1
|
Bydder M, Ali F, Condron P, Cornfeld DM, Newburn G, Kwon EE, Tayebi M, Scadeng M, Melzer TR, Holdsworth SJ, Bydder GM. Validation of an ultrahigh contrast divided subtracted inversion recovery technique using a standard T 1 phantom. NMR IN BIOMEDICINE 2024:e5269. [PMID: 39355971 DOI: 10.1002/nbm.5269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024]
Abstract
The divided subtracted inversion recovery (dSIR) is a high T1 contrast technique that shows changes in white matter in patients with traumatic brain injury and hypoxic injury. The changes can be explained by small differences in T1; however, to date, there has been no independent validation of the technique using a standard reference. The present study develops the theory of the dSIR signal and performs validation using the NIST/ISMRM T1 phantom. Non-idealities are explored, including the influence of noise bias and finite repetition time (TR), which leads to the introduction of an optimally efficient TR for inversion recovery acquisitions. Results show excellent agreement with theoretical calculations.
Collapse
Affiliation(s)
- Mark Bydder
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
| | - Fadil Ali
- Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paul Condron
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Department of Anatomy & Medical Imaging, Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Daniel M Cornfeld
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Department of Anatomy & Medical Imaging, Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Gil Newburn
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
| | - Eryn E Kwon
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Department of Anatomy & Medical Imaging, Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, Auckland, New Zealand
| | - Maryam Tayebi
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Department of Anatomy & Medical Imaging, Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Miriam Scadeng
- Department of Anatomy & Medical Imaging, Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, Auckland, New Zealand
| | - Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Samantha J Holdsworth
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Department of Anatomy & Medical Imaging, Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Graeme M Bydder
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Department of Radiology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
2
|
Lo J, Du K, Lee D, Zeng C, Athertya JS, Silva ML, Flechner R, Bydder GM, Ma Y. Multicompartment imaging of the brain using a comprehensive MR imaging protocol. Neuroimage 2024; 298:120800. [PMID: 39159704 DOI: 10.1016/j.neuroimage.2024.120800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Abstract
In this study, we describe a comprehensive 3D magnetic resonance imaging (MRI) protocol designed to assess major tissue and fluid components in the brain. The protocol comprises four different sequences: 1) magnetization transfer prepared Cones (MT-Cones) for two-pool MT modeling to quantify macromolecular content; 2) short-TR adiabatic inversion-recovery prepared Cones (STAIR-Cones) for myelin water imaging; 3) proton-density weighted Cones (PDw-Cones) for total water imaging; and 4) highly T2 weighted Cones (T2w-Cones) for free water imaging. By integrating these techniques, we successfully mapped key brain components-namely macromolecules, myelin water, intra/extracellular water, and free water-in ten healthy volunteers and five patients with multiple sclerosis (MS) using a 3T clinical scanner. Brain macromolecular proton fraction (MMPF), myelin water proton fraction (MWPF), intra/extracellular water proton fraction (IEWPF), and free water proton fraction (FWPF) values were generated in white matter (WM), grey matter (GM), and MS lesions. Excellent repeatability of the protocol was demonstrated with high intra-class correlation coefficient (ICC) values. In MS patients, the MMPF and MWPF values of the lesions and normal-appearing WM (NAWM) were significantly lower than those in normal WM (NWM) in healthy volunteers. Moreover, we observed significantly higher FWPF values in MS lesions compared to those in NWM and NAWM regions. This study demonstrates the capability of our technique to volumetrically map major brain components. The technique may have particular value in providing a comprehensive assessment of neuroinflammatory and neurodegenerative diseases of the brain.
Collapse
Affiliation(s)
- James Lo
- Department of Radiology, University of California, San Diego, CA, USA; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Kevin Du
- Department of Radiology, University of California, San Diego, CA, USA
| | - David Lee
- Department of Radiology, University of California, San Diego, CA, USA
| | - Chun Zeng
- Department of Radiology, University of California, San Diego, CA, USA
| | - Jiyo S Athertya
- Department of Radiology, University of California, San Diego, CA, USA
| | - Melissa Lou Silva
- Department of Radiology, University of California, San Diego, CA, USA
| | - Reese Flechner
- Department of Radiology, University of California, San Diego, CA, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA.
| |
Collapse
|
3
|
Hutchinson G, Thotland J, Pisharady PK, Garwood M, Lenglet C, Kauppinen RA. T1 relaxation and axon fibre configuration in human white matter. NMR IN BIOMEDICINE 2024:e5234. [PMID: 39097977 DOI: 10.1002/nbm.5234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Understanding the effects of white matter (WM) axon fibre microstructure on T1 relaxation is important for neuroimaging. Here, we have studied the interrelationship between T1 and axon fibre configurations at 3T and 7T. T1 and S0 (=signal intensity at zero TI) were computed from MP2RAGE images acquired with six inversion recovery times. Multishell diffusion MRI images were analysed for fractional anisotropy (FA); MD; V1; the volume fractions for the first (f1), second (f2) and third (f3) fibre configuration; and fibre density cross-section images for the first (fdc1), second (fdc2) and third (fdc3) fibres. T1 values were plotted as a function of FA, f1, f2, f3, fdc1, fdc2 and fdc3 to examine interrelationships between the longitudinal relaxation and the diffusion MRI microstructural measures. T1 values decreased with increasing FA, f1 and f2 in a nonlinear fashion. At low FA values (from 0.2 to 0.4), a steep shortening of T1 was followed by a shallow shortening by 6%-10% at both fields. The steep shortening was associated with decreasing S0 and MD. T1 also decreased with increasing fdc1 values in a nonlinear fashion. Instead, only a small T1 change as a function of either f3 or fdc3 was observed. In WM areas selected by fdc1 only masks, T1 was shorter than in those with fdc2/fdc3. In WM areas with high single fibre populations, as delineated by f1/fdc1 masks, T1 was shorter than in tissue with high complex fibre configurations, as segmented by f2/fdc2 or f3/fdc3 masks. T1 differences between these WM areas are attributable to combined effects by T1 anisotropy and lowered FA. The current data show strong interrelationships between T1, axon fibre configuration and orientation in healthy WM. It is concluded that diffusion MRI microstructural measures are essential in the effort to interpret quantitative T1 images in terms of tissue state in health and disease.
Collapse
Affiliation(s)
- Grace Hutchinson
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeromy Thotland
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pramod K Pisharady
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Risto A Kauppinen
- Department of Electric and Electronic Engineering, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Shin SH, Moazamian D, Suprana A, Zeng C, Athertya JS, Carl M, Ma Y, Jang H, Du J. Yet more evidence that non-aqueous myelin lipids can be directly imaged with ultrashort echo time (UTE) MRI on a clinical 3T scanner: a lyophilized red blood cell membrane lipid study. Neuroimage 2024; 296:120666. [PMID: 38830440 PMCID: PMC11380916 DOI: 10.1016/j.neuroimage.2024.120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
Direct imaging of semi-solid lipids, such as myelin, is of great interest as a noninvasive biomarker of neurodegenerative diseases. Yet, the short T2 relaxation times of semi-solid lipid protons hamper direct detection through conventional magnetic resonance imaging (MRI) pulse sequences. In this study, we examined whether a three-dimensional ultrashort echo time (3D UTE) sequence can directly acquire signals from membrane lipids. Membrane lipids from red blood cells (RBC) were collected from commercially available blood as a general model of the myelin lipid bilayer and subjected to D2O exchange and freeze-drying for complete water removal. Sufficiently high MR signals were detected with the 3D UTE sequence, which showed an ultrashort T2* of ∼77-271 µs and a short T1 of ∼189 ms for semi-solid RBC membrane lipids. These measurements can guide designing UTE-based sequences for direct in vivo imaging of membrane lipids.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Arya Suprana
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Chun Zeng
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Jiyo S Athertya
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | | | - Yajun Ma
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
5
|
Mao A, Flassbeck S, Marchetto E, Masurkar AV, Rusinek H, Assländer J. Sensitivity of unconstrained quantitative magnetization transfer MRI to Amyloid burden in preclinical Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.15.24305860. [PMID: 38699343 PMCID: PMC11065014 DOI: 10.1101/2024.04.15.24305860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Magnetization transfer MRI is sensitive to semi-solid macromolecules, including amyloid beta, and has previously been used to discriminate Alzheimer's disease (AD) patients from controls. Here, we fit an unconstrained 2-pool quantitative MT (qMT) model, i.e., without constraints on the longitudinal relaxation rateR 1 s of semi-solids, and investigate the sensitivity of the estimated parameters to amyloid accumulation in preclinical subjects. We scanned 15 cognitively normal volunteers, of which 9 were amyloid positive by [18F]Florbetaben PET. A 12 min hybrid-state qMT scan with an effective resolution of 1.24 mm isotropic and whole-brain coverage was acquired to estimate the unconstrained 2-pool qMT parameters. Group comparisons and correlations with Florbetaben PET standardized uptake value ratios were analyzed at the lobar level. We find that the exchange rate and semi-solid pool'sR 1 s were sensitive to the amyloid concentration, while morphometric measures of cortical thickness derived from structural MRI were not. Changes in the exchange rate are consistent with previous reports in clinical AD, while changes inR 1 s have not been reported previously as its value is typically constrained in the literature. Our results demonstrate that qMT MRI may be a promising surrogate marker of amyloid beta without the need for contrast agents or radiotracers.
Collapse
Affiliation(s)
- Andrew Mao
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, USA
| | - Sebastian Flassbeck
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elisa Marchetto
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Arjun V. Masurkar
- Alzheimer’s Disease Research Center, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Henry Rusinek
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Alzheimer’s Disease Research Center, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Jakob Assländer
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Wallstein N, Pampel A, Jäger C, Müller R, Möller HE. Anisotropic longitudinal water proton relaxation in white matter investigated ex vivo in porcine spinal cord with sample rotation. Sci Rep 2024; 14:12961. [PMID: 38839823 PMCID: PMC11153615 DOI: 10.1038/s41598-024-63483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
A variation of the longitudinal relaxation time T 1 in brain regions that differ in their main fiber direction has been occasionally reported, however, with inconsistent results. Goal of the present study was to clarify such inconsistencies, and the origin of potential T 1 orientation dependence, by applying direct sample rotation and comparing the results from different approaches to measure T 1 . A section of fixed porcine spinal cord white matter was investigated at 3 T with variation of the fiber-to-field angle θ FB . The experiments included one-dimensional inversion-recovery, MP2RAGE, and variable flip-angle T 1 measurements at 22 °C and 36 °C as well as magnetization-transfer (MT) and diffusion-weighted acquisitions. Depending on the technique, different degrees of T 1 anisotropy (between 2 and 10%) were observed as well as different dependencies on θ FB (monotonic variation or T 1 maximum at 30-40°). More pronounced anisotropy was obtained with techniques that are more sensitive to MT effects. Furthermore, strong correlations of θ FB -dependent MT saturation and T 1 were found. A comprehensive analysis based on the binary spin-bath model for MT revealed an interplay of several orientation-dependent parameters, including the transverse relaxation times of the macromolecular and the water pool as well as the longitudinal relaxation time of the macromolecular pool.
Collapse
Affiliation(s)
- Niklas Wallstein
- NMR Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - André Pampel
- NMR Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Carsten Jäger
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Paul Flechsig Institute-Center of Neuropathology and Brain Research, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Roland Müller
- NMR Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Harald E Möller
- NMR Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Leipzig University, Leipzig, Germany
| |
Collapse
|
7
|
Yablonskiy DA, Sukstanskii AL. Quantum dipole interactions and transient hydrogen bond orientation order in cells, cellular membranes and myelin sheath: Implications for MRI signal relaxation, anisotropy, and T 1 magnetic field dependence. Magn Reson Med 2024; 91:2597-2611. [PMID: 38241135 PMCID: PMC10997466 DOI: 10.1002/mrm.29996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024]
Abstract
PURPOSE Despite significant impact on the study of human brain, MRI lacks a theory of signal formation that integrates quantum interactions involving proton dipoles (a primary MRI signal source) with brain intricate cellular environment. The purpose of the present study is developing such a theory. METHODS We introduce the Transient Hydrogen Bond (THB) model, where THB-mediated quantum dipole interactions between water and protons of hydrophilic heads of amphipathic biomolecules forming cells, cellular membranes and myelin sheath serve as a major source of MR signal relaxation. RESULTS The THB theory predicts the existence of a hydrogen-bond-driven structural order of dipole-dipole connections within THBs as a primary factor for the anisotropy observed in MRI signal relaxation. We have also demonstrated that the conventional Lorentzian spectral density function decreases too fast at high frequencies to adequately capture the field dependence of brain MRI signal relaxation. To bridge this gap, we introduced a stretched spectral density function that surpasses the limitations of Lorentzian dispersion. In human brain, our findings reveal that at any time point only about 4% to 7% of water protons are engaged in quantum encounters within THBs. These ultra-short (2 to 3 ns), but frequent quantum spin exchanges lead to gradual recovery of magnetization toward thermodynamic equilibrium, that is, relaxation of MRI signal. CONCLUSION By incorporating quantum proton interactions involved in brain imaging, the THB approach introduces new insights on the complex relationship between brain tissue cellular structure and MRI measurements, thus offering a promising new tool for better understanding of brain microstructure in health and disease.
Collapse
Affiliation(s)
- Dmitriy A. Yablonskiy
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave. Room 3216, St. Louis MO, 63110
- Hope Center for Neurological Disorder, 660 S. Euclid Ave., St. Louis, Missouri 63110
- Knight Alzheimer Disease Research Center, 4488 Forest Park Ave., St. Louis, MO 63108
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130
| | - Alexander L. Sukstanskii
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave. Room 3216, St. Louis MO, 63110
| |
Collapse
|
8
|
Johnson JTE, Irfanoglu MO, Manninen E, Ross TJ, Yang Y, Laun FB, Martin J, Topgaard D, Benjamini D. In vivo disentanglement of diffusion frequency-dependence, tensor shape, and relaxation using multidimensional MRI. Hum Brain Mapp 2024; 45:e26697. [PMID: 38726888 PMCID: PMC11082920 DOI: 10.1002/hbm.26697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients. This framework probes the diffusion frequency,ω $$ \omega $$ , in addition to the diffusion tensor,D $$ \mathbf{D} $$ , and relaxation,R 1 $$ {R}_1 $$ ,R 2 $$ {R}_2 $$ , correlations. AD ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ clinical imaging protocol was then introduced, with limited brain coverage and 3 mm3 voxel size, which hinder brain segmentation and future cohort studies. In this study, we introduce an efficient, sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2 mm3 voxel size. We demonstrate its feasibility and robustness using a well-defined phantom and repeated scans of five healthy individuals. Additionally, we test different denoising strategies to address the sparse nature of this protocol, and show that efficient MD-MRI encoding design demands a nuanced denoising approach. The MD-MRI framework provides rich information that allows resolving the diffusion frequency dependence into intravoxel components based on theirD ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ distribution, enabling the creation of microstructure-specific maps in the human brain. Our results encourage the broader adoption and use of this new imaging approach for characterizing healthy and pathological tissues.
Collapse
Affiliation(s)
- Jessica T. E. Johnson
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIHBaltimoreMarylandUSA
| | - M. Okan Irfanoglu
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of HealthBethesdaMarylandUSA
| | - Eppu Manninen
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIHBaltimoreMarylandUSA
| | - Thomas J. Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of HealthBaltimoreMarylandUSA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of HealthBaltimoreMarylandUSA
| | - Frederik B. Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Jan Martin
- Department of ChemistryLund UniversityLundSweden
| | | | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIHBaltimoreMarylandUSA
| |
Collapse
|
9
|
Assländer J, Gultekin C, Mao A, Zhang X, Duchemin Q, Liu K, Charlson RW, Shepherd TM, Fernandez-Granda C, Flassbeck S. Rapid quantitative magnetization transfer imaging: Utilizing the hybrid state and the generalized Bloch model. Magn Reson Med 2024; 91:1478-1497. [PMID: 38073093 DOI: 10.1002/mrm.29951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE To explore efficient encoding schemes for quantitative magnetization transfer (qMT) imaging with few constraints on model parameters. THEORY AND METHODS We combine two recently proposed models in a Bloch-McConnell equation: the dynamics of the free spin pool are confined to the hybrid state, and the dynamics of the semi-solid spin pool are described by the generalized Bloch model. We numerically optimize the flip angles and durations of a train of radio frequency pulses to enhance the encoding of three qMT parameters while accounting for all eight parameters of the two-pool model. We sparsely sample each time frame along this spin dynamics with a three-dimensional radial koosh-ball trajectory, reconstruct the data with subspace modeling, and fit the qMT model with a neural network for computational efficiency. RESULTS We extracted qMT parameter maps of the whole brain with an effective resolution of 1.24 mm from a 12.6-min scan. In lesions of multiple sclerosis subjects, we observe a decreased size of the semi-solid spin pool and longer relaxation times, consistent with previous reports. CONCLUSION The encoding power of the hybrid state, combined with regularized image reconstruction, and the accuracy of the generalized Bloch model provide an excellent basis for efficient quantitative magnetization transfer imaging with few constraints on model parameters.
Collapse
Affiliation(s)
- Jakob Assländer
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Cem Gultekin
- Courant Institute of Mathematical Sciences, New York University, New York, New York, USA
| | - Andrew Mao
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, New York, USA
| | - Xiaoxia Zhang
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Quentin Duchemin
- Laboratoire d'analyse et de mathématiques appliquées, Université Gustave Eiffel, Champs-sur-Marne, France
| | - Kangning Liu
- Center for Data Science, New York University, New York, New York, USA
| | - Robert W Charlson
- Department of Neurology, NYU School of Medicine, New York, New York, USA
| | - Timothy M Shepherd
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Carlos Fernandez-Granda
- Courant Institute of Mathematical Sciences, New York University, New York, New York, USA
- Center for Data Science, New York University, New York, New York, USA
| | - Sebastian Flassbeck
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
10
|
Jang A, Han PK, Ma C, El Fakhri G, Wang N, Samsonov A, Liu F. B 1 inhomogeneity-corrected T 1 mapping and quantitative magnetization transfer imaging via simultaneously estimating Bloch-Siegert shift and magnetization transfer effects. Magn Reson Med 2023; 90:1859-1873. [PMID: 37427533 PMCID: PMC10528411 DOI: 10.1002/mrm.29778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE To introduce a method of inducing Bloch-Siegert shift and magnetization Transfer Simultaneously (BTS) and demonstrate its utilization for measuring binary spin-bath model parameters free pool spin-lattice relaxation (T 1 F $$ {T}_1^{\mathrm{F}} $$ ), macromolecular fraction (f $$ f $$ ), magnetization exchange rate (k F $$ {k}_{\mathrm{F}} $$ ) and local transmit field (B 1 + $$ {B}_1^{+} $$ ). THEORY AND METHODS Bloch-Siegert shift and magnetization transfer is simultaneously induced through the application of off-resonance irradiation in between excitation and acquisition of an RF-spoiled gradient-echo scheme. Applying the binary spin-bath model, an analytical signal equation is derived and verified through Bloch simulations. Monte Carlo simulations were performed to analyze the method's performance. The estimation of the binary spin-bath parameters withB 1 + $$ {B}_1^{+} $$ compensation was further investigated through experiments, both ex vivo and in vivo. RESULTS Comparing BTS with existing methods, simulations showed that existing methods can significantly biasT 1 $$ {T}_1 $$ estimation when not accounting for transmitB 1 $$ {B}_1 $$ heterogeneity and MT effects that are present. Phantom experiments further showed that the degree of this bias increases with increasing macromolecular proton fraction. Multi-parameter fit results from an in vivo brain study generated values in agreement with previous literature. Based on these studies, we confirmed that BTS is a robust method for estimating the binary spin-bath parameters in macromolecule-rich environments, even in the presence ofB 1 + $$ {B}_1^{+} $$ inhomogeneity. CONCLUSION A method of estimating Bloch-Siegert shift and magnetization transfer effect has been developed and validated. Both simulations and experiments confirmed that BTS can estimate spin-bath parameters (T 1 F $$ {T}_1^{\mathrm{F}} $$ ,f $$ f $$ ,k F $$ {k}_{\mathrm{F}} $$ ) that are free fromB 1 + $$ {B}_1^{+} $$ bias.
Collapse
Affiliation(s)
- Albert Jang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Paul K Han
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Nian Wang
- Indiana University, Indianapolis, Indiana, United States
| | | | - Fang Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
11
|
Rowley CD, Campbell JSW, Leppert IR, Nelson MC, Pike GB, Tardif CL. Optimization of acquisition parameters for cortical inhomogeneous magnetization transfer (ihMT) imaging using a rapid gradient echo readout. Magn Reson Med 2023; 90:1762-1775. [PMID: 37332194 DOI: 10.1002/mrm.29754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
PURPOSE Imaging biomarkers with increased myelin specificity are needed to better understand the complex progression of neurological disorders. Inhomogeneous magnetization transfer (ihMT) imaging is an emergent technique that has a high degree of specificity for myelin content but suffers from low signal to-noise ratio (SNR). This study used simulations to determine optimal sequence parameters for ihMT imaging for use in high-resolution cortical mapping. METHODS MT-weighted cortical image intensity and ihMT SNR were simulated using modified Bloch equations for a range of sequence parameters. The acquisition time was limited to 4.5 min/volume. A custom MT-weighted RAGE sequence with center-out k-space encoding was used to enhance SNR at 3 T. Pulsed MT imaging was studied over a range of saturation parameters, and the impact of the turbo factor on the effective ihMT resolution was investigated. 1 mm isotropic ihMTsat maps were generated in 25 healthy adults. RESULTS Greater SNR was observed for larger number of bursts consisting of 6-8 saturation pulses each, combined with a high readout turbo factor. However, that protocol suffered from a point spread function that was more than twice the nominal resolution. For high-resolution cortical imaging, we selected a protocol with a higher effective resolution at the cost of a lower SNR. We present the first group-average ihMTsat whole-brain map at 1 mm isotropic resolution. CONCLUSION This study presents the impact of saturation and excitation parameters on ihMTsat SNR and resolution. We demonstrate the feasibility of high-resolution cortical myelin imaging using ihMTsat in less than 20 min.
Collapse
Affiliation(s)
- Christopher D Rowley
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Jennifer S W Campbell
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Ilana R Leppert
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Mark C Nelson
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | - G Bruce Pike
- Hotchkiss Brain Institute and Departments of Radiology and Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christine L Tardif
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Québec, Canada
| |
Collapse
|
12
|
Johnson JT, Irfanoglu MO, Manninen E, Ross TJ, Yang Y, Laun FB, Martin J, Topgaard D, Benjamini D. In vivo disentanglement of diffusion frequency-dependence, tensor shape, and relaxation using multidimensional MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561702. [PMID: 37987005 PMCID: PMC10659440 DOI: 10.1101/2023.10.10.561702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients. This framework probes the diffusion frequency, ω , in addition to the diffusion tensor, D , and relaxation, R 1 , R 2 , correlations. A D ( ω ) - R 1 - R 2 clinical imaging protocol was then introduced, with limited brain coverage and 3 mm3 voxel size, which hinder brain segmentation and future cohort studies. In this study, we introduce an efficient, sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2 mm3 voxel size. We demonstrate its feasibility and robustness using a well-defined phantom and repeated scans of five healthy individuals. Additionally, we test different denoising strategies to address the sparse nature of this protocol, and show that efficient MD-MRI encoding design demands a nuanced denoising approach. The MD-MRI framework provides rich information that allows resolving the diffusion frequency dependence into intravoxel components based on their D ( ω ) - R 1 - R 2 distribution, enabling the creation of microstructure-specific maps in the human brain. Our results encourage the broader adoption and use of this new imaging approach for characterizing healthy and pathological tissues.
Collapse
Affiliation(s)
- Jessica T.E. Johnson
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - M. Okan Irfanoglu
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Eppu Manninen
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Thomas J. Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Frederik B. Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan Martin
- Department of Chemistry, Lund University, Lund, Sweden
| | | | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
13
|
Baadsvik EL, Weiger M, Froidevaux R, Faigle W, Ineichen BV, Pruessmann KP. Quantitative magnetic resonance mapping of the myelin bilayer reflects pathology in multiple sclerosis brain tissue. SCIENCE ADVANCES 2023; 9:eadi0611. [PMID: 37566661 PMCID: PMC10421026 DOI: 10.1126/sciadv.adi0611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/07/2023] [Indexed: 08/13/2023]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease characterized by loss of myelin (demyelination) and, to a certain extent, subsequent myelin repair (remyelination). To better understand the pathomechanisms underlying de- and remyelination and to monitor the efficacy of treatments aimed at regenerating myelin, techniques offering noninvasive visualizations of myelin are warranted. Magnetic resonance (MR) imaging has long been at the forefront of efforts to visualize myelin, but it has only recently become feasible to access the rapidly decaying resonance signals stemming from the myelin lipid-protein bilayer itself. Here, we show that direct MR mapping of the bilayer yields highly specific myelin maps in brain tissue from patients with MS. Furthermore, examination of the bilayer signal behavior is found to reveal pathological alterations in normal-appearing white and gray matter. These results indicate promise for in vivo implementations of the myelin bilayer mapping technique, with prospective applications in basic research, diagnostics, disease monitoring, and drug development.
Collapse
Affiliation(s)
- Emily Louise Baadsvik
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Markus Weiger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Romain Froidevaux
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and MS Research Section, Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
- Institut Curie, Immunity and Cancer Unit 932, Paris, France
| | - Benjamin V. Ineichen
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland
| | - Klaas P. Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Alsop DC, Ercan E, Girard OM, Mackay AL, Michal CA, Varma G, Vinogradov E, Duhamel G. Inhomogeneous magnetization transfer imaging: Concepts and directions for further development. NMR IN BIOMEDICINE 2023; 36:e4808. [PMID: 35916067 DOI: 10.1002/nbm.4808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 05/23/2023]
Abstract
Off-resonance radio frequency irradiation can induce the ordering of proton spins in the dipolar fields of their neighbors, in molecules with restricted mobility. This dipolar order decays with a characteristic relaxation time, T1D , that is very different from the T1 and T2 relaxation of the nuclear alignment with the main magnetic field. Inhomogeneous magnetization transfer (ihMT) imaging is a refinement of magnetization transfer (MT) imaging that isolates the MT signal dependence on dipolar order relaxation times within motion-constrained molecules. Because T1D relaxation is a unique contrast mechanism, ihMT may enable improved characterization of tissue. Initial work has stressed the high correlation between ihMT signal and myelin density. Dipolar order relaxation appears to be much longer in membrane lipids than other molecules. Recent work has shown, however, that ihMT acquisitions may also be adjusted to emphasize different ranges of T1D . These newer approaches may be sensitive to other microstructural components of tissue. Here, we review the concepts and history of ihMT and outline the requirements for further development to realize its full potential.
Collapse
Affiliation(s)
- David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ece Ercan
- MR Clinical Science, Philips, Best, The Netherlands
| | | | - Alex L Mackay
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carl A Michal
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gopal Varma
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Elena Vinogradov
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
15
|
Soustelle L, Troalen T, Hertanu A, Ranjeva JP, Guye M, Varma G, Alsop DC, Duhamel G, Girard OM. Quantitative magnetization transfer MRI unbiased by on-resonance saturation and dipolar order contributions. Magn Reson Med 2023. [PMID: 37154400 DOI: 10.1002/mrm.29678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE To demonstrate the bias in quantitative MT (qMT) measures introduced by the presence of dipolar order and on-resonance saturation (ONRS) effects using magnetization transfer (MT) spoiled gradient-recalled (SPGR) acquisitions, and propose changes to the acquisition and analysis strategies to remove these biases. METHODS The proposed framework consists of SPGR sequences prepared with simultaneous dual-offset frequency-saturation pulses to cancel out dipolar order and associated relaxation (T1D ) effects in Z-spectrum acquisitions, and a matched quantitative MT (qMT) mathematical model that includes ONRS effects of readout pulses. Variable flip angle and MT data were fitted jointly to simultaneously estimate qMT parameters (macromolecular proton fraction [MPF], T2,f , T2,b , R, and free pool T1 ). This framework is compared with standard qMT and investigated in terms of reproducibility, and then further developed to follow a joint single-point qMT methodology for combined estimation of MPF and T1 . RESULTS Bland-Altman analyses demonstrated a systematic underestimation of MPF (-2.5% and -1.3%, on average, in white and gray matter, respectively) and overestimation of T1 (47.1 ms and 38.6 ms, on average, in white and gray matter, respectively) if both ONRS and dipolar order effects are ignored. Reproducibility of the proposed framework is excellent (ΔMPF = -0.03% and ΔT1 = -19.0 ms). The single-point methodology yielded consistent MPF and T1 values with respective maximum relative average bias of -0.15% and -3.5 ms found in white matter. CONCLUSION The influence of acquisition strategy and matched mathematical model with regard to ONRS and dipolar order effects in qMT-SPGR frameworks has been investigated. The proposed framework holds promise for improved accuracy with reproducibility.
Collapse
Affiliation(s)
- Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | | | - Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Gopal Varma
- Division of MR Research, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
16
|
Reynolds LA, Morris SR, Vavasour IM, Barlow L, Laule C, MacKay AL, Michal CA. Nonaqueous magnetization following adiabatic and selective pulses in brain: T1 and cross-relaxation dynamics. NMR IN BIOMEDICINE 2023:e4936. [PMID: 36973767 DOI: 10.1002/nbm.4936] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Inversion pulses are commonly employed in MRI for T 1 $$ {T}_1 $$ -weighted contrast and relaxation measurements. In the brain, it is often assumed that adiabatic pulses saturate the nonaqueous magnetization. We investigated this assumption using solid-state NMR to monitor the nonaqueous signal directly following adiabatic inversion and compared this with signals following hard and soft inversion pulses. The effects of the different preparations on relaxation dynamics were explored. Inversion recovery experiments were performed on ex vivo bovine and porcine brains using 360-MHz (8.4 T) and 200-MHz (4.7 T) NMR spectrometers, respectively, using broadband rectangular, adiabatic, and sinc inversion pulses as well as a long rectangular saturation pulse. Analogous human brain MRI experiments were performed at 3 T using single-slice echo-planar imaging. Relaxation data were fitted by mono- and biexponential decay models. Further fitting analysis was performed using only two inversion delay times. Adiabatic and sinc inversion left much of the nonaqueous magnetization along B 0 $$ {B}_0 $$ and resulted in biexponential relaxation. Saturation of both aqueous and nonaqueous magnetization components led to effectively monoexponential T 1 $$ {T}_1 $$ relaxation. Typical adiabatic inversion pulses do not, as has been widely assumed, saturate the nonaqueous proton magnetization in white matter. Unequal magnetization states in aqueous and nonaqueous 1 H reservoirs prepared by soft and adiabatic pulses result in biexponential T 1 $$ {T}_1 $$ relaxation. Both pools must be prepared in the same magnetization state (e.g., saturated or inverted) in order to observe consistent monoexponential relaxation.
Collapse
Affiliation(s)
- Luke A Reynolds
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Sarah R Morris
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, Blusson Spinal Cord Centre, University of British Columbia, Vancouver, BC, Canada
| | - Irene M Vavasour
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, Blusson Spinal Cord Centre, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Laura Barlow
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cornelia Laule
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, Blusson Spinal Cord Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alex L MacKay
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Carl A Michal
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
High-resolution magnetization-transfer imaging of post-mortem marmoset brain: Comparisons with relaxometry and histology. Neuroimage 2023; 268:119860. [PMID: 36610679 DOI: 10.1016/j.neuroimage.2023.119860] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Cell membranes and macromolecules or paramagnetic compounds interact with water proton spins, which modulates magnetic resonance imaging (MRI) contrast providing information on tissue composition. For a further investigation, quantitative magnetization transfer (qMT) parameters (at 3T), including the ratio of the macromolecular and water proton pools, F, and the exchange-rate constant as well as the (observed) longitudinal and the effective transverse relaxation rates (at 3T and 7T), R1obs and R2*, respectively, were measured at high spatial resolution (200 µm) in a slice of fixed marmoset brain and compared to histology results obtained with Gallyas' myelin stain and Perls' iron stain. R1obs and R2* were linearly correlated with the iron content for the entire slice, whereas distinct differences were obtained between gray and white matter for correlations of relaxometry and qMT parameters with myelin content. The combined results suggest that the macromolecular pool interacting with water consists of myelin and (less efficient) non-myelin contributions. Despite strong correlation of F and R1obs, none of these parameters was uniquely specific to myelination. Due to additional sensitivity to iron stores, R1obs and R2* were more sensitive for depicting microstructural differences between cortical layers than F.
Collapse
|
18
|
Baadsvik EL, Weiger M, Froidevaux R, Faigle W, Ineichen BV, Pruessmann KP. Mapping the myelin bilayer with short-T 2 MRI: Methods validation and reference data for healthy human brain. Magn Reson Med 2023; 89:665-677. [PMID: 36253953 PMCID: PMC10091754 DOI: 10.1002/mrm.29481] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To explore the properties of short-T2 signals in human brain, investigate the impact of various experimental procedures on these properties and evaluate the performance of three-component analysis. METHODS Eight samples of non-pathological human brain tissue were subjected to different combinations of experimental procedures including D2 O exchange and frozen storage. Short-T2 imaging techniques were employed to acquire multi-TE (33-2067 μs) data, to which a three-component complex model was fitted in two steps to recover the properties of the underlying signal components and produce amplitude maps of each component. For validation of the component amplitude maps, the samples underwent immunohistochemical myelin staining. RESULTS The signal component representing the myelin bilayer exhibited super-exponential decay with T2,min of 5.48 μs and a chemical shift of 1.07 ppm, and its amplitude could be successfully mapped in both white and gray matter in all samples. These myelin maps corresponded well to myelin-stained tissue sections. Gray matter signals exhibited somewhat different components than white matter signals, but both tissue types were well represented by the signal model. Frozen tissue storage did not alter the signal components but influenced component amplitudes. D2 O exchange was necessary to characterize the non-aqueous signal components, but component amplitude mapping could be reliably performed also in the presence of H2 O signals. CONCLUSIONS The myelin mapping approach explored here produced reasonable and stable results for all samples. The extensive tissue and methodological investigations performed in this work form a basis for signal interpretation in future studies both ex vivo and in vivo.
Collapse
Affiliation(s)
- Emily Louise Baadsvik
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Markus Weiger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Romain Froidevaux
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and MS Research Section, Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Benjamin Victor Ineichen
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Kauppinen RA, Thotland J, Pisharady PK, Lenglet C, Garwood M. White matter microstructure and longitudinal relaxation time anisotropy in human brain at 3 and 7 T. NMR IN BIOMEDICINE 2023; 36:e4815. [PMID: 35994269 PMCID: PMC9742158 DOI: 10.1002/nbm.4815] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 05/22/2023]
Abstract
A high degree of structural order by white matter (WM) fibre tracts creates a physicochemical environment where water relaxations are rendered anisotropic. Recently, angularly dependent longitudinal relaxation has been reported in human WM. We have characterised interrelationships between T1 relaxation and diffusion MRI microstructural indices at 3 and 7 T. Eleven volunteers consented to participate in the study. Multishell diffusion MR images were acquired with b-values of 0/1500/3000 and 0/1000/2000 s/mm2 at 1.5 and 1.05 mm3 isotropic resolutions at 3 and 7 T, respectively. DTIFIT was used to compute DTI indices; the fibre-to-field angle (θFB ) maps were obtained using the principal eigenvector images. The orientations and volume fractions of multiple fibre populations were estimated using BedpostX in FSL, and the orientation dispersion index (ODI) was estimated using the NODDI protocol. MP2RAGE was used to acquire images for T1 maps at 1.0 and 0.9 mm3 isotropic resolutions at 3 and 7 T, respectively. At 3 T, T1 as a function of θFB in WM with high fractional anisotropy and one-fibre orientation volume fraction or low ODI shows a broad peak centred at 50o , but a flat baseline at 0o and 90o . The broad peak amounted up to 7% of the mean T1. At 7 T, the broad peak appeared at 40o and T1 in fibres running parallel to B0 was longer by up to 75 ms (8.3% of the mean T1) than in those perpendicular to the field. The peak at 40o was approximately 5% of mean T1 (i.e., proportionally smaller than that at 54o at 3 T). The data demonstrate T1 anisotropy in WM with high microstructural order at both fields. The angular patterns are indicative of the B0-dependency of T1 anisotropy. Thus myelinated WM fibres influence T1 contrast both by acting as a T1 contrast agent and rendering T1 dependent on fibre orientation with B0.
Collapse
Affiliation(s)
- Risto A. Kauppinen
- Department of Electric and Electronic EngineeringUniversity of BristolBristolUK
| | - Jeromy Thotland
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Pramod K. Pisharady
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Christophe Lenglet
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Michael Garwood
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
20
|
Inhomogeneous Magnetization Transfer (ihMT) imaging in the acute cuprizone mouse model of demyelination/remyelination. Neuroimage 2023; 265:119785. [PMID: 36464096 DOI: 10.1016/j.neuroimage.2022.119785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND To investigate the association of ihMT (inhom signals with the demyelination and remyelination phases of the acute cuprizone mouse model in comparison with histology, and to assess the extent of tissue damage and repair from MRI data. METHODS Acute demyelination by feeding 0.2% cuprizone for five weeks, followed by a four-week remyelination period was applied on genetically modified plp-GFP mice. Animals were scanned at different time points of the demyelination and remyelination phases of the cuprizone model using a multimodal MRI protocol, including ihMT T1D-filters, MPF (Macromolecular Proton Fraction) and R1 (longitudinal relaxation rate). For histology, plp-GFP (proteolipid protein - Green Fluorescent Protein) microscopy and LFB (Luxol Fast Blue) staining were employed as references for the myelin content. Comparison of MRI with histology was performed in the medial corpus callosum (mCC) and cerebral cortex (CTX) at two brain levels whereas ROI-wise and voxel-based analyses of the MRI metrics allowed investigating in vivo the spatial extent of myelin alterations. RESULTS IhMT high-pass T1D-filters, targeted toward long T1D components, showed significant temporal variations in the mCC consistent with the effects induced by the cuprizone toxin. In addition, the corresponding signals correlated strongly and significantly with the myelin content assessed by GFP fluorescence and LFB staining over the demyelination and the remyelination phases. The signal of the band-pass T1D-filter, which isolates short T1D components, showed changes over time that were poorly correlated with histology, hence suggesting a sensitivity to pathological processes possibly not related to myelin. Although MPF was also highly correlated to histology, ihMT high-pass T1D-filters showed better capability to characterize the spatial-temporal patterns during the demyelination and remyelination phases of the acute cuprizone model (e.g., rostro-caudal gradient of demyelination in the mCC previously described in the literature). CONCLUSIONS IhMT sequences selective for long T1D components are specific and sensitive in vivo markers of demyelination and remyelination and have successfully captured the spatially heterogeneous pattern of the demyelination and remyelination mechanisms in the cuprizone model. Interestingly, differences in signal variations between the ihMT high-pass and band-pass T1D-filter, suggest a sensitivity of the ihMT sequences targeted to short T1Ds to alterations other than those of myelin. Future studies will need to further address these differences by examining more closely the origin of the short T1D components and the variation of each T1D component in pathology.
Collapse
|
21
|
Jara H, Sakai O, Farrher E, Oros-Peusquens AM, Shah NJ, Alsop DC, Keenan KE. Primary Multiparametric Quantitative Brain MRI: State-of-the-Art Relaxometric and Proton Density Mapping Techniques. Radiology 2022; 305:5-18. [PMID: 36040334 PMCID: PMC9524578 DOI: 10.1148/radiol.211519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 05/01/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
This review on brain multiparametric quantitative MRI (MP-qMRI) focuses on the primary subset of quantitative MRI (qMRI) parameters that represent the mobile ("free") and bound ("motion-restricted") proton pools. Such primary parameters are the proton densities, relaxation times, and magnetization transfer parameters. Diffusion qMRI is also included because of its wide implementation in complete clinical MP-qMRI application. MP-qMRI advances were reviewed over the past 2 decades, with substantial progress observed toward accelerating image acquisition and increasing mapping accuracy. Areas that need further investigation and refinement are identified as follows: (a) the biologic underpinnings of qMRI parameter values and their changes with age and/or disease and (b) the theoretical limitations implicitly built into most qMRI mapping algorithms that do not distinguish between the different spatial scales of voxels versus spin packets, the central physical object of the Bloch theory. With rapidly improving image processing techniques and continuous advances in computer hardware, MP-qMRI has the potential for implementation in a wide range of clinical applications. Currently, three emerging MP-qMRI applications are synthetic MRI, macrostructural qMRI, and microstructural tissue modeling.
Collapse
Affiliation(s)
- Hernán Jara
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - Osamu Sakai
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - Ezequiel Farrher
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - Ana-Maria Oros-Peusquens
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - N. Jon Shah
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - David C. Alsop
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| | - Kathryn E. Keenan
- From the Department of Radiology, Boston University, 670 Albany St,
Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4,
Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P.,
N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory,
National Institute of Standards and Technology, Boulder, Colo (K.E.K.)
| |
Collapse
|
22
|
Assländer J, Gultekin C, Flassbeck S, Glaser SJ, Sodickson DK. Generalized Bloch model: A theory for pulsed magnetization transfer. Magn Reson Med 2022; 87:2003-2017. [PMID: 34811794 PMCID: PMC8810695 DOI: 10.1002/mrm.29071] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/05/2022]
Abstract
PURPOSE The paper introduces a classical model to describe the dynamics of large spin-1/2 ensembles associated with nuclei bound in large molecule structures, commonly referred to as the semi-solid spin pool, and their magnetization transfer (MT) to spins of nuclei in water. THEORY AND METHODS Like quantum-mechanical descriptions of spin dynamics and like the original Bloch equations, but unlike existing MT models, the proposed model is based on the algebra of angular momentum in the sense that it explicitly models the rotations induced by radiofrequency (RF) pulses. It generalizes the original Bloch model to non-exponential decays, which are, for example, observed for semi-solid spin pools. The combination of rotations with non-exponential decays is facilitated by describing the latter as Green's functions, comprised in an integro-differential equation. RESULTS Our model describes the data of an inversion-recovery magnetization-transfer experiment with varying durations of the inversion pulse substantially better than established models. We made this observation for all measured data, but in particular for pulse durations smaller than 300 μs. Furthermore, we provide a linear approximation of the generalized Bloch model that reduces the simulation time by approximately a factor 15,000, enabling simulation of the spin dynamics caused by a rectangular RF-pulse in roughly 2 μs. CONCLUSION The proposed theory unifies the original Bloch model, Henkelman's steady-state theory for MT, and the commonly assumed rotation induced by hard pulses (i.e., strong and infinitesimally short applications of RF-fields) and describes experimental data better than previous models.
Collapse
Affiliation(s)
- Jakob Assländer
- Center for Biomedical Imaging, Dept. of Radiology, New York
University Grossman School of Medicine, NY, USA
- Center for Advanced Imaging Innovation and Research
(CAI2R), Dept. of Radiology, New York University Grossman School of Medicine, NY,
USA
| | - Cem Gultekin
- Courant Institute of Mathematical Sciences, New York
University, NY, USA
| | - Sebastian Flassbeck
- Center for Biomedical Imaging, Dept. of Radiology, New York
University Grossman School of Medicine, NY, USA
- Center for Advanced Imaging Innovation and Research
(CAI2R), Dept. of Radiology, New York University Grossman School of Medicine, NY,
USA
| | - Steffen J Glaser
- Department of Chemistry, Technische Universität
München, Germany
| | - Daniel K Sodickson
- Center for Biomedical Imaging, Dept. of Radiology, New York
University Grossman School of Medicine, NY, USA
- Center for Advanced Imaging Innovation and Research
(CAI2R), Dept. of Radiology, New York University Grossman School of Medicine, NY,
USA
| |
Collapse
|
23
|
Hertanu A, Soustelle L, Buron J, Le Priellec J, Cayre M, Le Troter A, Varma G, Alsop DC, Durbec P, Girard OM, Duhamel G. T 1D -weighted ihMT imaging - Part II. Investigating the long- and short-T 1D components correlation with myelin content. Comparison with R 1 and the macromolecular proton fraction. Magn Reson Med 2022; 87:2329-2346. [PMID: 35001427 DOI: 10.1002/mrm.29140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/29/2021] [Accepted: 12/12/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To investigate the long- and short-T1D components correlation with myelin content using inhomogeneous magnetization transfer (ihMT) high-pass and band-pass T1D -filters and to compare ihMT, R1 , and the macromolecular proton fraction (MPF) for myelin specific imaging. METHODS The 3D ihMT rapid gradient echo (ihMTRAGE) sequences with increasing switching times (Δt) were used to derive ihMT high-pass T1D -filters with increasing T1D cutoff values and an ihMT band-pass T1D -filter for components in the 100 µs to 1 ms range. 3D spoiled gradient echo quantitative MT (SPGR-qMT) protocols were used to derive R1 and MPF maps. The specificity of R1 , MPF, and ihMT T1D -filters was evaluated by comparison with two histological reference techniques for myelin imaging. RESULTS The higher contribution of long-T1D s as compared to the short components as Δt got longer led to an increase in the specificity to myelination. In contrast, focusing on the signal originating from a narrow range of short-T1D s (< 1 ms) as isolated by the band-pass T1D -filter led to lower specificity. In addition, the significantly lower r2 correlation coefficient of the band-pass T1D -filter suggests that the origin of short-T1D components is mostly associated with non-myelin protons. Also, the important contribution of short-T1D s to the estimated MPF, explains its low specificity to myelination as compared to the ihMT high-pass T1D -filters. CONCLUSION Long-T1D components imaging by means of ihMT high-pass T1D -filters is proposed as an MRI biomarker for myelin content. Future studies should enable the investigation of the sensitivity of ihMT T1D -filters for demyelinating processes.
Collapse
Affiliation(s)
- Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Julie Buron
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Myriam Cayre
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Arnaud Le Troter
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Gopal Varma
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
24
|
Nonparametric D-R 1-R 2 distribution MRI of the living human brain. Neuroimage 2021; 245:118753. [PMID: 34852278 DOI: 10.1016/j.neuroimage.2021.118753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
Diffusion-relaxation correlation NMR can simultaneously characterize both the microstructure and the local chemical composition of complex samples that contain multiple populations of water. Recent developments on tensor-valued diffusion encoding and Monte Carlo inversion algorithms have made it possible to transfer diffusion-relaxation correlation NMR from small-bore scanners to clinical MRI systems. Initial studies on clinical MRI systems employed 5D D-R1 and D-R2 correlation to characterize healthy brain in vivo. However, these methods are subject to an inherent bias that originates from not including R2 or R1 in the analysis, respectively. This drawback can be remedied by extending the concept to 6D D-R1-R2 correlation. In this work, we present a sparse acquisition protocol that records all data necessary for in vivo 6D D-R1-R2 correlation MRI across 633 individual measurements within 25 min-a time frame comparable to previous lower-dimensional acquisition protocols. The data were processed with a Monte Carlo inversion algorithm to obtain nonparametric 6D D-R1-R2 distributions. We validated the reproducibility of the method in repeated measurements of healthy volunteers. For a post-therapy glioblastoma case featuring cysts, edema, and partially necrotic remains of tumor, we present representative single-voxel 6D distributions, parameter maps, and artificial contrasts over a wide range of diffusion-, R1-, and R2-weightings based on the rich information contained in the D-R1-R2 distributions.
Collapse
|