1
|
Anh NK, Thu NQ, Tien NTN, Long NP, Nguyen HT. Advancements in Mass Spectrometry-Based Targeted Metabolomics and Lipidomics: Implications for Clinical Research. Molecules 2024; 29:5934. [PMID: 39770023 PMCID: PMC11677340 DOI: 10.3390/molecules29245934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Targeted metabolomics and lipidomics are increasingly utilized in clinical research, providing quantitative and comprehensive assessments of metabolic profiles that underlie physiological and pathological mechanisms. These approaches enable the identification of critical metabolites and metabolic alterations essential for accurate diagnosis and precision treatment. Mass spectrometry, in combination with various separation techniques, offers a highly sensitive and specific platform for implementing targeted metabolomics and lipidomics in clinical settings. Nevertheless, challenges persist in areas such as sample collection, quantification, quality control, and data interpretation. This review summarizes recent advances in targeted metabolomics and lipidomics, emphasizing their applications in clinical research. Advancements, including microsampling, dynamic multiple reaction monitoring, and integration of ion mobility mass spectrometry, are highlighted. Additionally, the review discusses the critical importance of data standardization and harmonization for successful clinical implementation.
Collapse
Affiliation(s)
- Nguyen Ky Anh
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Nguyen Quang Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| |
Collapse
|
2
|
Dunlop E, Daly A, Mori TA, Langer-Gould A, Pereira G, Black LJ. Plasma levels of polyunsaturated fatty acids and multiple sclerosis susceptibility in a US case-control study. Mult Scler Relat Disord 2024; 92:105920. [PMID: 39406153 DOI: 10.1016/j.msard.2024.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/19/2024] [Accepted: 10/05/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND There are plausible mechanisms, yet mixed evidence, that higher polyunsaturated fatty acids (PUFAs) levels reduces the risk of multiple sclerosis (MS). Prior studies relied on dietary surveys to estimate levels. OBJECTIVE We tested associations between plasma levels of n-3 and n-6 PUFAs and likelihood of MS onset or clinically isolated syndrome (CIS) using data from the MS Sunshine Study, a case-control study conducted in the United States. METHODS Case participants (n = 589) aged ≥ 18 years and matched control participants (n = 630) were recruited between 2011 and 2015. Plasma phospholipid fatty acid profiling was conducted by gas-liquid chromatography. We used logistic regression to report odds ratios, testing for interactions, adjusting for covariates and correcting for multiple comparisons. RESULTS There was a 6 % lower probability of MS/CIS per unit increase in total n-6 PUFA level, expressed as a percentage of total plasma phospholipid fatty acids (odds ratio = 0.94; 95 % confidence interval = 0.90,0.98; p = 0.012). We found no statistically significant association between individual or total plasma levels of n-3 PUFAs and probability of MS/CIS; however, plasma levels of n-3 PUFAs were low across the cohort. No other individual or aggregate PUFA levels were significantly associated with MS/CIS. CONCLUSION A higher total n-6 PUFA level may be beneficial in terms of MS susceptibility. Further research is needed to determine whether n-3 PUFAs may be beneficial only above a threshold that is achievable by supplementation.
Collapse
Affiliation(s)
- Eleanor Dunlop
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia; Curtin School of Population Health, Curtin University, Perth, WA, Australia
| | - Alison Daly
- Curtin School of Population Health, Curtin University, Perth, WA, Australia
| | - Trevor A Mori
- Medical School, Royal Perth Hospital Unit, The University of Western Australia, Perth, WA, Australia
| | - Annette Langer-Gould
- Neurology Department, Los Angeles Medical Center, Southern California Permanente Medical Group, Kaiser Permanente, Los Angeles, CA, US; Kaiser Permanente School of Medicine, Pasadena, CA, US
| | - Gavin Pereira
- Curtin School of Population Health, Curtin University, Perth, WA, Australia; enAble Institute, Curtin University, Perth, WA, Australia
| | - Lucinda J Black
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia; Curtin School of Population Health, Curtin University, Perth, WA, Australia.
| |
Collapse
|
3
|
Prabutzki P, Schiller J, Engel KM. Phospholipid-derived lysophospholipids in (patho)physiology. Atherosclerosis 2024; 398:118569. [PMID: 39227208 DOI: 10.1016/j.atherosclerosis.2024.118569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Phospholipids (PL) are major components of cellular membranes and changes in PL metabolism have been associated with the pathogenesis of numerous diseases. Lysophosphatidylcholine (LPC) in particular, is a comparably abundant component of oxidatively damaged tissues. LPC originates from the cleavage of phosphatidylcholine (PC) by phospholipase A2 or the reaction of lipids with reactive oxygen species (ROS) such as HOCl. Another explanation of increased LPC concentration is the decreased re-acylation of LPC into PC. While there are also several other lysophospholipids, LPC is the most abundant lysophospholipid in mammals and will therefore be the focus of this review. LPC is involved in many physiological processes. It induces the migration of lymphocytes, fostering the production of pro-inflammatory compounds by inducing oxidative stress. LPC also "signals" via G protein-coupled and Toll-like receptors and has been implicated in the development of different diseases. However, LPCs are not purely "bad": this is reflected by the fact that the concentration and fatty acyl composition of LPC varies under different conditions, in plasma of healthy and diseased individuals, in tissues and different tumors. Targeting LPC and lipid metabolism and restoring homeostasis might be a potential therapeutic method for inflammation-related diseases.
Collapse
Affiliation(s)
- Patricia Prabutzki
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany
| | - Kathrin M Engel
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany.
| |
Collapse
|
4
|
Finnerty MC, Leach FE, Zakharia Y, Nepple KG, Bartlett MG, Henry MD, Cummings BS. Identification of blood lipid markers of docetaxel treatment in prostate cancer patients. Sci Rep 2024; 14:22069. [PMID: 39333185 PMCID: PMC11436995 DOI: 10.1038/s41598-024-73074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Docetaxel is commonly used for treatment of castration-resistant prostate cancer. Unfortunately, many prostate cancer patients develop resistance to docetaxel. Clinical markers less invasive than biopsies, such as blood samples, would be ideal for monitoring and predicting patient treatment outcomes to docetaxel. Lipid alterations are often associated with the progression of many cancers, including prostate cancer. This study investigated the use of lipids from whole blood as clinical markers for docetaxel resistance in a small cohort of patients with prostate cancer. Qualitative lipidomics was performed by liquid chromatography-tandem mass spectrometry to assess the lipid composition of prostate cancer cells exposed to docetaxel as well as whole blood from prostate cancer patients before, during and after docetaxel treatment. Three patients had castration resistant prostate cancer, three had castration sensitive prostate cancer, and four had de novo prostate cancer during the extent of the study. Mean decrease accuracy and classical univariate receiving operating characteristic curve analyses were performed to identify potential biomarkers. In total, 245 and 221 altered lipids were identified from a second stage of mass spectrometry analysis of prostate cancer cells and clinical blood samples, respectively. Both models indicated that docetaxel treatment altered ether-linked phosphatidylcholines, lysophosphatidylcholine, diacylglycerols, ceramides, hexosylceramides, and sphingomyelins. The results also indicated several lipid changes were associated with sphingolipid signaling and metabolism, and glycerophospholipid metabolism. Collectively, these data suggest the potential usage of identified lipid species as indicators of docetaxel resistance in prostate cancer.
Collapse
Affiliation(s)
- Morgan C Finnerty
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Franklin E Leach
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Yousef Zakharia
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Kenneth G Nepple
- Department of Urology, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Michael D Henry
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Brian S Cummings
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA.
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48202, USA.
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA.
- College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Joblin-Mills A, Wu ZE, Sequeira-Bisson IR, Miles-Chan JL, Poppitt SD, Fraser K. Utilising a Clinical Metabolomics LC-MS Study to Determine the Integrity of Biological Samples for Statistical Modelling after Long Term -80 °C Storage: A TOFI_Asia Sub-Study. Metabolites 2024; 14:313. [PMID: 38921448 PMCID: PMC11205627 DOI: 10.3390/metabo14060313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Biological samples of lipids and metabolites degrade after extensive years in -80 °C storage. We aimed to determine if associated multivariate models are also impacted. Prior TOFI_Asia metabolomics studies from our laboratory established multivariate models of metabolic risks associated with ethnic diversity. Therefore, to compare multivariate modelling degradation after years of -80 °C storage, we selected a subset of aged (≥5-years) plasma samples from the TOFI_Asia study to re-analyze via untargeted LC-MS metabolomics. Samples from European Caucasian (n = 28) and Asian Chinese (n = 28) participants were evaluated for ethnic discrimination by partial least squares discriminative analysis (PLS-DA) of lipids and polar metabolites. Both showed a strong discernment between participants ethnicity by features, before (Initial) and after (Aged) 5-years of -80 °C storage. With receiver operator characteristic curves, sparse PLS-DA derived confusion matrix and prediction error rates, a considerable reduction in model integrity was apparent with the Aged polar metabolite model relative to Initial modelling. Ethnicity modelling with lipids maintained predictive integrity in Aged plasma samples, while equivalent polar metabolite models reduced in integrity. Our results indicate that researchers re-evaluating samples for multivariate modelling should consider time at -80 °C when producing predictive metrics from polar metabolites, more so than lipids.
Collapse
Affiliation(s)
- Aidan Joblin-Mills
- Food Chemistry & Structure Team, AgResearch, Palmerston North 4410, New Zealand; (Z.E.W.); (K.F.)
- High-Value Nutrition National Science Challenge, Auckland 1145, New Zealand; (I.R.S.-B.); (J.L.M.-C.); (S.D.P.)
| | - Zhanxuan E. Wu
- Food Chemistry & Structure Team, AgResearch, Palmerston North 4410, New Zealand; (Z.E.W.); (K.F.)
- High-Value Nutrition National Science Challenge, Auckland 1145, New Zealand; (I.R.S.-B.); (J.L.M.-C.); (S.D.P.)
- School of Food and Nutrition, Massey University, Palmerston North 4410, New Zealand
| | - Ivana R. Sequeira-Bisson
- High-Value Nutrition National Science Challenge, Auckland 1145, New Zealand; (I.R.S.-B.); (J.L.M.-C.); (S.D.P.)
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
| | - Jennifer L. Miles-Chan
- High-Value Nutrition National Science Challenge, Auckland 1145, New Zealand; (I.R.S.-B.); (J.L.M.-C.); (S.D.P.)
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
| | - Sally D. Poppitt
- High-Value Nutrition National Science Challenge, Auckland 1145, New Zealand; (I.R.S.-B.); (J.L.M.-C.); (S.D.P.)
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- Department of Medicine, University of Auckland, Auckland 1145, New Zealand
| | - Karl Fraser
- Food Chemistry & Structure Team, AgResearch, Palmerston North 4410, New Zealand; (Z.E.W.); (K.F.)
- High-Value Nutrition National Science Challenge, Auckland 1145, New Zealand; (I.R.S.-B.); (J.L.M.-C.); (S.D.P.)
| |
Collapse
|
6
|
Zuccolo M, Orsini G, Quaglia M, Mirra L, Corno C, Carenini N, Perego P, Colombo D. Synthesis of N-oxyamide analogues of protein kinase B (Akt) targeting anionic glycoglycerolipids and their antiproliferative activity on human ovarian carcinoma cells. Org Biomol Chem 2023; 21:6572-6587. [PMID: 37526931 DOI: 10.1039/d3ob00891f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
N-Oxyamides of bioactive anionic glycoglycerolipids based on 2-O-β-D-glucosylglycerol were efficiently prepared. However, the oxidation step of the primary hydroxyl group of the glucose moiety in the presence of the N-oxyamide function appeared to be a difficult task that was nevertheless conveniently achieved for the first time by employing a chemoenzymatic laccase/TEMPO procedure. The obtained N-oxyamides exhibited a higher inhibition of proliferation of ovarian carcinoma IGROV-1 cells in serum-free medium than in complete medium, similarly to the corresponding bioactive esters. Stability and serum binding studies indicated that the observed reduced activity of the compounds in complete medium could be mainly due to a binding effect of serum proteins rather than the hydrolytic degradation of glycoglycerolipid acyl chains. Furthermore, the results of the cellular studies under serum-free conditions suggested that the N-oxyamide group could increase the antiproliferative activity of a glycoglycerolipid independently of the presence of the anionic carboxylic group. Cellular studies in other cell lines besides IGROV-1 also support a certain degree of selectivity of this series of compounds for tumor cells with Akt hyperactivation.
Collapse
Affiliation(s)
- Marco Zuccolo
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Giulia Orsini
- NOVA Institute of Chemical and Biological Technology António Xavier, New University of Lisbon, Av. da Repύblica, 2780-157 Oeiras, Portugal
| | - Martina Quaglia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy.
| | - Luca Mirra
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Cristina Corno
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Nives Carenini
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy
| | - Diego Colombo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy.
| |
Collapse
|
7
|
Chrabąszcz K, Kołodziej M, Roman M, Pięta E, Piergies N, Rudnicka-Czerwiec J, Bartosik-Psujek H, Paluszkiewicz C, Cholewa M, Kwiatek WM. Carotenoids contribution in rapid diagnosis of multiple sclerosis by Raman spectroscopy. Biochim Biophys Acta Gen Subj 2023:130395. [PMID: 37271406 DOI: 10.1016/j.bbagen.2023.130395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/28/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Rapid and accurate diagnosis of any illness determines the success of treatment. The same applies to multiple sclerosis (MS), chronic, inflammatory, and neurodegenerative diseases (ND) of the central nervous system (CNS). Unfortunately, the definitive diagnosis of MS is prolonged and involves mainly clinical symptoms observation and magnetic resonance imaging (MRI) of the CNS. However, as we previously reported, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy shed new light on the minimally invasive, label-free, and rapid diagnosis of this illness through blood fraction. Herein we introduce Raman spectroscopy coupled with chemometric analysis to provide more detailed information about the biochemical changes behind MS. This pilot study demonstrates that mentioned combination may provide a new diagnostic biomarker and bring closer to rapid MS diagnosis. It has been shown that Raman spectroscopy provides lipid and carotenoid molecules as useful biomarkers which may be applied for both diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Karolina Chrabąszcz
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland.
| | - Magdalena Kołodziej
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-315 Rzeszow, Poland
| | - Maciej Roman
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; SOLARIS, National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30-392, Krakow, Poland
| | - Ewa Pięta
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Natalia Piergies
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Julia Rudnicka-Czerwiec
- Department of Neurology, Institute of Medical Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-310 Rzeszow, Poland
| | - Halina Bartosik-Psujek
- Department of Neurology, Institute of Medical Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-310 Rzeszow, Poland
| | - Czesława Paluszkiewicz
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Marian Cholewa
- Institute of Physics, College of Natural Sciences, University of Rzeszow, Pigonia Street 1, 35-959 Rzeszow, Poland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| |
Collapse
|
8
|
Wang Q, Hoene M, Hu C, Fritsche L, Ahrends R, Liebisch G, Ekroos K, Fritsche A, Birkenfeld AL, Liu X, Zhao X, Li Q, Su B, Peter A, Xu G, Lehmann R. Ex vivo instability of lipids in whole blood: preanalytical recommendations for clinical lipidomics studies. J Lipid Res 2023; 64:100378. [PMID: 37087100 PMCID: PMC10208886 DOI: 10.1016/j.jlr.2023.100378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023] Open
Abstract
Reliability, robustness, and interlaboratory comparability of quantitative measurements is critical for clinical lipidomics studies. Lipids' different ex vivo stability in blood bears the risk of misinterpretation of data. Clear recommendations for the process of blood sample collection are required. We studied by UHPLC-high resolution mass spectrometry, as part of the "Preanalytics interest group" of the International Lipidomics Society, the stability of 417 lipid species in EDTA whole blood after exposure to either 4°C, 21°C, or 30°C at six different time points (0.5 h-24 h) to cover common daily routine conditions in clinical settings. In total, >800 samples were analyzed. 325 and 288 robust lipid species resisted 24 h exposure of EDTA whole blood to 21°C or 30°C, respectively. Most significant instabilities were detected for FA, LPE, and LPC. Based on our data, we recommend cooling whole blood at once and permanent. Plasma should be separated within 4 h, unless the focus is solely on robust lipids. Lists are provided to check the ex vivo (in)stability of distinct lipids and potential biomarkers of interest in whole blood. To conclude, our results contribute to the international efforts towards reliable and comparable clinical lipidomics data paving the way to the proper diagnostic application of distinct lipid patterns or lipid profiles in the future.
Collapse
Affiliation(s)
- Qingqing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China; University of Chinese Academy of Sciences, Beijing, China
| | - Miriam Hoene
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Espoo, Finland
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Internal Medicine 4, University Hospital Tuebingen, Tuebingen, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Internal Medicine 4, University Hospital Tuebingen, Tuebingen, Germany
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Benzhe Su
- School of Computer Science & Technology, Dalian University of Technology, Dalian, China
| | - Andreas Peter
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China.
| | - Rainer Lehmann
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany.
| |
Collapse
|
9
|
Tian Q, Adam MG, Ozcariz E, Fantoni G, Shehadeh NM, Turek LM, Collingham VL, Kaileh M, Moaddel R, Ferrucci L. Human Metabolome Reference Database in a Biracial Cohort across the Adult Lifespan. Metabolites 2023; 13:metabo13050591. [PMID: 37233632 DOI: 10.3390/metabo13050591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
As one of the OMICS in systems biology, metabolomics defines the metabolome and simultaneously quantifies numerous metabolites that are final or intermediate products and effectors of upstream biological processes. Metabolomics provides accurate information that helps determine the physiological steady state and biochemical changes during the aging process. To date, reference values of metabolites across the adult lifespan, especially among ethnicity groups, are lacking. The "normal" reference values according to age, sex, and race allow the characterization of whether an individual or a group deviates metabolically from normal aging, encompass a fundamental element in any study aimed at understanding mechanisms at the interface between aging and diseases. In this study, we established a metabolomics reference database from 20-100 years of age from a biracial sample of community-dwelling healthy men and women and examined metabolite associations with age, sex, and race. Reference values from well-selected healthy individuals can contribute to clinical decision-making processes of metabolic or related diseases.
Collapse
Affiliation(s)
- Qu Tian
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21214, USA
| | | | | | - Giovanna Fantoni
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Nader M Shehadeh
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Lisa M Turek
- Clinical Research Unit, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21214, USA
| |
Collapse
|
10
|
Hricko J, Rudl Kulhava L, Paucova M, Novakova M, Kuda O, Fiehn O, Cajka T. Short-Term Stability of Serum and Liver Extracts for Untargeted Metabolomics and Lipidomics. Antioxidants (Basel) 2023; 12:antiox12050986. [PMID: 37237852 DOI: 10.3390/antiox12050986] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Thermal reactions can significantly alter the metabolomic and lipidomic content of biofluids and tissues during storage. In this study, we investigated the stability of polar metabolites and complex lipids in dry human serum and mouse liver extracts over a three-day period under various temperature conditions. Specifically, we tested temperatures of -80 °C (freezer), -24 °C (freezer), -0.5 °C (polystyrene box with gel-based ice packs), +5 °C (refrigerator), +23 °C (laboratory, room temperature), and +30 °C (thermostat) to simulate the time between sample extraction and analysis, shipping dry extracts to different labs as an alternative to dry ice, and document the impact of higher temperatures on sample integrity. The extracts were analyzed using five fast liquid chromatography-mass spectrometry (LC-MS) methods to screen polar metabolites and complex lipids, and over 600 metabolites were annotated in serum and liver extracts. We found that storing dry extracts at -24 °C and partially at -0.5 °C provided comparable results to -80 °C (reference condition). However, increasing the storage temperatures led to significant changes in oxidized triacylglycerols, phospholipids, and fatty acids within three days. Polar metabolites were mainly affected at storage temperatures of +23 °C and +30 °C.
Collapse
Affiliation(s)
- Jiri Hricko
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Lucie Rudl Kulhava
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Michaela Paucova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Michaela Novakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Tomas Cajka
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| |
Collapse
|
11
|
Sellem L, Eichelmann F, Jackson KG, Wittenbecher C, Schulze MB, Lovegrove JA. Replacement of dietary saturated with unsaturated fatty acids is associated with beneficial effects on lipidome metabolites: a secondary analysis of a randomized trial. Am J Clin Nutr 2023:S0002-9165(23)46314-9. [PMID: 37062359 DOI: 10.1016/j.ajcnut.2023.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND The effects of replacing dietary saturated fatty acids (SFAs) with monounsaturated fatty acids (MUFAs) and/or polyunsaturated fatty acids (PUFAs) on the plasma lipidome in relation to the cardiometabolic disease (CMD) risk are poorly understood. OBJECTIVES We aimed to assess the impact of substituting dietary SFAs with unsaturated fatty acids (UFAs) on the plasma lipidome and examine the relationship between lipid metabolites modulated by diet and CMD risk. METHODS Plasma fatty acid (FA) concentrations among 16 lipid classes (within-class FAs) were measured in a subgroup from the Dietary Intervention and VAScular function (DIVAS) parallel randomized controlled trial (n = 113/195), which consisted of three 16-wk diets enriched in SFAs (target SFA:MUFA:n-6PUFA ratio = 17:11:4% total energy [TE]), MUFAs (9:19:4% TE), or a MUFA/PUFA mixture (9:13:10% TE). Similar lipidomics analyses were conducted in the European investigation into Cancer and Nutrition (EPIC)-Potsdam prospective cohort study (specific case/cohorts: n = 775/1886 for type 2 diabetes [T2D], n = 551/1671 for cardiovascular disease [CVD]). Multiple linear regression and multivariable Cox models identified within-class FAs sensitive to replacement of dietary SFA with UFA in DIVAS and their association with CMD risk in EPIC-Potsdam. Elastic-net regression models identified within-class FAs associated with changes in CMD risk markers post-DIVAS interventions. RESULTS DIVAS high-UFA interventions reduced plasma within-class FAs associated with a higher CVD risk in EPIC-Potsdam, especially SFA-containing glycerolipids and sphingolipids (e.g., diacylglycerol (20:0) z-score = -1.08; SE = 0.17; P value < 10-8), whereas they increased those inversely associated with CVD risk. The results on T2D were less clear. Specific sphingolipids and phospholipids were associated with changes in markers of endothelial function and ambulatory blood pressure, whereas higher low-density lipoprotein cholesterol concentrations were characterized by higher plasma glycerolipids containing lauric and stearic acids. CONCLUSIONS These results suggest a mediating role of plasma lipid metabolites in the association between dietary fat and CMD risk. Future research combining interventional and observational findings will further our understanding of the role of dietary fat in CMD etiology. This trial was registered in ClinicalTrials.gov as NCT01478958.
Collapse
Affiliation(s)
- Laury Sellem
- Hugh Sinclair Unit of Human Nutrition, and Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Science, University of Reading, Whiteknights, Pepper Lane, Harry Nursten Building, Reading, UK
| | - Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Kim G Jackson
- Hugh Sinclair Unit of Human Nutrition, and Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Science, University of Reading, Whiteknights, Pepper Lane, Harry Nursten Building, Reading, UK
| | - Clemens Wittenbecher
- Division of Food Science and Nutrition, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition, and Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Science, University of Reading, Whiteknights, Pepper Lane, Harry Nursten Building, Reading, UK.
| |
Collapse
|
12
|
Vrtaric A, Miler M, Celap I, Gabaj NN. Frozen serum sample pool should not be used as internal quality assessment for lipemia (L) index. Clin Chem Lab Med 2022; 61:e74-e77. [PMID: 36476350 DOI: 10.1515/cclm-2022-0647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Alen Vrtaric
- Working Group for Preanalytical Phase of the Croatian Society of Medical Biochemistry and Laboratory Medicine , Zagreb , Croatia
- Department of Clinical Chemistry , Sestre milosrdnice University Hospital Center , Zagreb , Croatia
| | - Marijana Miler
- Working Group for Preanalytical Phase of the Croatian Society of Medical Biochemistry and Laboratory Medicine , Zagreb , Croatia
- Department of Clinical Chemistry , Sestre milosrdnice University Hospital Center , Zagreb , Croatia
| | - Ivana Celap
- Working Group for Preanalytical Phase of the Croatian Society of Medical Biochemistry and Laboratory Medicine , Zagreb , Croatia
- Department of Clinical Chemistry , Sestre milosrdnice University Hospital Center , Zagreb , Croatia
| | - Nora Nikolac Gabaj
- Working Group for Preanalytical Phase of the Croatian Society of Medical Biochemistry and Laboratory Medicine , Zagreb , Croatia
- Department of Clinical Chemistry , Sestre milosrdnice University Hospital Center , Zagreb , Croatia
- Faculty of Pharmacy and Biochemistry , University of Zagreb , Zagreb , Croatia
| |
Collapse
|
13
|
Levine A, Strawn JR. Blood tests of brain function: Neuronal extracellular vesicles. Biomark Neuropsychiatry 2022. [DOI: 10.1016/j.bionps.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|