1
|
Singer R, Oganezova I, Hu W, Ding Y, Papaioannou A, de Groot HJM, Spaink HP, Alia A. Unveiling the Exquisite Microstructural Details in Zebrafish Brain Non-Invasively Using Magnetic Resonance Imaging at 28.2 T. Molecules 2024; 29:4637. [PMID: 39407567 PMCID: PMC11477492 DOI: 10.3390/molecules29194637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Zebrafish (Danio rerio) is an important animal model for a wide range of neurodegenerative diseases. However, obtaining the cellular resolution that is essential for studying the zebrafish brain remains challenging as it requires high spatial resolution and signal-to-noise ratios (SNR). In the current study, we present the first MRI results of the zebrafish brain at the state-of-the-art magnetic field strength of 28.2 T. The performance of MRI at 28.2 T was compared to 17.6 T. A 20% improvement in SNR was observed at 28.2 T as compared to 17.6 T. Excellent contrast, resolution, and SNR allowed the identification of several brain structures. The normative T1 and T2 relaxation values were established over different zebrafish brain structures at 28.2 T. To zoom into the white matter structures, we applied diffusion tensor imaging (DTI) and obtained axial, radial, and mean diffusivity, as well as fractional anisotropy, at a very high spatial resolution. Visualisation of white matter structures was achieved by short-track track-density imaging by applying the constrained spherical deconvolution method (stTDI CSD). For the first time, an algorithm for stTDI with multi-shell multi-tissue (msmt) CSD was tested on zebrafish brain data. A significant reduction in false-positive tracks from grey matter signals was observed compared to stTDI with single-shell single-tissue (ssst) CSD. This allowed the non-invasive identification of white matter structures at high resolution and contrast. Our results show that ultra-high field DTI and tractography provide reproducible and quantitative maps of fibre organisation from tiny zebrafish brains, which can be implemented in the future for a mechanistic understanding of disease-related microstructural changes in zebrafish models of various brain diseases.
Collapse
Affiliation(s)
- Rico Singer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (R.S.); (I.O.); (H.J.M.d.G.)
| | - Ina Oganezova
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (R.S.); (I.O.); (H.J.M.d.G.)
| | - Wanbin Hu
- Institute of Biology, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (W.H.); (Y.D.); (H.P.S.)
| | - Yi Ding
- Institute of Biology, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (W.H.); (Y.D.); (H.P.S.)
| | | | - Huub J. M. de Groot
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (R.S.); (I.O.); (H.J.M.d.G.)
| | - Herman P. Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (W.H.); (Y.D.); (H.P.S.)
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (R.S.); (I.O.); (H.J.M.d.G.)
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
2
|
Vazquez F, Villareal A, Lazovic J, Martin R, Solis-Najera SE, Rodriguez AO. RF coil that minimizes electronic components while enhancing performance for rodent MRI at 7 Tesla. Biomed Phys Eng Express 2024; 10:055040. [PMID: 39173647 DOI: 10.1088/2057-1976/ad7265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
This study introduces a novel volume coil design that features two slotted end-plates connected by six rungs, resembling the traditional birdcage coil. The end rings are equipped with six evenly distributed circular slots, inspired by Mansfield's cavity resonator theory, which suggests that circular slots can generate a baseline resonant frequency. One notable advantage of this proposed coil design is its reduced reliance on electronic components compared to other volume coils, making it more efficient. Additionally, the dimensions of the coil can be theoretically computed in advance, enhancing its practicality. To evaluate the performance and safety of the coil, electromagnetic field and specific absorption rate simulations were simulated using a cylindrical saline phantom and the finite element method. Furthermore, a transceiver coil prototype optimized for 7 Tesla and driven in quadrature was constructed, enabling whole-body imaging of rats. The resonant frequency of the coil prototype obtained through experimental measurements closely matched the theoretical frequency derived from Mansfield's theory. To validate the coil design, phantom images were acquired to demonstrate its viability and assess its performance. These images also served to validate the magnetic field simulations. The experimental results aligned well with the simulation findings, confirming the reliability of the proposed coil design. Importantly, the prototype coil showcased significant improvements over a similarly-sized birdcage coil, indicating its potential for enhanced performance. The noise figure was lower in the prototype versus the birdcage coil (NFbirdcage-NFslotcage= 0.7). Phantom image data were also used to compute the image SNR, giving SNRslotcage/SNRbirdcage= 34.36/24.34. By proving the feasibility of the coil design through successful rat whole-body imaging, the study provides evidence supporting its potential as a viable option for high-field MRI applications on rodents.
Collapse
Affiliation(s)
- F Vazquez
- Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CdMx 04510, Mexico
| | - A Villareal
- Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CdMx 04510, Mexico
| | - J Lazovic
- Department of Physical Intelligence, Max Planck Institute for Intelligence Systems, Stuttgart 70569, Germany
| | - R Martin
- Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CdMx 04510, Mexico
| | - S E Solis-Najera
- Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CdMx 04510, Mexico
| | - A O Rodriguez
- Department of Electrical Engineering, Universidad Autonoma Metropolitana Iztapalapa, CdMx 09340, Mexico
| |
Collapse
|
3
|
Sache A, Reymond P, Brina O, Jung B, Farhat M, Vargas MI. Near-wall hemodynamic parameters quantification in in vitro intracranial aneurysms with 7 T PC-MRI. MAGMA (NEW YORK, N.Y.) 2023; 36:295-308. [PMID: 37072539 PMCID: PMC10140017 DOI: 10.1007/s10334-023-01082-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVE Wall shear stress (WSS) and its derived spatiotemporal parameters have proven to play a major role on intracranial aneurysms (IAs) growth and rupture. This study aims to demonstrate how ultra-high field (UHF) 7 T phase contrast magnetic resonance imaging (PC-MRI) coupled with advanced image acceleration techniques allows a highly resolved visualization of near-wall hemodynamic parameters patterns in in vitro IAs, paving the way for more robust risk assessment of their growth and rupture. MATERIALS AND METHODS We performed pulsatile flow measurements inside three in vitro models of patient-specific IAs using 7 T PC-MRI. To this end, we built an MRI-compatible test bench, which faithfully reproduced a typical physiological intracranial flow rate in the models. RESULTS The ultra-high field 7 T images revealed WSS patterns with high spatiotemporal resolution. Interestingly, the high oscillatory shear index values were found in the core of low WSS vortical structures and in flow stream intersecting regions. In contrast, maxima of WSS occurred around the impinging jet sites. CONCLUSIONS We showed that the elevated signal-to-noise ratio arising from 7 T PC-MRI enabled to resolve high and low WSS patterns with a high degree of detail.
Collapse
Affiliation(s)
- Antoine Sache
- Department of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Philippe Reymond
- Division of Neuroradiology, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Olivier Brina
- Division of Neuroradiology, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Bernd Jung
- Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mohamed Farhat
- Department of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maria Isabel Vargas
- Division of Neuroradiology, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Yun J, Baldini M, Chowdhury R, Mukherjee A. Designing Protein-Based Probes for Sensing Biological Analytes with Magnetic Resonance Imaging. ANALYSIS & SENSING 2022; 2:e202200019. [PMID: 37409177 PMCID: PMC10321474 DOI: 10.1002/anse.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Genetically encoded sensors provide unique advantages for monitoring biological analytes with molecular and cellular-level specificity. While sensors derived from fluorescent proteins represent staple tools in biological imaging, these probes are limited to optically accessible preparations owing to physical curbs on light penetration. In contrast to optical methods, magnetic resonance imaging (MRI) may be used to noninvasively look inside intact organisms at any arbitrary depth and over large fields of view. These capabilities have spurred the development of innovative methods to connect MRI readouts with biological targets using protein-based probes that are in principle genetically encodable. Here, we highlight the state-of-the-art in MRI-based biomolecular sensors, focusing on their physical mechanisms, quantitative characteristics, and biological applications. We also describe how innovations in reporter gene technology are creating new opportunities to engineer MRI sensors that are sensitive to dilute biological targets.
Collapse
Affiliation(s)
- Jason Yun
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Michelle Baldini
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Rochishnu Chowdhury
- Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for BioEngineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
5
|
Lepucki P, Dioguardi AP, Karnaushenko D, Schmidt OG, Grafe HJ. The normalized limit of detection in NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 332:107077. [PMID: 34634649 DOI: 10.1016/j.jmr.2021.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
We derive the normalized limit of detection for frequency space (nLODf) as a parameter to measure the sensitivity of an NMR spectroscopy setup. nLODf is independent of measurement settings such as bandwidth or number of measurement points, and allows to compare performances of different setups. We demonstrate the usefulness of the new nLODf by comparing the sensitivity of NMR setups from various publications, which all use microcoils. Finally, we want to propose a standard measurement and report format for the sensitivity of new NMR setups.
Collapse
Affiliation(s)
- Piotr Lepucki
- IFW Dresden, Institut für Festkörperforschung, Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Adam P Dioguardi
- IFW Dresden, Institut für Festkörperforschung, Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Daniil Karnaushenko
- IFW Dresden, Institut für Integrative Nanowissenschaften, Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Oliver G Schmidt
- IFW Dresden, Institut für Integrative Nanowissenschaften, Helmholtzstraße 20, 01069 Dresden, Germany; TU Dresden, Nanophysik, Häckelstraße 3, 01069 Dresden, Germany; TU Chemnitz, Material Systems for Nanoelectronics, Straße der Nationen 62, 09111 Chemnitz, Germany.
| | - Hans-Joachim Grafe
- IFW Dresden, Institut für Festkörperforschung, Helmholtzstraße 20, 01069 Dresden, Germany.
| |
Collapse
|
6
|
|