, Leuze C, Wintermark M, McNab JA. Double diffusion encoding MRI for the clinic. Magn Reson Med 2017; 80:507-520. [PMID: 29266375 DOI: 10.1002/mrm.27043] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE The purpose of this study is to develop double diffusion encoding (DDE) MRI methods for clinical use. Microscopic diffusion anisotropy measurements from DDE promise greater specificity to changes in tissue microstructure compared with conventional diffusion tensor imaging, but implementation of DDE sequences on whole-body MRI scanners is challenging because of the limited gradient strengths and lengthy acquisition times. METHODS A custom single-refocused DDE sequence was implemented on a 3T whole-body scanner. The DDE gradient orientation scheme and sequence parameters were optimized based on a Gaussian diffusion assumption. Using an optimized 5-min DDE acquisition, microscopic fractional anisotropy (μFA) maps were acquired for the first time in multiple sclerosis patients. RESULTS Based on simulations and in vivo human measurements, six parallel and six orthogonal diffusion gradient pairs were found to be the minimum number of diffusion gradient pairs necessary to produce a rotationally invariant measurement of μFA. Simulations showed that optimal precision and accuracy of μFA measurements were obtained using b-values between 1500 and 3000 s/mm2 . The μFA maps showed improved delineation of multiple sclerosis lesions compared with conventional fractional anisotropy and distinct contrast from T2 -weighted fluid attenuated inversion recovery and T1 -weighted imaging. CONCLUSION The μFA maps can be measured using DDE in a clinical setting and may provide new opportunities for characterizing multiple sclerosis lesions and other types of tissue degeneration. Magn Reson Med 80:507-520, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Grant Yang
- Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Qiyuan Tian
- Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Christoph Leuze
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Max Wintermark
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Jennifer A McNab
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Shemesh N, Jespersen SN, Alexander DC, Cohen Y, Drobnjak I, Dyrby TB, Finsterbusch J, Koch MA, Kuder T, Laun F, Lawrenz M, Lundell H, Mitra PP, Nilsson M, Özarslan E, Topgaard D, Westin CF. Conventions and nomenclature for double diffusion encoding NMR and MRI. Magn Reson Med 2015; 75:82-7. [DOI: 10.1002/mrm.25901] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown; Lisbon Portugal
| | - Sune N. Jespersen
- CFIN/MindLab, Aarhus University; Aarhus Denmark
- Department of Physics and Astronomy; Aarhus University; Aarhus Denmark
| | - Daniel C. Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London; London United Kingdom
| | - Yoram Cohen
- School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences; Tel Aviv University; Tel Aviv Israel
- Sagol School of Neurosciences; Tel Aviv University; Tel Aviv Israel
| | - Ivana Drobnjak
- Centre for Medical Image Computing, Department of Computer Science, University College London; London United Kingdom
| | - Tim B. Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre; Hvidovre Denmark
| | - Jurgen Finsterbusch
- Department of Systems Neuroscience; University Medical Center Hamburg-Eppendorf; Hamburg Germany
- Neuroimage Nord, University Medical Centers Hamburg-Kiel-Lübeck; Germany
| | - Martin A. Koch
- Institute of Medical Engineering; University of Lübeck; Lübeck Germany
| | - Tristan Kuder
- Medical Physics in Radiology, German Cancer Research Center; Im Neuenheimer Feld 280 Heidelberg Germany
| | - Fredrik Laun
- Medical Physics in Radiology, German Cancer Research Center; Im Neuenheimer Feld 280 Heidelberg Germany
| | - Marco Lawrenz
- Department of Systems Neuroscience; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre; Hvidovre Denmark
| | - Partha P. Mitra
- Cold Spring Harbor Laboratory; Cold Spring Harbor New York USA
| | - Markus Nilsson
- Lund University Bioimaging Center, Lund University; Lund Sweden
| | - Evren Özarslan
- Department of Physics; Boğaziçi University; Bebek Istanbul Turkey
| | - Daniel Topgaard
- Division of Physical Chemistry, Department of Chemistry; Lund University; Lund Sweden
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| |
Collapse
|
4
|
Avram AV, Özarslan E, Sarlls JE, Basser PJ. In vivo detection of microscopic anisotropy using quadruple pulsed-field gradient (qPFG) diffusion MRI on a clinical scanner. Neuroimage 2013; 64:229-39. [PMID: 22939872 PMCID: PMC3520437 DOI: 10.1016/j.neuroimage.2012.08.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/02/2012] [Accepted: 08/18/2012] [Indexed: 11/20/2022] Open
Abstract
We report our design and implementation of a quadruple pulsed-field gradient (qPFG) diffusion MRI pulse sequence on a whole-body clinical scanner and demonstrate its ability to non-invasively detect restriction-induced microscopic anisotropy in human brain tissue. The microstructural information measured using qPFG diffusion MRI in white matter complements that provided by diffusion tensor imaging (DTI) and exclusively characterizes diffusion of water trapped in microscopic compartments with unique measures of average cell geometry. We describe the effect of white matter fiber orientation on the expected MR signal and highlight the importance of incorporating such information in the axon diameter measurement using a suitable mathematical framework. Integration of qPFG diffusion-weighted images (DWI) with fiber orientations measured using high-resolution DTI allows the estimation of average axon diameters in the corpus callosum of healthy human volunteers. Maps of inter-hemispheric average axon diameters reveal an anterior-posterior variation in good topographical agreement with anatomical measurements reported in previous post-mortem studies. With further technical refinements and additional clinical validation, qPFG diffusion MRI could provide a quantitative whole-brain histological assessment of white and gray matter, enabling a wide range of neuroimaging applications for improved diagnosis of neurodegenerative pathologies, monitoring neurodevelopmental processes, and mapping brain connectivity.
Collapse
Affiliation(s)
- Alexandru V Avram
- Section on Tissue Biophysics and Biomimetics, PPITS, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
5
|
Laun FB, Kuder TA, Wetscherek A, Stieltjes B, Semmler W. NMR-based diffusion pore imaging. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021906. [PMID: 23005784 DOI: 10.1103/physreve.86.021906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/23/2012] [Indexed: 06/01/2023]
Abstract
Nuclear magnetic resonance (NMR) diffusion experiments offer a unique opportunity to study boundaries restricting the diffusion process. In a recent Letter [Phys. Rev. Lett. 107, 048102 (2011)], we introduced the idea and concept that such diffusion experiments can be interpreted as NMR imaging experiments. Consequently, images of closed pores, in which the spins diffuse, can be acquired. In the work presented here, an in-depth description of the diffusion pore imaging technique is provided. Image artifacts due to gradient profiles of finite duration, field inhomogeneities, and surface relaxation are considered. Gradients of finite duration lead to image blurring and edge enhancement artifacts. Field inhomogeneities have benign effects on diffusion pore images, and surface relaxation can lead to a shrinkage and shift of the pore image. The relation between boundary structure and the imaginary part of the diffusion weighted signal is analyzed, and it is shown that information on pore coherence can be obtained without the need to measure the phase of the diffusion weighted signal. Moreover, it is shown that quite arbitrary gradient profiles can be used for diffusion pore imaging. The matrices required for numerical calculations are stated and provided as supplemental material.
Collapse
Affiliation(s)
- Frederik Bernd Laun
- Medical Physics in Radiology, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
6
|
Koch MA, Finsterbusch J. Towards compartment size estimation in vivo based on double wave vector diffusion weighting. NMR IN BIOMEDICINE 2011; 24:1422-1432. [PMID: 21755551 DOI: 10.1002/nbm.1711] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 12/22/2010] [Accepted: 02/15/2011] [Indexed: 05/31/2023]
Abstract
It has been shown that double wave vector diffusion weighting, which employs two gradient pulse pairs of independent directions, can provide information about tissue structure that is not easily available otherwise, such as cell size or shape in a tissue sample. One approach to measure cell size is based on the signal difference between parallel and antiparallel gradient orientations at small mixing times between the two diffusion weightings. A major difficulty for in vivo application is the small size of the signal difference if clinical MR systems with limited gradient hardware are employed. In this study, the method is applied to human brain tissue in vivo, using whole-body gradients. Data are reported for the corticospinal tracts. The characteristics of the observed signal difference between parallel and antiparallel gradient orientations are consistent with both analytical and numerical predictions. As an estimate of pore size, the resulting mean squared radius of gyration of the pores amounts to approximately 4 µm(2) . An analysis that accounts for the finite values of gradient pulse duration and diffusion time yields a volume contribution-weighted mean pore diameter of 13 μm if a cylindrical pore shape is assumed. The results demonstrate that the technique can be applied in vivo.
Collapse
Affiliation(s)
- Martin A Koch
- Department of Systems Neuroscience/Neuroimage Nord, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
7
|
Shemesh N, Barazany D, Sadan O, Bar L, Zur Y, Barhum Y, Sochen N, Offen D, Assaf Y, Cohen Y. Mapping apparent eccentricity and residual ensemble anisotropy in the gray matter using angular double-pulsed-field-gradient MRI. Magn Reson Med 2011; 68:794-806. [DOI: 10.1002/mrm.23300] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 10/05/2011] [Accepted: 10/24/2011] [Indexed: 12/27/2022]
|
8
|
Shemesh N, Cohen Y. Overcoming apparent susceptibility-induced anisotropy (aSIA) by bipolar double-pulsed-field-gradient NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 212:362-369. [PMID: 21871826 DOI: 10.1016/j.jmr.2011.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/15/2011] [Accepted: 07/21/2011] [Indexed: 05/31/2023]
Abstract
Double-Pulsed-Field-Gradient (d-PFG) MR is emerging as a powerful new means for obtaining unique microstructural information in opaque porous systems that cannot be obtained by conventional single-PFG (s-PFG) methods. The angular d-PFG MR methodology is particularly important since it can utilize the effects of microscopic anisotropy (μA) and compartment shape anisotropy (csA) in the E(ψ) profile at the different t(m) regimes to provide detailed information on compartment size and eccentricity. An underlying assumption is that the PFGs that are imparted to weigh diffusion are the only gradients present; however, in realistic systems and especially where there are randomly oriented anisotropic pores, susceptibility effects may induce strong internal gradients. In this study, the effects of such internal gradients on E(ψ) plots obtained from angular d-PFG MR and on microstructural information that can be obtained from s-PFG and d-PFG MR were investigated. First, it was found that internal gradients induce a bias in the s-PFG MR results, thus creating an anisotropy that is not related to microstructure, termed apparent-Susceptibility-Induced-Anisotropy (aSIA). We then show that aSIA effects are also manifest in different ways in the angular d-PFG MR experiment in controlled phantoms and in realistic systems such as quartz sand, emulsions, and biological systems. The effects of aSIA in some cases completely masked the effects of μA and csA; however, we subsequently show that by introducing bipolar gradients to the d-PFG MR (bp-d-PFG), the effects of aSIA can be largely suppressed, restoring the E(ψ) plots that are expected from the theory along with the microstructural information that it conveys. We conclude that when specimens are characterized by strong internal gradients, the novel information on μA and csA that is manifest in the E(ψ) plots can indeed be inferred when bp-d-PFG MR is used, i.e. when bipolar gradients are applied.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | | |
Collapse
|