1
|
Parker AJ, Dey A, Usman Qureshi M, Steiner JM, Blanchard JW, Scheuer J, Tomek N, Knecht S, Josten F, Müller C, Hautle P, Schwartz I, Giraudeau P, Eichhorn TR, Dumez JN. Solution-State 2D NMR Spectroscopy of Mixtures HyperpolarizedUsing Optically Polarized Crystals. Angew Chem Int Ed Engl 2023; 62:e202312302. [PMID: 37837321 DOI: 10.1002/anie.202312302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The HYPNOESYS method (Hyperpolarized NOE System), which relies on the dissolution of optically polarized crystals, has recently emerged as a promising approach to enhance the sensitivity of NMR spectroscopy in the solution state. However, HYPNOESYS is a single-shot method that is not generally compatible with multidimensional NMR. Here we show that 2D NMR spectra can be obtained from HYPNOESYS-polarized samples, using single-scan acquisition methods. The approach is illustrated with a mixture of terpene molecules and a benchtop NMR spectrometer, paving the way to a sensitive, information-rich and affordable analytical method.
Collapse
Affiliation(s)
- Anna J Parker
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | - Arnab Dey
- Nantes Université, CNRS, CEISAM UMR6230, 44000, Nantes, France
| | | | - Jakob M Steiner
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
- Paul Scherrer Insititute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - John W Blanchard
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | - Jochen Scheuer
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | - Nikolas Tomek
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | - Stephan Knecht
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | - Felix Josten
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | - Christoph Müller
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | - Patrick Hautle
- Paul Scherrer Insititute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Ilai Schwartz
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | | | - Tim R Eichhorn
- NVision Imaging Technologies GmbH, Wolfgang-Paul-Strasse 2, 89081, Ulm, Germany
| | | |
Collapse
|
2
|
Praud C, Ribay V, Dey A, Charrier B, Mandral J, Farjon J, Dumez JN, Giraudeau P. Optimization of heteronuclear ultrafast 2D NMR for the study of complex mixtures hyperpolarized by dynamic nuclear polarization. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6209-6219. [PMID: 37942549 DOI: 10.1039/d3ay01681a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Hyperpolarized 13C NMR at natural abundance, based on dissolution dynamic nuclear polarization (d-DNP), provides rich, sensitive and repeatable 13C NMR fingerprints of complex mixtures. However, the sensitivity enhancement is associated with challenges such as peak overlap and the difficulty to assign hyperpolarized 13C signals. Ultrafast (UF) 2D NMR spectroscopy makes it possible to record heteronuclear 2D maps of d-DNP hyperpolarized samples. Heteronuclear UF 2D NMR can provide correlation peaks that link quaternary carbons and protons through long-range scalar couplings. Here, we report the analytical assessment of an optimized UF long-range HETCOR pulse sequence, applied to the detection of metabolic mixtures at natural abundance and hyperpolarized by d-DNP, based on repeatability and sensitivity considerations. We show that metabolite-dependent limits of quantification in the range of 1-50 mM (in the sample before dissolution) can be achieved, with a repeatability close to 10% and a very good linearity. We provide a detailed comparison of such analytical performance in two different dissolution solvents, D2O and MeOD. The reported pulse sequence appears as an useful analytical tool to facilitate the assignment and integration of metabolite signals in hyperpolarized complex mixtures.
Collapse
Affiliation(s)
- Clément Praud
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Victor Ribay
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Arnab Dey
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Benoît Charrier
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Joris Mandral
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Jonathan Farjon
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | | | | |
Collapse
|
3
|
Dey A, Charrier B, Ribay V, Dumez JN, Giraudeau P. Hyperpolarized 1H and 13C NMR Spectroscopy in a Single Experiment for Metabolomics. Anal Chem 2023; 95:16861-16867. [PMID: 37947414 DOI: 10.1021/acs.analchem.3c02614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The application of NMR spectroscopy to complex mixture analysis and, in particular, to metabolomics is limited by the low sensitivity of NMR. We recently showed that dissolution dynamic nuclear polarization (d-DNP) could enhance the sensitivity of 13C NMR for complex metabolite mixtures, leading to the detection of highly sensitive 13C NMR fingerprints of complex samples such as plant extracts or urine. While such experiments provide heteronuclear spectra, which are complementary to conventional NMR, hyperpolarized 1H NMR spectra would also be highly useful, with improved limits of detection and compatibility with the existing metabolomics workflow and databases. In this technical note, we introduce an approach capable of recording both 1H and 13C hyperpolarized spectra of metabolite mixtures in a single experiment and on the same hyperpolarized sample. We investigate the analytical performance of this method in terms of sensitivity and repeatability, and then we show that it can be efficiently applied to a plant extract. Significant sensitivity enhancements in 1H NMR are reported with a repeatability suitable for metabolomics studies without compromising on the performance of hyperpolarized 13C NMR. This approach provides a way to perform both 1H and 13C hyperpolarized NMR metabolomics with unprecedented sensitivity and throughput.
Collapse
Affiliation(s)
- Arnab Dey
- Nantes Université, CEISAM UMR 6230, 44000 Nantes, France
| | | | - Victor Ribay
- Nantes Université, CEISAM UMR 6230, 44000 Nantes, France
| | | | | |
Collapse
|
4
|
Ribay V, Praud C, Letertre MPM, Dumez JN, Giraudeau P. Hyperpolarized NMR metabolomics. Curr Opin Chem Biol 2023; 74:102307. [PMID: 37094508 DOI: 10.1016/j.cbpa.2023.102307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023]
Abstract
Hyperpolarized NMR is a promising approach to address the sensitivity limits of conventional NMR metabolomics approaches, which currently fails to detect minute metabolite concentrations in biological samples. This review describes how tremendous signal enhancement offered by dissolution-dynamic nuclear polarization and parahydrogen-based techniques can be fully exploited for molecular omics sciences. Recent developments, including the combination of hyperpolarization techniques with fast multi-dimensional NMR implementation and quantitative workflows are described, and a comprehensive comparison of existing hyperpolarization techniques is proposed. High-throughput, sensitivity, resolution and other relevant challenges that should be tackled for a general application of hyperpolarized NMR in metabolomics are discussed.
Collapse
Affiliation(s)
- Victor Ribay
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Clément Praud
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | | | | | | |
Collapse
|
5
|
Affiliation(s)
- G. A. Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
6
|
Molecular and metabolic alterations of 2,3-dihydroquinazolin-4(1H)-one derivatives in prostate cancer cell lines. Sci Rep 2022; 12:21599. [PMID: 36517571 PMCID: PMC9751122 DOI: 10.1038/s41598-022-26148-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PC) is the second most common tumor in males worldwide. The lack of effective medication and the development of multidrug resistance towards current chemotherapeutic agents urge the need to discover novel compounds and therapeutic targets for PC. Herein, seven synthesized 2,3-dihydroquinazolin-4(1H)-one analogues were evaluated for their anticancer activity against PC3 and DU145 cancer cell lines using MTT, scratch-wound healing, adhesion and invasion assays. Besides, a liquid chromatography mass spectrometry (LC-MS)-based metabolomics approach was followed to identify the biochemical pathways altered in DU145 cancer cells upon exposure to dihydroquinazolin derivatives. The seven compounds showed sufficient cytotoxicity and significantly suppressed DU145 and PC3 migration after 48 and 72 h. C2 and C5 had the most potent effect with IC50 < 15 µM and significantly inhibited PC cell adhesion and invasion. Metabolomics revealed that C5 disturbed the level of metabolites involved in essential processes for cancer cell proliferation, progression and growth including energy production, redox homeostasis, amino acids and polyamine metabolisms and choline phospholipid metabolism. The data presented herein highlighted the importance of these compounds as potential anticancer agents particularly C5, and pointed to the promising role of metabolomics as a new analytical approach to investigate the antiproliferative activity of synthesized compounds and identify new therapeutic targets.
Collapse
|
7
|
Dey A, Charrier B, Lemaitre K, Ribay V, Eshchenko D, Schnell M, Melzi R, Stern Q, Cousin S, Kempf J, Jannin S, Dumez JN, Giraudeau P. Fine optimization of a dissolution dynamic nuclear polarization experimental setting for 13C NMR of metabolic samples. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:183-202. [PMID: 37904870 PMCID: PMC10583282 DOI: 10.5194/mr-3-183-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/16/2022] [Indexed: 11/01/2023]
Abstract
NMR-based analysis of metabolite mixtures provides crucial information on biological systems but mostly relies on 1D 1 H experiments for maximizing sensitivity. However, strong peak overlap of 1 H spectra often is a limitation for the analysis of inherently complex biological mixtures. Dissolution dynamic nuclear polarization (d-DNP) improves NMR sensitivity by several orders of magnitude, which enables 13 C NMR-based analysis of metabolites at natural abundance. We have recently demonstrated the successful introduction of d-DNP into a full untargeted metabolomics workflow applied to the study of plant metabolism. Here we describe the systematic optimization of d-DNP experimental settings for experiments at natural 13 C abundance and show how the resolution, sensitivity, and ultimately the number of detectable signals improve as a result. We have systematically optimized the parameters involved (in a semi-automated prototype d-DNP system, from sample preparation to signal detection, aiming at providing an optimization guide for potential users of such a system, who may not be experts in instrumental development). The optimization procedure makes it possible to detect previously inaccessible protonated 13 C signals of metabolites at natural abundance with at least 4 times improved line shape and a high repeatability compared to a previously reported d-DNP-enhanced untargeted metabolomic study. This extends the application scope of hyperpolarized 13 C NMR at natural abundance and paves the way to a more general use of DNP-hyperpolarized NMR in metabolomics studies.
Collapse
Affiliation(s)
- Arnab Dey
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Benoît Charrier
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Karine Lemaitre
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Victor Ribay
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Dmitry Eshchenko
- Bruker Biospin, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Marc Schnell
- Bruker Biospin, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Roberto Melzi
- Bruker Biospin, Viale V. Lancetti 43, 20158 Milan, Italy
| | - Quentin Stern
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1,
ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN), UMR5082,
69100 Villeurbanne, France
| | | | | | - Sami Jannin
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1,
ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN), UMR5082,
69100 Villeurbanne, France
| | | | | |
Collapse
|
8
|
Wishart DS, Cheng LL, Copié V, Edison AS, Eghbalnia HR, Hoch JC, Gouveia GJ, Pathmasiri W, Powers R, Schock TB, Sumner LW, Uchimiya M. NMR and Metabolomics-A Roadmap for the Future. Metabolites 2022; 12:678. [PMID: 35893244 PMCID: PMC9394421 DOI: 10.3390/metabo12080678] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Metabolomics investigates global metabolic alterations associated with chemical, biological, physiological, or pathological processes. These metabolic changes are measured with various analytical platforms including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). While LC-MS methods are becoming increasingly popular in the field of metabolomics (accounting for more than 70% of published metabolomics studies to date), there are considerable benefits and advantages to NMR-based methods for metabolomic studies. In fact, according to PubMed, more than 926 papers on NMR-based metabolomics were published in 2021-the most ever published in a given year. This suggests that NMR-based metabolomics continues to grow and has plenty to offer to the scientific community. This perspective outlines the growing applications of NMR in metabolomics, highlights several recent advances in NMR technologies for metabolomics, and provides a roadmap for future advancements.
Collapse
Affiliation(s)
- David S. Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Leo L. Cheng
- Department of Pathology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715, USA;
| | - Arthur S. Edison
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (A.S.E.); (G.J.G.); (M.U.)
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602-0001, USA
| | - Hamid R. Eghbalnia
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA; (H.R.E.); (J.C.H.)
| | - Jeffrey C. Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA; (H.R.E.); (J.C.H.)
| | - Goncalo J. Gouveia
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (A.S.E.); (G.J.G.); (M.U.)
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602-0001, USA
| | - Wimal Pathmasiri
- Nutrition Research Institute, Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Tracey B. Schock
- National Institute of Standards and Technology (NIST), Chemical Sciences Division, Charleston, SC 29412, USA;
| | - Lloyd W. Sumner
- Interdisciplinary Plant Group, MU Metabolomics Center, Bond Life Sciences Center, Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Mario Uchimiya
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (A.S.E.); (G.J.G.); (M.U.)
| |
Collapse
|
9
|
Yu H, Sang P, Huan T. Adaptive Box–Cox Transformation: A Highly Flexible Feature-Specific Data Transformation to Improve Metabolomic Data Normality for Better Statistical Analysis. Anal Chem 2022; 94:8267-8276. [DOI: 10.1021/acs.analchem.2c00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Huaxu Yu
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Peijun Sang
- Department of Statistics and Actuarial Science, Faculty of Mathematics, University of Waterloo, Waterloo, M3-200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Tao Huan
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
10
|
Dey A, Charrier B, Martineau E, Deborde C, Gandriau E, Moing A, Jacob D, Eshchenko D, Schnell M, Melzi R, Kurzbach D, Ceillier M, Chappuis Q, Cousin SF, Kempf JG, Jannin S, Dumez JN, Giraudeau P. Hyperpolarized NMR Metabolomics at Natural 13C Abundance. Anal Chem 2020; 92:14867-14871. [PMID: 33136383 PMCID: PMC7705890 DOI: 10.1021/acs.analchem.0c03510] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Metabolomics plays a pivotal role in systems biology, and NMR is a central tool with high precision and exceptional resolution of chemical information. Most NMR metabolomic studies are based on 1H 1D spectroscopy, severely limited by peak overlap. 13C NMR benefits from a larger signal dispersion but is barely used in metabolomics due to ca. 6000-fold lower sensitivity. We introduce a new approach, based on hyperpolarized 13C NMR at natural abundance, that circumvents this limitation. A new untargeted NMR-based metabolomic workflow based on dissolution dynamic nuclear polarization (d-DNP) for the first time enabled hyperpolarized natural abundance 13C metabolomics. Statistical analysis of resulting hyperpolarized 13C data distinguishes two groups of plant (tomato) extracts and highlights biomarkers, in full agreement with previous results on the same biological model. We also optimize parameters of the semiautomated d-DNP system suitable for high-throughput studies.
Collapse
Affiliation(s)
- Arnab Dey
- Université
de Nantes, CNRS, CEISAM UMR
6230, F-44000 Nantes, France
| | - Benoît Charrier
- Université
de Nantes, CNRS, CEISAM UMR
6230, F-44000 Nantes, France
| | - Estelle Martineau
- Université
de Nantes, CNRS, CEISAM UMR
6230, F-44000 Nantes, France
- SpectroMaitrise,
CAPACITES SAS, F-44000 Nantes, France
| | - Catherine Deborde
- INRAE,
Univ. Bordeaux, UMR Biologie du Fruit et Pathologie, Centre INRAE de Nouvelle Aquitaine-Bordeaux, F-33140 Villenave
d’Ornon, France
- Bordeaux
Metabolome, MetaboHUB, Centre INRAE de Nouvelle
Aquitaine-Bordeaux, F-33140 Villenave d’Ornon, France
| | - Elodie Gandriau
- Université
de Nantes, CNRS, CEISAM UMR
6230, F-44000 Nantes, France
| | - Annick Moing
- INRAE,
Univ. Bordeaux, UMR Biologie du Fruit et Pathologie, Centre INRAE de Nouvelle Aquitaine-Bordeaux, F-33140 Villenave
d’Ornon, France
- Bordeaux
Metabolome, MetaboHUB, Centre INRAE de Nouvelle
Aquitaine-Bordeaux, F-33140 Villenave d’Ornon, France
| | - Daniel Jacob
- INRAE,
Univ. Bordeaux, UMR Biologie du Fruit et Pathologie, Centre INRAE de Nouvelle Aquitaine-Bordeaux, F-33140 Villenave
d’Ornon, France
- Bordeaux
Metabolome, MetaboHUB, Centre INRAE de Nouvelle
Aquitaine-Bordeaux, F-33140 Villenave d’Ornon, France
| | - Dmitry Eshchenko
- Bruker
Biospin, Industriestrasse
26, 8117 Fällanden, Switzerland
| | - Marc Schnell
- Bruker
Biospin, Industriestrasse
26, 8117 Fällanden, Switzerland
| | | | - Dennis Kurzbach
- University
of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| | - Morgan Ceillier
- Université
de Lyon, CNRS, Université Claude
Bernard Lyon 1, ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN),
FRE 2034, F-69100 Villeurbanne, France
| | - Quentin Chappuis
- Université
de Lyon, CNRS, Université Claude
Bernard Lyon 1, ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN),
FRE 2034, F-69100 Villeurbanne, France
| | - Samuel F. Cousin
- Université
de Lyon, CNRS, Université Claude
Bernard Lyon 1, ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN),
FRE 2034, F-69100 Villeurbanne, France
| | - James G. Kempf
- Bruker
Biospin, 15 Fortune Dr., Billerica, Massachusetts 01821, United States
| | - Sami Jannin
- Université
de Lyon, CNRS, Université Claude
Bernard Lyon 1, ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN),
FRE 2034, F-69100 Villeurbanne, France
| | | | | |
Collapse
|