1
|
Kazemivalipour E, Atalar E. Enhancing fine-tuning efficiency and design optimization of an eight-channel 3T transmit array via equivalent circuit modeling and Eigenmode analysis. Med Phys 2025. [PMID: 39815440 DOI: 10.1002/mp.17612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 11/20/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Radiofrequency (RF) transmit arrays play a crucial role in various MRI applications, offering enhanced field control and improved imaging capabilities. Designing and optimizing these arrays, particularly in high-field MRI settings, poses challenges related to coupling, resonance, and construction imperfections. Numerical electromagnetic simulation methods effectively aid in the initial design, but discrepancies between simulated and fabricated arrays often necessitate fine-tuning. Fine-tuning involves iteratively adjusting the array's lumped elements, a complex and time-consuming process that demands expertise and substantial experience. This process is particularly required for high-Q-factor arrays or those with decoupling circuitries, where the impact of construction variations and coupling between elements is more pronounced. In this context, our study introduces and validates an accelerated fine-tuning approach custom RF transmit arrays, leveraging the arrays equivalent circuit modeling and eigenmode analysis of the scattering (S) parameters. PURPOSE This study aims to streamline the fine-tuning process of lab-fabricated RF transmit arrays, specifically targeting an eight-channel degenerate birdcage coil designed for 3T MRI. The objective is to minimize the array's modal reflected power values and address challenges related to coupling and resonance. METHODS An eight-channel 3T transmit array is designed and simulated, optimizing capacitor values via the co-simulation strategy and eigenmode analysis. The resulting values are used in constructing a prototype. Experimental measurements of the fabricated coil's S-parameters and fitting them into an equivalent circuit model, enabling estimation of self/mutual-inductances and self/mutual-resistances of the fabricated coil. Capacitor adjustments in the equivalent circuit model minimize mismatches between experimental and simulated results. RESULTS The simulated eight-channel array, optimized for minimal normalized reflected power, exhibits excellent tuning and matching and an acceptable level of decoupling (|Snn|≤-23 dB and |Smn|≤-11 dB). However, the fabricated array displays deviations, including resonances at different frequencies and increased reflections. The proposed fine-tuning approach yields an updated set of capacitor values, improving resonance frequencies and reducing reflections. The fine-tuned array demonstrates comparable performance to the simulation (|Snn|≤-15 dB and |Smn|≤-9 dB), mitigating disparities caused by construction imperfections. The maximum error between the calculated and measured S-parameters is -7 dB. CONCLUSION This accelerated fine-tuning approach, integrating equivalent circuit modeling and eigenmode analysis, effectively optimizes the performance of fabricated transmit arrays. Demonstrated through the design and refinement of an eight-channel array, the method addresses construction-related disparities, showcasing its potential to enhance overall array performance. The approach holds promise for streamlining the design and optimization of complex RF coil systems, particularly for high Q-factor arrays and/or arrays with decoupling circuitry.
Collapse
Affiliation(s)
- Ehsan Kazemivalipour
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| |
Collapse
|
2
|
Lu M, Yang Y, Chai S, Yan X. Reproducible and highly miniaturized bazooka RF Balun using a printed capacitor. Magn Reson Med 2025; 93:422-432. [PMID: 39188192 DOI: 10.1002/mrm.30268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE There is currently a strong trend in developing RF coils that are high-density, lightweight, and highly flexible. In addition to the resonator structure of the RF coil itself, the balun or cable trap circuit serves as another essential element in the functionality and sensitivity of RF coils. This study explores the development and application of reproducible highly miniaturized baluns in RF coil design. METHODS We introduce a novel approach to producing Bazooka baluns with printed coaxial capacitors, enabling the achievement of significant capacitance per unit length. Rigorous electromagnetic simulations and thorough hardware fabrication validate the efficacy of the proposed design across various magnetic field strengths, including 1.5 T, 3 T, and 7 T MRI systems. RESULTS Bench testing reveals that the proposed balun can achieve an acceptable common-mode rejection ratio even when it is highly miniaturized. The use of printed capacitors allows for a notable reduction in balun length and ensures high reproducibility. Findings demonstrate that the proposed balun exhibits no RF field distortion even when placed close to the sample, making it suitable for flexible coils, wearable coils, and high-density coils, particularly in high-field MRI. CONCLUSION The reproducibility inherent in the manufacturing process of printed coaxial capacitors allows for simple fabrication and ensures consistency in production. These advancements pave the way for the development of flexible coils, wearable coils, and high-density coils.
Collapse
Affiliation(s)
- Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yijin Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Shuyang Chai
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Choi CH, Webb A, Orzada S, Kelenjeridze M, Shah NJ, Felder J. A Review of Parallel Transmit Arrays for Ultra-High Field MR Imaging. IEEE Rev Biomed Eng 2024; 17:351-368. [PMID: 37022919 DOI: 10.1109/rbme.2023.3244132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Parallel transmission (pTX) techniques are required to tackle a number of challenges, e.g., the inhomogeneous distribution of the transmit field and elevated specific absorption rate (SAR), in ultra-high field (UHF) MR imaging. Additionally, they offer multiple degrees of freedom to create temporally- and spatially-tailored transverse magnetization. Given the increasing availability of MRI systems at 7 T and above, it is anticipated that interest in pTX applications will grow accordingly. One of the key components in MR systems capable of pTX is the design of the transmit array, as this has a major impact on performance in terms of power requirements, SAR and RF pulse design. While several reviews on pTX pulse design and the clinical applicability of UHF exist, there is currently no systematic review of pTX transmit/transceiver coils and their associated performance. In this article, we analyze transmit array concepts to determine the strengths and weaknesses of different types of design. We systematically review the different types of individual antennas employed for UHF, their combination into pTX arrays, and methods to decouple the individual elements. We also reiterate figures-of-merit (FoMs) frequently employed to describe the performance of pTX arrays and summarize published array designs in terms of these FoMs.
Collapse
|
4
|
Lu M, Sengupta S, Gore JC, Grissom WA, Yan X. High-Density MRI RF Arrays Using Mixed Dipole Antennas and Microstrip Transmission Line Resonators. IEEE Trans Biomed Eng 2022; 69:3243-3252. [PMID: 35404807 PMCID: PMC9587496 DOI: 10.1109/tbme.2022.3166279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE High-density multi-coil arrays are desirable in MRI because they provide high signal-to-noise ratios (SNR), enable highly accelerated parallel imaging, and provide more uniform transmit fields at high fields. For high-density arrays such as a head array with 16 elements in a row, popular dipole antennas and microstrip transmission line (also referred to as "MTL") resonators both have severe coupling issues. METHODS In this work, we show that dipoles and MTLs have naturally low coupling and propose a novel array configuration in which they are interleaved. We first show the electromagnetic (EM) coupling between a single dipole and a single MTL across different separations in bench tests. Then we validate and analyze this through EM simulations. Finally, we construct a 16-channel mixed dipole and MTL array and evaluate its performance on the bench and through MRI experiments. RESULTS Without any decoupling treatments, the worst coupling between a dipole and an MTL was only -15.8 dB when their center-to-center distance was 4.7 cm (versus -5.4 dB for two dipole antennas and -6.0 dB for two MTL resonators). Even in a dense 16-channel mixed array, the inter-element isolation among all elements was better than -14 dB. CONCLUSION This study reveals, analyzes, and validates a novel finding that the popular dipole antennas and MTL resonators used in ultrahigh field MRI have naturally low coupling. SIGNIFICANCE These findings will simplify the construction of high-density arrays, enable new applications, and benefit imaging performance in ultrahigh field MRI.
Collapse
|
5
|
Vazquez F, Marrufo O, Solis-Najera SE, Martin R, Rodriguez AO. External Waveguide Magnetic Resonance Imaging for lower limbs at 3 T. Med Phys 2021; 49:158-168. [PMID: 34633673 DOI: 10.1002/mp.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION We report a method based on the travelling-wave MRI approach, in order to acquire images of human lower limbs with an external waveguide at 3 T. METHOD We use a parallel-plate waveguide and an RF surface coil for reception, while a whole-body birdcage is used for transmission. The waveguide and the surface coil are located right outside the magnet, in the MR conditional devices zone. We ran numerical simulations to investigate the B1 field generated by the surface coil located at one of the waveguides, as well as a saline-solution phantom positioned on the opposite side (150 cm away) inside the magnet. RESULTS We obtained phantom images by varying the distance between the coil and the phantom, in order to investigate the signal-to-noise ratio and to validate our numerical simulations. Lower limb images of a healthy volunteer were also acquired, demonstrating the viability of this approach. Standard pulse sequences were used and no physical modifications were made to the MR imager. CONCLUSIONS These numerical and experimental results show that travelling-wave MRI can produce high-quality images with only a simple waveguide and an RF coil located outside the magnet. This can be particularly favorable when acquiring images of lower limbs requiring a larger field of view.
Collapse
Affiliation(s)
- F Vazquez
- Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Mexico City, 04510, Mexico
| | - O Marrufo
- Department of Neuroimage, Instituto Nacional de Neurologia y Neurocirugia MVS, Mexico City, 14269, Mexico
| | - S E Solis-Najera
- Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Mexico City, 04510, Mexico
| | - R Martin
- Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Mexico City, 04510, Mexico
| | - A O Rodriguez
- Department of Electrical Engineering, Universidad Autonoma Metropolitama Iztapalapa, Mexico City, 09340, Mexico
| |
Collapse
|
6
|
Lu M, Gore JC, Yan X. Over-overlapped loop arrays: A numerical study. Magn Reson Imaging 2020; 72:135-142. [PMID: 32688048 DOI: 10.1016/j.mri.2020.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
Arrays of coils are commonly used in MRI both for reception and in parallel transmission to alleviate radiofrequency field inhomogeneities at high fields. Most designs typically overlap loop elements by a critical area (approximately 10%) to minimize mutual inductive couplings. With this geometrical constraint, loop sizes have to be reduced to accommodate large numbers of coils for a given coverage. However, the contribution of coil noise to total noise increases as each coil size decreases, which reduces overall signal-to-noise ratio (SNR), especially in deeper regions of the sample volume. Here we propose arrays designs using elements that overlap much more (over-overlapped), and using numerical calculations we investigate their performance compared to two kinds of conventionally overlapped arrays (one with the same coil size but smaller coil number, and one with the same coil number but smaller coil size). Our simulation results show that the over-overlapped array can considerably increase the central SNR when coil noise dominates.
Collapse
Affiliation(s)
- Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai, Shandong, China
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Optimization of a transmit/receive surface coil for squirrel monkey spinal cord imaging. Magn Reson Imaging 2020; 68:197-202. [PMID: 32087231 DOI: 10.1016/j.mri.2020.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
MR Imaging the spinal cord of non-human primates (NHP), such as squirrel monkey, is important since the injuries in NHP resemble those that afflict human spinal cords. Our previous studies have reported a multi-parametric MRI protocol, including functional MRI, diffusion tensor imaging, quantitative magnetization transfer and chemical exchange saturation transfer, which allows non-invasive detection and monitoring of injury-associated structural, functional and molecular changes over time. High signal-to-noise ratio (SNR) is critical for obtaining high-resolution images and robust estimates of MRI parameters. In this work, we describe our construction and use of a single channel coil designed to maximize the SNR for imaging the squirrel monkey cervical spinal cord in a 21 cm bore magnet at 9.4 T. We first numerically optimized the coil dimension of a single loop coil and then evaluated the benefits of a quadrature design. We then built an optimized coil based on the simulation results and compared its SNR performance with a non-optimized single coil in both phantoms and in vivo.
Collapse
|
8
|
Ruytenberg T, O'Reilly TP, Webb AG. Design and characterization of receive-only surface coil arrays at 3T with integrated solid high permittivity materials. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 311:106681. [PMID: 31923765 DOI: 10.1016/j.jmr.2019.106681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
A receive-only surface coil array for 3 Tesla integrating a high-permittivity material (HPM) with a relative permittivity of 660 was designed and constructed and subsequently its performance was evaluated and compared in terms of transmit field efficiency and specific absorption ratio (SAR) during transmission, and signal-to-noise ratio during reception, with a conventional identically-sized surface coil array. Finite-difference time-domain simulations, bench measurements and in-vivo neck imaging on three healthy volunteers were performed using a three-element surface coil array with integrated HPMs placed around the larynx. Simulation results show an increase in local transmit efficiency of the body coil of ~10-15% arising from the presence of the HPM. The receiver efficiency also increased by approximately 15% close to the surface. Phantom experiments confirmed these results. In-vivo scans using identical transmit power resulted in SNR gains throughout the laryngeal area when compared with the conventional surface coil array. In particular specifically around the carotid arteries an average SNR gain of 52% was measured averaged over the three subjects, while in the spine an average of 20% SNR gain was obtained.
Collapse
Affiliation(s)
- Thomas Ruytenberg
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Thomas P O'Reilly
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
9
|
Sun H, AlZubaidi A, Purchase A, Sharp JC. A geometrically decoupled, twisted solenoid single‐axis gradient coil set for TRASE. Magn Reson Med 2019; 83:1484-1498. [DOI: 10.1002/mrm.28003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Hongwei Sun
- Department of Oncology University of Alberta Edmonton AlbertaCanada
| | - Abbas AlZubaidi
- Division of Biomedical Engineering University of Saskatchewan Saskatoon SaskatchewanCanada
| | - Aaron Purchase
- Department of Oncology University of Alberta Edmonton AlbertaCanada
| | | |
Collapse
|
10
|
Ruytenberg T, Verbist BM, Vonk-Van Oosten J, Astreinidou E, Sjögren EV, Webb AG. Improvements in High Resolution Laryngeal Magnetic Resonance Imaging for Preoperative Transoral Laser Microsurgery and Radiotherapy Considerations in Early Lesions. Front Oncol 2018; 8:216. [PMID: 29928638 PMCID: PMC5997776 DOI: 10.3389/fonc.2018.00216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/25/2018] [Indexed: 12/13/2022] Open
Abstract
As the benefits, limitations, and contraindications of transoral laser microsurgery (TLM) in glottic carcinoma treatments become better defined, pretreatment imaging has become more important to assess the case-specific suitability of TLM and to predict functional outcomes both for treatment consideration and patient counseling. Magnetic resonance imaging (MRI) is the preferred modality to image such laryngeal tumors, even though imaging the larynx using MRI can be difficult. The first challenge is that there are no commercial radiofrequency (RF) coils that are specifically designed for imaging the larynx, and performance in terms of coverage and signal-to-noise ratio is compromised using general-purpose RF coils. Second, motion in the neck region induced by breathing, swallowing, and vessel pulsation can induce severe image artifacts, sometimes rendering the images unusable. In this paper, we design a dedicated RF coil array, which allows high quality high-resolution imaging of the larynx. In addition, we show that introducing respiratory-triggered acquisition improves the diagnostic quality of the images by minimizing breathing and swallowing artifacts. Together, these developments enable robust, essentially artifact-free images of the full larynx with an isotropic resolution of 1 mm to be acquired within a few minutes.
Collapse
Affiliation(s)
- Thomas Ruytenberg
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Berit M Verbist
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Elisabeth V Sjögren
- Department of ENT - Head and Neck Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
11
|
Ruytenberg T, Webb AG. Design of a dielectric resonator receive array at 7 Tesla using detunable ceramic resonators. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 284:94-98. [PMID: 29024876 DOI: 10.1016/j.jmr.2017.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/30/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
Ceramic-based dielectric resonators can be used for high frequency magnetic resonance imaging and microscopy. When used as elements in a transmit array, the intrinsically low inter-element coupling allows flexibility in designing different geometric arrangements for different regions-of-interest. However, without being able to detune such resonators, they cannot be used as elements in a receive-only array. Here, we propose and implement a method, based on mode-disruption, for detuning ceramic-based dielectric resonators to enable them to be used as receive-only elements.
Collapse
Affiliation(s)
- Thomas Ruytenberg
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
12
|
O'Reilly TPA, Ruytenberg T, Webb AG. Modular transmit/receive arrays using very-high permittivity dielectric resonator antennas. Magn Reson Med 2017. [PMID: 28635034 PMCID: PMC5811774 DOI: 10.1002/mrm.26784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Dielectric resonator antenna (DRAs) are compact structures that exhibit low coupling between adjacent elements and therefore can be used as MRI transmit arrays. In this study, we use very high permittivity materials to construct modular flexible transceive arrays of a variable numbers of elements for operation at 7T. METHODS DRAs were constructed using rectangular blocks of ceramic (lead zirconate titanate, εr = 1070) with the transverse electric (TE)01 mode tuned to 298 MHz. Finite-difference time-domain simulations were used to determine the B1 and specific absorption rate distributions. B1+ maps were acquired in a phantom to validate the simulations. Performance was compared to an equally sized surface coil. In vivo images were acquired of the wrist (four elements), ankle (seven elements), and calf muscle (16 elements). RESULTS Coupling between DRAs spaced 5 mm apart on a phantom was -18.2 dB compared to -9.1 dB for equivalently spaced surface coils. DRAs showed a higher B1+ intensity close to the antenna but a lower penetration depth compared to the surface coil. CONCLUSION DRAs show very low coupling compared to equally sized surface coils and can be used in transceive arrays without requiring decoupling networks. The penetration depth of the current DRA geometry means they are ideally suited to imaging of extremities. Magn Reson Med 79:1781-1788, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Collapse
Affiliation(s)
- Thomas P A O'Reilly
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Ruytenberg
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|