1
|
Wang T, Ling AH, Billings SE, Hosseini DK, Vaisbuch Y, Kim GS, Atkinson PJ, Sayyid ZN, Aaron KA, Wagh D, Pham N, Scheibinger M, Zhou R, Ishiyama A, Moore LS, Maria PS, Blevins NH, Jackler RK, Alyono JC, Kveton J, Navaratnam D, Heller S, Lopez IA, Grillet N, Jan TA, Cheng AG. Single-cell transcriptomic atlas reveals increased regeneration in diseased human inner ear balance organs. Nat Commun 2024; 15:4833. [PMID: 38844821 PMCID: PMC11156867 DOI: 10.1038/s41467-024-48491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Mammalian inner ear hair cell loss leads to permanent hearing and balance dysfunction. In contrast to the cochlea, vestibular hair cells of the murine utricle have some regenerative capacity. Whether human utricular hair cells regenerate in vivo remains unknown. Here we procured live, mature utricles from organ donors and vestibular schwannoma patients, and present a validated single-cell transcriptomic atlas at unprecedented resolution. We describe markers of 13 sensory and non-sensory cell types, with partial overlap and correlation between transcriptomes of human and mouse hair cells and supporting cells. We further uncover transcriptomes unique to hair cell precursors, which are unexpectedly 14-fold more abundant in vestibular schwannoma utricles, demonstrating the existence of ongoing regeneration in humans. Lastly, supporting cell-to-hair cell trajectory analysis revealed 5 distinct patterns of dynamic gene expression and associated pathways, including Wnt and IGF-1 signaling. Our dataset constitutes a foundational resource, accessible via a web-based interface, serving to advance knowledge of the normal and diseased human inner ear.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Otolaryngology - Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, PR China
| | - Angela H Ling
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sara E Billings
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Davood K Hosseini
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yona Vaisbuch
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Grace S Kim
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Patrick J Atkinson
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zahra N Sayyid
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ksenia A Aaron
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dhananjay Wagh
- Stanford Genomics Facility, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nicole Pham
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mirko Scheibinger
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruiqi Zhou
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Akira Ishiyama
- Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lindsay S Moore
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Peter Santa Maria
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nikolas H Blevins
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Robert K Jackler
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jennifer C Alyono
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - John Kveton
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Dhasakumar Navaratnam
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ivan A Lopez
- Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nicolas Grillet
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Taha A Jan
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Ujjainwala AL, Dewar CD, Fifield L, Rayburn C, Buenting E, Boyle J, Kattah JC. Effect of convergence on the horizontal VOR in normal subjects and patients with peripheral and central vestibulopathy. Neurol Sci 2022; 43:4519-4529. [DOI: 10.1007/s10072-022-05970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
|
3
|
Yacovino DA, Zanotti E, Cherchi M. The spectrum of acute vestibular neuropathy through modern vestibular testing: A descriptive analysis. Clin Neurophysiol Pract 2021; 6:137-145. [PMID: 34013097 PMCID: PMC8113650 DOI: 10.1016/j.cnp.2021.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/02/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Video head impulse testing and vestibular evoked myogenic potentials show that acute vestibular neuropathy is heterogeneous. Peripheral vestibular pathway vulnerability is approximately inversely correlated with its proportion of afferent fibers. Caloric testing, while useful, should no longer be considered the gold standard for diagnosing acute vestibular neuropathy.
Objective Acute vestibular neuropathy (AVN), often referred to as vestibular neuritis, is a cranial neuropathy responsible for a significant proportion of cases of acute vertigo. This study describes the spectrum of lesion patterns in AVN as identified by video head impulse testing (vHIT) which assesses the high frequency vestibulo-ocular reflex function of the semicircular canals, and cervical and ocular vestibular evoked myogenic potentials (VEMPs) which assess otolith function. Methods We used vHIT and VEMPs to assess 35 patients with vestibular neuropathy in the acute stage. Results Unilateral superior division vestibular nerve involvement was the most common variant (57.1%), followed by unilateral superior and inferior division (28.5%), bilateral superior division (8.5%) and unilateral inferior division (5.7%). We observed a partial inverse correlation between the proportion of afferent fibers from an organelle, and the likelihood that the test of that organelle’s function will be abnormal. Conclusion vHIT and VEMPs provide more detailed characterization of lesion pattern in AVN than caloric testing. Significance Comparison of lesion patterns from neuro-physiological testing with what is known about the proportional distribution of afferent fibers from the vestibular end-organelles suggests a new, neuro-anatomically based insight regarding susceptibility of these pathways to AVN.
Collapse
Affiliation(s)
- Dario Andrés Yacovino
- Department of Neurology, Dr. Cesar Milstein Hospital, Buenos Aires, Argentina.,Memory and Balance Clinic, Buenos Aires, Argentina
| | - Estefanía Zanotti
- Department of Neurology, Dr. Cesar Milstein Hospital, Buenos Aires, Argentina
| | - Marcello Cherchi
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Chicago Dizziness and Hearing, Chicago, IL, USA
| |
Collapse
|
4
|
Histology and neuroanatomy suggest a unified mechanism to explain the distribution of lesion patterns in acute vestibular neuropathy. Exp Brain Res 2021; 239:1395-1399. [PMID: 33772357 DOI: 10.1007/s00221-021-06094-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
Human temporal bone studies have described the distribution of afferent fibers from each of the five organelles in the labyrinth. Data from vestibular tests in patients with vestibular neuritis can be abnormal in almost any pattern. We propose a unified explanation for these patterns, based on histological and neuroanatomical factors.
Collapse
|
5
|
Ishiyama G, Lopez IA, Acuna D, Ishiyama A. Investigations of the Microvasculature of the Human Macula Utricle in Meniere's Disease. Front Cell Neurosci 2019; 13:445. [PMID: 31636542 PMCID: PMC6787152 DOI: 10.3389/fncel.2019.00445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The integrity and permeability of the blood labyrinthine barrier (BLB) in the inner ear is important to maintain adequate blood supply, and to control the passage of fluids, molecules and ions. Identifying the cellular and structural components of the BLB, the vascular endothelial cells (VECs), pericytes, and the perivascular basement membrane, is critical to understand the pathophysiology of the inner ear microvasculature and to design efficient delivery of therapeutics across the BLB. A recent study of the normal and pathological ultrastructural changes in the human macula utricle microvasculature demonstrated that the VECs are damaged in Meniere’s disease (MD), and further studies identified oxidative stress markers (iNOS and nitrotyrosine) in the VECs. Using fluorescence microscopy, the microvasculature was studied in the macula utricle of patients diagnosed with MD that required transmastoid labyrinthectomy for intractable vertigo (n = 5), and patients who required a translabyrinthine approach for vestibular schwannoma (VS) resection (n = 3). Normal utricles (controls) were also included (n = 3). VECs were identified using rabbit polyclonal antibodies against the glucose transporter-1 (GLUT-1) and pericytes were identified using mouse monoclonal antibodies against alpha-smooth muscle actin (α-SMA). Immunofluorescence (IF) staining was made in half of the utricle and flat mounted. The other half was used to study the integrity of the BLB using transmission electron microscopy (TEM). GLUT-1-IF, allowed delineation of the macula utricle microvasculature (located in the stroma underneath the sensory epithelia) in both MD and VS specimens. Three sizes of vessels were present in the utricle vasculature: Small size (<15 μm), medium size (15–25 μm) and large size >25 μm. α-SMA-IF was present in pericytes that surround the VECS in medium and thick size vessels. Thin size vessels showed almost no α-SMA-IF. AngioTool software was used for quantitative analysis. A significant decreased number of junctions, total vessel length, and average vessel length was detected in the microvasculature in MD specimens compared with VS and control specimens. The deeper understanding of the anatomy of the BLB in the human vestibular periphery and its pathological changes in disease will enable the development of non-invasive delivery strategy for the treatment of hearing and balance disorders.
Collapse
Affiliation(s)
- Gail Ishiyama
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Ivan A Lopez
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Dora Acuna
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Akira Ishiyama
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
6
|
Curthoys IS. Concepts and Physiological Aspects of the Otolith Organ in Relation to Electrical Stimulation. Audiol Neurootol 2019; 25:25-34. [PMID: 31553977 DOI: 10.1159/000502712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/13/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This paper discusses some of the concepts and major physiological issues in developing a means of electrically stimulating the otolithic system, with the final goal being the electrical stimulation of the otoliths in human patients. It contrasts the challenges of electrical stimulation of the otolith organs as compared to stimulation of the semicircular canals. Electrical stimulation may consist of trains of short-duration pulses (e.g., 0.1 ms duration at 400 Hz) by selective electrodes on otolith maculae or otolithic afferents, or unselective maintained DC stimulation by large surface electrodes on the mastoids - surface galvanic stimulation. SUMMARY Recent anatomical and physiological results are summarized in order to introduce some of the unique issues in electrical stimulation of the otoliths. The first challenge is that each otolithic macula contains receptors with opposite polarization (opposing preferred directions of stimulation), unlike the uniform polarization of receptors in each semicircular canal crista. The puzzle is that in response to the one linear acceleration in the one macula, some otolithic afferents have an increased activation whereas others have decreased activation. Key Messages: At the vestibular nucleus this opposite receptor hair cell polarization and consequent opposite afferent input allow enhanced response to the one linear acceleration, via a "push-pull" neural mechanism in a manner analogous to the enhancement of semicircular canal responses to angular acceleration. Within each otolithic macula there is not just one uniform otolithic neural input to the brain - there are very distinctly different channels of otolithic neural inputs transferring the neural data to the brainstem. As a simplification these channels are characterized as the sustained and transient systems. Afferents in each system have different responses to stimulus onset and maintained stimulation and likely different projections, and most importantly different thresholds for activation by electrical stimulation and different adaptation rates to maintained stimulation. The implications of these differences are considered.
Collapse
Affiliation(s)
- Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, University of Sydney, Sydney, New South Wales, Australia,
| |
Collapse
|
7
|
Lopez IA, Ishiyama G, Acuna D, Ishiyama A. Otopetrin-2 Immunolocalization in the Human Macula Utricle. Ann Otol Rhinol Laryngol 2019; 128:96S-102S. [PMID: 31092032 PMCID: PMC6767922 DOI: 10.1177/0003489419834952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In the present study, we investigated the localization of otopetrin-2-a member of the otopetrin family that encodes proton-selective ion channels-in the human macula utricle using immunohistochemistry. METHODS Macula utricle were acquired at surgery from patients who required transmastoid labyrinthectomy for intractable vertigo due to Meniere's disease (MD; n = 3) and/or vestibular drops attacks (VDA; n = 2) and from temporal bones (n = 2) acquired at autopsy from individuals with no balance disorders. Immunofluorescence staining with otopetrin-2 (rabbit affinity purified polyclonal antibody) and GFAP (mouse monoclonal antibody) to identify vestibular supporting cells was made in formalin fixed cryostat sections or whole microdissected utricle (for flat mount preparations). Secondary antibodies against rabbit and mouse were used for the identification of both proteins. Digital fluorescent images were obtained using a high-resolution laser confocal microscope. RESULTS Using cryostat sections and flat mount preparations otopetrin-2 immunofluorescence was seen as punctated signal throughout the supporting cells cytoplasm. GFAP immunofluorescence was present in the supporting cell cytoplasm. The distribution of otopetrin-2 was similar in the macula utricle obtained from MD, VDA, or autopsy normative patients. CONCLUSIONS Otopetrin-2 was localized in supporting cells in a similar fashion that otopetrin-1 previously reported in the mouse macula utricle. The differential expression of otopetrin-2 in the supporting cells of the human macula utricle suggest an important role in the vestibular sensory periphery homeostasis and otolith maintenance.
Collapse
Affiliation(s)
- Ivan A. Lopez
- Department of Head & Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gail Ishiyama
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dora Acuna
- Department of Head & Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Akira Ishiyama
- Department of Head & Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
8
|
Schier P, Handler M, Johnson Chacko L, Schrott-Fischer A, Fritscher K, Saba R, Baumgartner C, Baumgarten D. Model-Based Vestibular Afferent Stimulation: Evaluating Selective Electrode Locations and Stimulation Waveform Shapes. Front Neurosci 2018; 12:588. [PMID: 30214391 PMCID: PMC6125370 DOI: 10.3389/fnins.2018.00588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/06/2018] [Indexed: 12/02/2022] Open
Abstract
A dysfunctional vestibular system can be a severe detriment to the quality of life of a patient. Recent studies have shown the feasibility for a vestibular implant to restore rotational sensation via electrical stimulation of vestibular ampullary nerves. However, the optimal stimulation site for selective elicitation of the desired nerve is still unknown. We realized a finite element model on the basis of μCT scans of a human inner ear and incorporated naturally distributed, artificial neural trajectories. A well-validated neuron model of myelinated fibers was incorporated to predict nerve responses to electrical stimulation. Several virtual electrodes were placed in locations of interest inside the bony labyrinth (intra-labyrinthine) and inside the temporal bone, near the target nerves (extra-labyrinthine), to determine preferred stimulation sites and electrode insertion depths. We investigated various monopolar and bipolar electrode configurations as well as different pulse waveform shapes for their ability to selectively stimulate the target nerve and for their energy consumption. The selectivity was evaluated with an objective measure of the fiber recruitment. Considerable differences of required energy and achievable selectivity between the configurations were observed. Bipolar, intra-labyrinthine electrodes provided the best selectivities but also consumed the highest amount of energy. Bipolar, extra-labyrinthine configurations did not offer any advantages compared to the monopolar approach. No selective stimulation could be performed with the monopolar, intra-labyrinthine approach. The monopolar, extra-labyrinthine electrodes required the least energy for satisfactory selectivities, making it the most promising approach for functional vestibular implants. Different pulse waveform shapes did not affect the achieved selectivity considerably but shorter pulse durations showed consistently a more selective activation of the target nerves. A cathodic, centered triangular waveform shape was identified as the most energy-efficient of the tested shapes. Based on these simulations we are able to recommend the monopolar, extra-labyrinthine stimulation approach with cathodic, centered triangular pulses as good trade-off between selectivity and energy consumption. Future implant designs could benefit from the findings presented here.
Collapse
Affiliation(s)
- Peter Schier
- Department for Biomedical Computer Science and Mechatronics, Institute of Electrical and Biomedical Engineering, UMIT-Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Michael Handler
- Department for Biomedical Computer Science and Mechatronics, Institute of Electrical and Biomedical Engineering, UMIT-Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Lejo Johnson Chacko
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Karl Fritscher
- Department for Biomedical Computer Science and Mechatronics, Institute of Biomedical Image Analysis, UMIT-Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | | | - Christian Baumgartner
- Department for Biomedical Computer Science and Mechatronics, Institute of Electrical and Biomedical Engineering, UMIT-Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria.,Faculty of Computer Science and Biomedical Engineering, Institute of Health Care Engineering, Graz University of Technology, Graz, Austria
| | - Daniel Baumgarten
- Department for Biomedical Computer Science and Mechatronics, Institute of Electrical and Biomedical Engineering, UMIT-Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria.,Department of Computer Science and Automation, Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| |
Collapse
|
9
|
Hosokawa S, Hosokawa K, Ishiyama G, Ishiyama A, Lopez IA. Immunohistochemical localization of megalin and cubilin in the human inner ear. Brain Res 2018; 1701:153-160. [PMID: 30218661 DOI: 10.1016/j.brainres.2018.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/09/2018] [Accepted: 09/11/2018] [Indexed: 01/10/2023]
Abstract
Megalin and cubilin are endocytic receptors expressed in many absorptive polarized epithelia. These receptors have been implicated in the transport of gentamicin in the inner ear as possible contributors to ototoxic damage. Megalin and cubilin have been characterized in detail in the mouse and rat inner ear, but not in the human inner ear. In this study, megalin and cubilin were localized by immunohistochemistry using affinity-purified antibodies in formalin fixed frozen cryostat and celloidin embedded sections of the human inner ear. In the cochlea megalin and cubilin were localized in marginal cells of the stria vascularis, epithelial cells of the spiral prominence and the Reissner's membrane. In the macula utricle and cristae ampullaris, megalin and cubilin were localized in transitional and dark cells, but not in vestibular hair cells and supporting cells. In the endolymphatic duct megalin and cubilin were localized in the epithelial cells. The localization of megalin and cubilin in the human inner ear is consistent with previous reports in the inner ear of animal models and suggest that these receptors may play an important role in the inner ear endocytic transport, and maybe potential targets for prevention of ototoxic damage or the delivery of medications.
Collapse
Affiliation(s)
- Seiji Hosokawa
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, United States; Department of Otorhinolaryngology/Head & Neck Surgery, Hamamatsu University School of Medicine, Japan
| | - Kumiko Hosokawa
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, United States; Department of Otorhinolaryngology/Head & Neck Surgery, Hamamatsu University School of Medicine, Japan
| | - Gail Ishiyama
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Akira Ishiyama
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Ivan A Lopez
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, United States.
| |
Collapse
|
10
|
Variability in the Vestibulo-Ocular Reflex and Vestibular Perception. Neuroscience 2018; 393:350-365. [PMID: 30189227 DOI: 10.1016/j.neuroscience.2018.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/24/2022]
Abstract
The vestibular system enables humans to estimate self-motion, stabilize gaze and maintain posture, but these behaviors are impacted by neural noise at all levels of processing (e.g., sensory, central, motor). Despite its essential importance, the behavioral impact of noise in human vestibular pathways is not completely understood. Here, we characterize the vestibular imprecision that results from neural noise by measuring trial-to-trial vestibulo-ocular reflex (VOR) variability and perceptual just-noticeable differences (JNDs) in the same human subjects as a function of stimulus intensity. We used head-centered yaw rotations about an Earth-vertical axis over a broad range of motion velocities (0-65°/s for VOR variability and 3-90°/s peak velocity for JNDs). We found that VOR variability increased from approximately 0.6°/s at a chair velocity of 1°/s to approximately 3°/s at 65°/s; it exhibited a stimulus-independent range below roughly 1°/s. Perceptual imprecision ("sigma") increased from 0.76°/s at 3°/s to 4.7°/s at 90°/s. Using stimuli that manipulated the relationship between velocity, displacement and acceleration, we found that velocity was the salient cue for VOR variability for our motion stimuli. VOR and perceptual imprecision both increased with stimulus intensity and were broadly similar over a range of stimulus velocities, consistent with a common noise source that affects motor and perceptual pathways. This contrasts with differing perceptual and motor stimulus-dependent imprecision in visual studies. Either stimulus-dependent noise or non-linear signal processing could explain our results, but we argue that afferent non-linearities alone are unlikely to be the source of the observed behavioral stimulus-dependent imprecision.
Collapse
|
11
|
Curthoys IS, Grant JW, Burgess AM, Pastras CJ, Brown DJ, Manzari L. Otolithic Receptor Mechanisms for Vestibular-Evoked Myogenic Potentials: A Review. Front Neurol 2018; 9:366. [PMID: 29887827 PMCID: PMC5980960 DOI: 10.3389/fneur.2018.00366] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
Air-conducted sound and bone-conduced vibration activate otolithic receptors and afferent neurons in both the utricular and saccular maculae, and trigger small electromyographic (EMG) responses [called vestibular-evoked myogenic potentials (VEMPs)] in various muscle groups throughout the body. The use of these VEMPs for clinical assessment of human otolithic function is built on the following logical steps: (1) that high-frequency sound and vibration at clinically effective stimulus levels activate otolithic receptors and afferents, rather than semicircular canal afferents, (2) that there is differential anatomical projection of otolith afferents to eye muscles and neck muscles, and (3) that isolated stimulation of the utricular macula induces short latency responses in eye muscles, and that isolated stimulation of the saccular macula induces short latency responses in neck motoneurons. Evidence supports these logical steps, and so VEMPs are increasingly being used for clinical assessment of otolith function, even differential evaluation of utricular and saccular function. The proposal, originally put forward by Curthoys in 2010, is now accepted: that the ocular vestibular-evoked myogenic potential reflects predominantly contralateral utricular function and the cervical vestibular-evoked myogenic potential reflects predominantly ipsilateral saccular function. So VEMPs can provide differential tests of utricular and saccular function, not because of stimulus selectivity for either of the two maculae, but by measuring responses which are predominantly determined by the differential neural projection of utricular as opposed to saccular neural information to various muscle groups. The major question which this review addresses is how the otolithic sensory system, with such a high density otoconial layer, can be activated by individual cycles of sound and vibration and show such tight locking of the timing of action potentials of single primary otolithic afferents to a particular phase angle of the stimulus cycle even at frequencies far above 1,000 Hz. The new explanation is that it is due to the otoliths acting as seismometers at high frequencies and accelerometers at low frequencies. VEMPs are an otolith-dominated response, but in a particular clinical condition, semicircular canal dehiscence, semicircular canal receptors are also activated by sound and vibration, and act to enhance the otolith-dominated VEMP responses.
Collapse
Affiliation(s)
- Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - J. Wally Grant
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, United States
| | - Ann M. Burgess
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Chris J. Pastras
- The Menière’s Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Daniel J. Brown
- The Menière’s Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
12
|
Farrell SF, Osmotherly PG, Cornwall J, Rivett DA. Immunohistochemical investigation of nerve fiber presence and morphology in elderly cervical spine meniscoids. Spine J 2016; 16:1244-1252. [PMID: 27298080 DOI: 10.1016/j.spinee.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/18/2016] [Accepted: 06/06/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Innervation of anatomical structures is fundamental to their capacity to generate nociceptive impulses. Cervical spine meniscoids are hypothesized to be contributors to neck pain; however, their innervation is not comprehensively understood. PURPOSE This study aimed to examine the presence and morphology of nerve fibers within cervical spine meniscoids and adjacent joint capsules. STUDY DESIGN This is a cross-sectional study. PATIENT SAMPLE The sample consists of cervical hemispines of 12 embalmed cadavers (mean [standard deviation] age 82.9 [6.5] years, six female, six left). Either the right or the left half of the cervical spine (hemispine) of each cadaver was included in the sample. So six left sides and six right sides of the cadaver cervical spines made up the 12 hemispines that formed the sample. METHODS Cervical spine meniscoids and adjacent joint capsules were excised from lateral atlantoaxial and cervical zygapophyseal (C2-C3 to C6-C7) joints (n=67), then paraffin embedded. Meniscoids were sectioned sagittally (5 µm), slide mounted, and immunohistochemistry was performed using primary antibodies to neurofilament heavy (NF-H) and pan-neurofilament (Pan-NF) to identify nerve tissue. The study was supported by institutional graduate student funding. The authors have no conflicts of interest to declare. RESULTS Seventy-seven meniscoids (23 lateral atlantoaxial, 54 cervical zygapophyseal) were extracted and processed (154 sections in total). Sixty-four individual nerve fiber bundles were identified (26 NF-H positive, 38 Pan-NF positive) from 14 meniscoids. Nerves immunoreactive to both NF-H and Pan-NF were identified in 13 of 77 meniscoids (10 of 14 lateral atlantoaxial joint) from 11 joints (eight cadavers). Nerves were always located in joint capsules except three exclusively Pan-NF immunoreactive nerve fiber bundles from two adipose meniscoids. CONCLUSIONS The low nerve prevalence in elderly cervical spine meniscoids, with nerves only found in two adipose type meniscoids, suggests these structures may play a minimal role in cervical nociception generation in this demographic. The joint capsules, which were more frequently innervated, appear to be more likely generators of nociception in the elderly. Joint capsule nerves were mostly NF-H positive, indicating potential Aδ-fiber presence.
Collapse
Affiliation(s)
- Scott F Farrell
- Faculty of Health and Medicine, The University of Newcastle, University Drive, Callghan 2308, NSW, Australia.
| | - Peter G Osmotherly
- Faculty of Health and Medicine, The University of Newcastle, University Drive, Callghan 2308, NSW, Australia
| | - Jon Cornwall
- CS 705 Level 7, Wellington Hospital Clinical Services Block, Graduate School of Nursing, Midwifery and Health Victoria University of Wellington, Wellington 6021, New Zealand; Department of Physiology, University of Otago, 270 Great King St, Dunedin 9016, New Zealand; Centre for Health Sciences, Zurich University of Applied Science, Technikumstrasse 71, 8401 Winterthur, Zurich, Switzerland
| | - Darren A Rivett
- Faculty of Health and Medicine, The University of Newcastle, University Drive, Callghan 2308, NSW, Australia
| |
Collapse
|
13
|
Schier P, Handler M, Baumgarten D, Baumgartner C. Simulation and evaluation of stimulation scenarios for targeted vestibular nerve excitation. CURRENT DIRECTIONS IN BIOMEDICAL ENGINEERING 2016. [DOI: 10.1515/cdbme-2016-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Recent studies show that vestibular implants have the potential to compensate the loss of functionality of the organ of equilibrium. The objective of this study was the development of a simulation framework which estimates the capability of various electrode arrangements and stimulation waveforms to selectively excite the ampullary nerves in the vestibular system. The choice of electrode configuration and stimulation waveform shows a significant influence in resulting selectivity, energy expenditure and injected charge in our simulations. This simulation environment could be beneficial in the development of safe and selective stimulation electrode designs.
Collapse
Affiliation(s)
- Peter Schier
- Institute of Electrical and Biomedical Engineering, UMIT, Hall in Tirol, Austria
| | - Michael Handler
- Institute of Electrical and Biomedical Engineering, UMIT, Hall in Tirol, Austria
| | - Daniel Baumgarten
- Institute of Electrical and Biomedical Engineering, UMIT, Hall in Tirol, Austria
| | | |
Collapse
|
14
|
Abstract
In this review, we provide a description of the recent methods used for immunohistochemical staining of the human inner ear using formalin-fixed frozen, paraffin and celloidin-embedded sections. We also show the application of these immunohistochemical methods in auditory and vestibular endorgans microdissected from the human temporal bone. We compare the advantages and disadvantages of immunohistochemistry (IHC) in the different types of embedding media. IHC in frozen and paraffin-embedded sections yields a robust immunoreactive signal. Both frozen and paraffin sections would be the best alternative in the case where celloidin-embedding technique is not available. IHC in whole endorgans yields excellent results and can be used when desiring to detect regional variations of protein expression in the sensory epithelia. One advantage of microdissection is that the tissue is processed immediately and IHC can be made within 1 week of temporal bone collection. A second advantage of microdissection is the excellent preservation of both morphology and antigenicity. Using celloidin-embedded inner ear sections, we were able to detect several antigens by IHC and immunofluorescence using antigen retrieval methods. These techniques, previously applied only in animal models, allow for the study of numerous important proteins expressed in the human temporal bone potentially opening up a new field for future human inner ear research.
Collapse
|
15
|
Marianelli P, Capogrosso M, Bassi Luciani L, Panarese A, Micera S. A Computational Framework for Electrical Stimulation of Vestibular Nerve. IEEE Trans Neural Syst Rehabil Eng 2015; 23:897-909. [DOI: 10.1109/tnsre.2015.2407861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Abstract
Anatomically incomplete spinal cord injuries are often followed by considerable functional recovery in patients and animal models, largely because of processes of neuronal plasticity. In contrast to the corticospinal system, where sprouting of fibers and rearrangements of circuits in response to lesions have been well studied, structural adaptations within descending brainstem pathways and intraspinal networks are poorly investigated, despite the recognized physiological significance of these systems across species. In the present study, spontaneous neuroanatomical plasticity of severed bulbospinal systems and propriospinal neurons was investigated following unilateral C4 spinal hemisection in adult rats. Injection of retrograde tracer into the ipsilesional segments C3-C4 revealed a specific increase in the projection from the ipsilesional gigantocellular reticular nucleus in response to the injury. Substantial regenerative fiber sprouting of reticulospinal axons above the injury site was demonstrated by anterograde tracing. Regrowing reticulospinal fibers exhibited excitatory, vGLUT2-positive varicosities, indicating their synaptic integration into spinal networks. Reticulospinal fibers formed close appositions onto descending, double-midline crossing C3-C4 propriospinal neurons, which crossed the lesion site in the intact half of the spinal cord and recrossed to the denervated cervical hemicord below the injury. These propriospinal projections around the lesion were significantly enhanced after injury. Our results suggest that severed reticulospinal fibers, which are part of the phylogenetically oldest motor command system, spontaneously arborize and form contacts onto a plastic propriospinal relay, thereby bypassing the lesion. These rearrangements were accompanied by substantial locomotor recovery, implying a potential physiological relevance of the detour in restoration of motor function after spinal injury.
Collapse
|
17
|
Mu-opioid receptor (MOR) expression in the human spiral ganglia. Brain Res 2014; 1590:10-9. [PMID: 25278190 DOI: 10.1016/j.brainres.2014.09.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 09/01/2014] [Accepted: 09/22/2014] [Indexed: 11/22/2022]
Abstract
Opioid peptides and their receptors have been localized to the inner ear of the rat and guinea pig mammalian models. The expression of mu opioid receptor (MOR) in the human and mouse cochlea is not yet known. We present MOR protein localization by immunohistochemistry and mRNA expression by in situ hybridization in the human and mouse spiral ganglia (SG) and organ of Corti. In the human most of the (SG) neurons were immunoreactive; a subset was non-immunoreactive. In situ hybridization revealed a similar labeling pattern across the neurons of the SG. A similar distribution MOR pattern was demonstrated in the mouse SG. In the mouse organ of Corti MOR was expressed in inner and outer hair cells. Fibers underneath the inner hair cells were also MOR immunoreactive. These results are consistent with a role of MOR in neuromodulation of the auditory periphery. The present results show that the expression of MORs is well-conserved across multiple mammalian species, indicative of an important role in auditory processing.
Collapse
|
18
|
Lim R, Drury HR, Camp AJ, Tadros MA, Callister RJ, Brichta AM. Preliminary characterization of voltage-activated whole-cell currents in developing human vestibular hair cells and calyx afferent terminals. J Assoc Res Otolaryngol 2014; 15:755-66. [PMID: 24942706 PMCID: PMC4164689 DOI: 10.1007/s10162-014-0471-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/28/2014] [Indexed: 11/28/2022] Open
Abstract
We present preliminary functional data from human vestibular hair cells and primary afferent calyx terminals during fetal development. Whole-cell recordings were obtained from hair cells or calyx terminals in semi-intact cristae prepared from human fetuses aged between 11 and 18 weeks gestation (WG). During early fetal development (11–14 WG), hair cells expressed whole-cell conductances that were qualitatively similar but quantitatively smaller than those observed previously in mature rodent type II hair cells. As development progressed (15–18 WG), peak outward conductances increased in putative type II hair cells but did not reach amplitudes observed in adult human hair cells. Type I hair cells express a specific low-voltage activating conductance, GK,L. A similar current was first observed at 15 WG but remained relatively small, even at 18 WG. The presence of a “collapsing” tail current indicates a maturing type I hair cell phenotype and suggests the presence of a surrounding calyx afferent terminal. We were also able to record from calyx afferent terminals in 15–18 WG cristae. In voltage clamp, these terminals exhibited fast inactivating inward as well as slower outward conductances, and in current clamp, discharged a single action potential during depolarizing steps. Together, these data suggest the major functional characteristics of type I and type II hair cells and calyx terminals are present by 18 WG. Our study also describes a new preparation for the functional investigation of key events that occur during maturation of human vestibular organs.
Collapse
Affiliation(s)
- Rebecca Lim
- The School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, 2308, Australia,
| | | | | | | | | | | |
Collapse
|
19
|
Ahmed S, Vorasubin N, Lopez IA, Hosokawa S, Ishiyama G, Ishiyama A. The expression of glutamate aspartate transporter (GLAST) within the human cochlea and its distribution in various patient populations. Brain Res 2013; 1529:134-42. [PMID: 23850643 DOI: 10.1016/j.brainres.2013.06.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/14/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
Glutamate plays an important role in the central nervous system as an excitatory neurotransmitter. However, its abundance can lead to excitotoxicity which necessitates the proper function of active glutamate transporters. The glutamate-aspartate transporter (GLAST) has been shown to exist and function within non-human cochlear specimens regulating the inner ear glutamate concentration. In this study, we examined human cochleas from formalin-fixed celloidin-embedded temporal bone specimens of three different types of patients (Meniere's disease, normal controls, and other otopathologic conditions) and examined the differential expression of GLAST in the spiral ligament of the basal, middle, and apical turns of the cochlea. Immunohistochemical staining was performed with polyclonal antibodies against GLAST and image analysis was carried out with the Image J analysis software. In contrast to other studies with non-human specimens, GLAST was expressed in the spiral ligament fibrocytes but was not detected in the satellite cells of the spiral ganglia or supporting cells of the Organ of Corti in the human cochlea. Our data also showed that GLAST expression significantly differs in the basal and apical turns of the cochlea. Lastly, post-hoc analysis showed a difference in the GLAST immunoreactive area of patients with Meniere's disease when compared to that of patients with other otopathologic conditions-such as presbycusis or ototoxicity. These results may potentially lead to further understanding of different disease states that affect hearing.
Collapse
Affiliation(s)
- Sameer Ahmed
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1624, USA
| | | | | | | | | | | |
Collapse
|
20
|
Dall'Oglio A, Xavier LL, Hilbig A, Ferme D, Moreira JE, Achaval M, Rasia-Filho AA. Cellular components of the human medial amygdaloid nucleus. J Comp Neurol 2013; 521:589-611. [PMID: 22806548 DOI: 10.1002/cne.23192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 04/22/2012] [Accepted: 07/10/2012] [Indexed: 12/24/2022]
Abstract
The medial nucleus (Me) is a superficial component of the amygdaloid complex. Here we assessed the density and morphology of the neurons and glial cells, the glial fibrillary acidic protein (GFAP) immunoreactivity, and the ultrastructure of the synaptic sites in the human Me. The optical fractionator method was applied. The Me presented an estimated mean neuronal density of 1.53 × 10⁵ neurons/mm³ (greater in the left hemisphere), more glia (72% of all cells) than neurons, and a nonneuronal:neuronal ratio of 2.7. Golgi-impregnated neurons had round or ovoid, fusiform, angular, and polygonal cell bodies (10-30 μm in diameter). The length of the dendrites varied, and pleomorphic spines were found in sparsely spiny or densely spiny cells (1.5-5.2 spines/dendritic μm). The axons in the Me neuropil were fine or coarsely beaded, and fibers showed simple or notably complex collateral terminations. The protoplasmic astrocytes were either isolated or formed small clusters and showed GFAP-immunoreactive cell bodies and multiple branches. Furthermore, we identified both asymmetrical (with various small, clear, round, electron-lucent vesicles and, occasionally, large, dense-core vesicles) and symmetrical (with small, flattened vesicles) axodendritic contacts, also including multisynaptic spines. The astrocytes surround and may compose tripartite or tetrapartite synapses, the latter including the extracellular matrix between the pre- and the postsynaptic elements. Interestingly, the terminal axons exhibited a glomerular-like structure with various asymmetrical contacts. These new morphological data on the cellular population and synaptic complexity of the human Me can contribute to our knowledge of its role in health and pathological conditions.
Collapse
Affiliation(s)
- Aline Dall'Oglio
- Neuroscience Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre 90170-050-RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
21
|
Balaker AE, Ishiyama P, Lopez IA, Ishiyama G, Ishiyama A. Immunocytochemical Localization of the Translocase of the Outer Mitochondrial Membrane (Tom20) in the Human Cochlea. Anat Rec (Hoboken) 2012; 296:326-32. [DOI: 10.1002/ar.22622] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Curthoys IS, Macdougall HG. What galvanic vestibular stimulation actually activates. Front Neurol 2012; 3:117. [PMID: 22833733 PMCID: PMC3400934 DOI: 10.3389/fneur.2012.00117] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/06/2012] [Indexed: 01/08/2023] Open
Abstract
In a recent paper in Frontiers Cohen et al. (2012) asked “What does galvanic vestibular stimulation actually activate?” and concluded that galvanic vestibular stimulation (GVS) causes predominantly otolithic behavioral responses. In this Perspective paper we show that such a conclusion does not follow from the evidence. The evidence from neurophysiology is very clear: galvanic stimulation activates primary otolithic neurons as well as primary semicircular canal neurons (Kim and Curthoys, 2004). Irregular neurons are activated at lower currents. The answer to what behavior is activated depends on what is measured and how it is measured, including not just technical details, such as the frame rate of video, but the exact experimental context in which the measurement took place (visual fixation vs total darkness). Both canal and otolith dependent responses are activated by GVS.
Collapse
Affiliation(s)
- Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, University of Sydney NSW, Australia
| | | |
Collapse
|
23
|
Karmali F, Merfeld DM. A distributed, dynamic, parallel computational model: the role of noise in velocity storage. J Neurophysiol 2012; 108:390-405. [PMID: 22514288 PMCID: PMC3404789 DOI: 10.1152/jn.00883.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 04/13/2012] [Indexed: 11/22/2022] Open
Abstract
Networks of neurons perform complex calculations using distributed, parallel computation, including dynamic "real-time" calculations required for motion control. The brain must combine sensory signals to estimate the motion of body parts using imperfect information from noisy neurons. Models and experiments suggest that the brain sometimes optimally minimizes the influence of noise, although it remains unclear when and precisely how neurons perform such optimal computations. To investigate, we created a model of velocity storage based on a relatively new technique--"particle filtering"--that is both distributed and parallel. It extends existing observer and Kalman filter models of vestibular processing by simulating the observer model many times in parallel with noise added. During simulation, the variance of the particles defining the estimator state is used to compute the particle filter gain. We applied our model to estimate one-dimensional angular velocity during yaw rotation, which yielded estimates for the velocity storage time constant, afferent noise, and perceptual noise that matched experimental data. We also found that the velocity storage time constant was Bayesian optimal by comparing the estimate of our particle filter with the estimate of the Kalman filter, which is optimal. The particle filter demonstrated a reduced velocity storage time constant when afferent noise increased, which mimics what is known about aminoglycoside ablation of semicircular canal hair cells. This model helps bridge the gap between parallel distributed neural computation and systems-level behavioral responses like the vestibuloocular response and perception.
Collapse
Affiliation(s)
- Faisal Karmali
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, and Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
24
|
Xing Y, Samuvel DJ, Stevens SM, Dubno JR, Schulte BA, Lang H. Age-related changes of myelin basic protein in mouse and human auditory nerve. PLoS One 2012; 7:e34500. [PMID: 22496821 PMCID: PMC3320625 DOI: 10.1371/journal.pone.0034500] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/06/2012] [Indexed: 11/19/2022] Open
Abstract
Age-related hearing loss (presbyacusis) is the most common type of hearing impairment. One of the most consistent pathological changes seen in presbyacusis is the loss of spiral ganglion neurons (SGNs). Defining the cellular and molecular basis of SGN degeneration in the human inner ear is critical to gaining a better understanding of the pathophysiology of presbyacusis. However, information on age-related cellular and molecular alterations in the human spiral ganglion remains scant, owing to the very limited availably of human specimens suitable for high resolution morphological and molecular analysis. This study aimed at defining age-related alterations in the auditory nerve in human temporal bones and determining if immunostaining for myelin basic protein (MBP) can be used as an alternative approach to electron microscopy for evaluating myelin degeneration. For comparative purposes, we evaluated ultrastructural alternations and changes in MBP immunostaining in aging CBA/CaJ mice. We then examined 13 temporal bones from 10 human donors, including 4 adults aged 38-46 years (middle-aged group) and 6 adults aged 63-91 years (older group). Similar to the mouse, intense immunostaining of MBP was present throughout the auditory nerve of the middle-aged human donors. Significant declines in MBP immunoreactivity and losses of MBP(+) auditory nerve fibers were observed in the spiral ganglia of both the older human and aged mouse ears. This study demonstrates that immunostaining for MBP in combination with confocal microscopy provides a sensitive, reliable, and efficient method for assessing alterations of myelin sheaths in the auditory nerve. The results also suggest that myelin degeneration may play a critical role in the SGN loss and the subsequent decline of the auditory nerve function in presbyacusis.
Collapse
Affiliation(s)
- Yazhi Xing
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Devadoss J. Samuvel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Shawn M. Stevens
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Judy R. Dubno
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Bradley A. Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
25
|
|
26
|
Duong T, Lopez IA, Ishiyama A, Ishiyama G. Immunocytochemical distribution of WARP (von Willebrand A domain-related protein) in the inner ear. Brain Res 2010; 1367:50-61. [PMID: 20971096 DOI: 10.1016/j.brainres.2010.10.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 11/18/2022]
Abstract
The basic components of the epithelial, perineural, and perivascular basement membranes in the inner ear have been well-documented in several animal models and in the human inner ear. The von Willebrand A domain-related protein (WARP) is an extracellular matrix molecule with restricted expression in cartilage, and a subset of basement membranes in peripheral nerves, muscle, and central nervous system vasculature. It has been suggested that WARP has an important role in maintaining the blood-brain barrier. To date no studies on WARP distribution have been performed in the inner ear, which is equipped with an intricate vasculature network. In the present study, we determined the distribution of WARP by immunocytochemistry in the human inner ear using auditory and vestibular endorgans microdissected from human temporal bones obtained at autopsy. All subjects (n=5, aged 55-87years old) had documented normal auditory and vestibular function. We also determined the WARP immunolocalization in the mouse inner ear. WARP immunoreactivity localized to the vasculature throughout the stroma of the cristae ampullaris, the maculae utricle, and saccule in the human and mouse. In the human and mouse inner ear, WARP immunoreactivity delineated blood vessels located in the stria vascularis, spiral ligament, sub-basilar region, stromal tissue, and the spiral and vestibular ganglia. The distinct localization of WARP in the inner ear vasculature suggests an important role in maintaining its integrity. In addition, WARP allows delineation of microvessels in the inner ear allowing the study of vascular pathology in the development of otological diseases.
Collapse
Affiliation(s)
- Trac Duong
- Surgery Department, Division of Head and Neck, David Geffen School of Medicine, UCLA, Los Angeles California, USA
| | | | | | | |
Collapse
|
27
|
Abstract
OBJECTIVE Advances in cochlear hair-cell regeneration, neural regeneration, and genetic therapy encourage continued development of diagnostic tests that can accurately specify the appropriate target within the cochlea and auditory nerve for delivery of therapeutic agents. In this study, we test the hypothesis that the morphology of the acoustically evoked compound action potential (CAP) may reflect the condition of the auditory nerve in individuals with sensorineural hearing loss. DESIGN CAPs to tone burst stimuli at octave frequencies from 1 to 16 kHz were recorded at low- to high-stimulus levels from sedated Mongolian gerbils with partial lesions of the auditory nerve (n = 10). Distortion-product otoacoustic emissions were measured to ensure preservation of normal outer hair-cell function. CAPs were analyzed with conventional measures of N1 latency and amplitude and by fitting the CAPs with a mathematical model that includes a parameter (N) representing the number of nerve fibers contributing to the CAP and a parameter (f) representing the oscillation frequency of the CAP waveform. Nerve fiber density and percent normal nerve area were estimated from cross-sections of the auditory nerve bundle. RESULTS Despite substantial lesions in the auditory nerve, CAP thresholds remained within normal or were only moderately elevated and were not correlated with histological measures of nerve fiber density and normal nerve area. At high-stimulus levels, the model parameter N was strongly correlated with nerve fiber density for three of the five test frequencies and with normal nerve area for all five test frequencies. Correlations between N1 amplitude measures at high-stimulus levels and our histological measures were also significant for the majority of test frequencies, but they were generally weaker than the correlations for the model parameter N. The model parameter f, at low- and high-stimulus levels, was also positively correlated with measures of normal nerve area. CONCLUSIONS Consistent with previous findings, physiological measures of threshold were not correlated with partial lesions of the auditory nerve. The model parameter N at high-stimulus levels was strongly correlated with normal nerve area suggesting, that it is a good predictor of auditory nerve survival. The model parameter N also seemed to be a better predictor of the condition of the auditory nerve than the conventional measure of N1 amplitude. Because the model parameter f was correlated with normal nerve area at low- and high-stimulus levels, it may provide information on the functional status of the auditory nerve.
Collapse
|
28
|
Ishiyama A, Mowry SE, Lopez IA, Ishiyama G. Immunohistochemical distribution of basement membrane proteins in the human inner ear from older subjects. Hear Res 2009; 254:1-14. [PMID: 19348877 DOI: 10.1016/j.heares.2009.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 03/02/2009] [Accepted: 03/27/2009] [Indexed: 11/27/2022]
Abstract
The immunolocalization of several basement membrane (BM) proteins was investigated in vestibular endorgans microdissected from temporal bones obtained from subjects with a documented normal auditory and vestibular function (n=5, average age=88 years old). Fluorescent immunostaining using antibodies directed at collagen IV alpha 2, nidogen-1, laminin-beta2, alpha-dystroglycan, and tenascin-C was applied to cryosections from human cochlea, cristae ampullares, utricular and saccular maculae. Collagen IV alpha 2, nidogen-1, and laminin-beta2 localized to all subepithelial cochlear BMs, Reissner's membrane, strial and spiral ligamental perineural and perivascular BMs, and the spiral limbus. Tenascin-C localized to the basilar membrane and the osseous spiral lamina. alpha-Dystroglycan localized to most cochlear BMs except those in the spiral ligament, basilar membrane and spiral limbus. Collagen IV, nidogen-1, and laminin-beta2 localized to the subepithelial BMs of the maculae and cristae ampullares, and the perineural and perivascular BMs within the underlying stroma. The BM underlying the transitional and dark cell region of the cristae ampullares also expressed collagen IV, nidogen-1, and laminin-beta2. Tenascin-C localized to the subepithelial BMs of the utricular maculae and cristae ampullares, and to calyx-like profiles throughout the vestibular epithelium, but not to the perineural and perivascular BMs. alpha-Dystroglycan colocalized with aquaporin-4 in the basal vestibular supporting cell, and was also expressed in the subepithelial BMs, as well as perivascular and perineural BMs. This study provides the first comprehensive immunolocalization of these ECM proteins in the human inner ear. The validity of the rodent models for inner ear disorders secondary to BM pathologies was confirmed as there is a high degree of conservation of expression of these proteins in the human inner ear. This information is critical to begin to unravel the role that BMs may play in human inner ear physiology and audiovestibular pathologies.
Collapse
Affiliation(s)
- Akira Ishiyama
- Department of Surgery, Division of Head and Neck, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1769, USA
| | | | | | | |
Collapse
|
29
|
O'Malley JT, Merchant SN, Burgess BJ, Jones DD, Adams JC. Effects of fixative and embedding medium on morphology and immunostaining of the cochlea. Audiol Neurootol 2008; 14:78-87. [PMID: 18827478 DOI: 10.1159/000158536] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 06/26/2008] [Indexed: 12/20/2022] Open
Abstract
The localization of proteins by immunostaining is a powerful method to investigate otologic disorders. However, the use of fixatives and embedding media (necessary for the preservation of morphology) can obscure antigens, making it difficult to perform immunoassays. We performed a systematic investigation of the effects of fixative and embedding medium on morphology and immunostaining of the mouse cochlea. Three different fixative solutions [4% formaldehyde (F), 4% formaldehyde + 1% acetic acid (FA), and 4% formaldehyde + 1% acetic acid + 0.1% glutaraldehyde (FGA)] and 3 different embedding media (paraffin, polyester wax, and celloidin) were used. Morphology was assessed using light microscopy. Immunostaining was studied using a panel of 6 antibodies (to prostaglandin D synthase, aquaporin 1, connective tissue growth factor, 200-kDa neurofilament, tubulin and Na(+),K(+)-ATPase). Preservation of morphology was suboptimal with paraffin, adequate with polyester wax and superb with celloidin. Immunostaining was successful using all 6 antibodies in all 3 fixatives and all 3 embedding media. While there were differences in strength of signal and localization of antigen between the 3 fixatives, overall, FA and FGA gave the most uniform results. For a given fixative and antibody, there was surprisingly little difference in the quality of immunostaining between celloidin and paraffin, while results in polyester wax were not as good in some cases. These results suggest that celloidin may be the embedding medium of choice for both morphological and pathological studies, including immunostaining when morphology must be optimized.
Collapse
|
30
|
Rocha MIM, Mestriner RG, Hermel EES, Xavier LL, Rasia-Filho AA, Achaval M. Neuronal somatic volume of posteroventral medial amygdala cells from males and across the estrous cycle of female rats. Neurosci Lett 2007; 420:110-5. [PMID: 17517473 DOI: 10.1016/j.neulet.2007.04.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 04/17/2007] [Accepted: 04/20/2007] [Indexed: 01/22/2023]
Abstract
The posteroventral medial amygdala (MePV) is a brain area where gonadal hormones have neurotrophic effects in rats. The aim of the present study was to estimate the MePV neuronal somatic volume from males and diestrus, proestrus and estrus female Wistar rats (n=5 in each group) in an attempt to identify a possible sexual dimorphism in this parameter. The effect of laterality was also evaluated. The brains of adult animals were sectioned (1 microm), stained with 1% toluidine blue and serial-section reconstructions of each neuronal cell body were obtained. Images from both left and right MePV were studied and the somatic volume was estimated using the Cavalieri method in combination with the point counting technique. Results were compared according to sex and phase of the estrous cycle using a two-way ANOVA for repeated measures followed by the least significance difference test. Mean neuronal somatic volume showed a statistical difference among groups and the post hoc comparisons revealed that males present higher values than females in proestrus and estrus (p<0.05). On the other hand, neither a laterality effect (p=0.6) nor an interaction between groups and laterality (p=0.4) were found. Our results indicate that cell body volume in the MePV is distinct when comparing males to females in the different phases of the estrous cycle. Through dynamic changes modulated by sex steroids, it is likely that this morphological plasticity within the MePV may be affecting the functioning of local neurons and their integrated roles in neural circuits relevant for neuroendocrine control and reproductive behaviors.
Collapse
Affiliation(s)
- M Izabel M Rocha
- Programa de Pós-graduação em Ciências Biológicas - Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Ishiyama G, Tokita J, Lopez I, Tang Y, Ishiyama A. Unbiased stereological estimation of the spiral ligament and stria vascularis volumes in aging and Ménière's disease using archival human temporal bones. J Assoc Res Otolaryngol 2007; 8:8-17. [PMID: 17160359 PMCID: PMC2538411 DOI: 10.1007/s10162-006-0057-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 09/06/2006] [Accepted: 10/01/2006] [Indexed: 11/26/2022] Open
Abstract
The present study applies the unbiased stereological technique-Cavalieri principle to measure the volumes of the stria vascularis (SV) and the spiral ligament (SL) using postmortem archival human temporal bones from normal young and older subjects and subjects with Ménière's disease. Normative data was obtained from subjects without ages ranging from 15 to 84 years old who had no history of audiovestibular disease (N=25). For comparison purposes, the normative specimens were divided into three groups: group 1 (n=8) had ages ranging from 15 to 38 years old, average age=23.9; group 2 (n=8) had ages ranging from 51 to 59 years old, average age=55.1; group 3 (n=9) had ages ranging from 64 to 84 years old, average age=74.3. The average SV volume of group 3 (0.479 mm3) was significantly lower than that of group 1 (0.705 mm3) (p<0.0005) and was significantly lower than that of group 2 (0.603 mm3) (p=0.01). The average SL volume of group 3 (8.42 mm3) was significantly lower than that of group 1 (9.54 mm3) (p<0.05), but was not significantly lower than that of group 2 (8.58 mm3). Five subjects with Ménière's disease, confirmed by histopathological examination (ages ranging from 63 to 91 years old, average age=73.4), were studied. The average SV volume in Ménière's subjects (0.378 mm3) was significantly lower than age-matched controls (p<0.05). The average SL volume in Ménière's subjects (7.01 mm3) was also significantly lower than age-matched controls (p<0.05). The SV and SL volumes were unaffected by gender. The present study demonstrates for the first time the use of the unbiased stereological technique-Cavalieri principle-as a reliable and efficient method to obtain volumetric estimates of the SV and the SL by using archival human temporal bone specimens.
Collapse
Affiliation(s)
- Gail Ishiyama
- Neurology Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
32
|
Lopez IA, Ishiyama G, Lee M, Baloh RW, Ishiyama A. Immunohistochemical localization of aquaporins in the human inner ear. Cell Tissue Res 2007; 328:453-60. [PMID: 17318586 DOI: 10.1007/s00441-007-0380-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 01/10/2007] [Indexed: 10/23/2022]
Abstract
We report the immunolocalization of aquaporins (AQPs) 1, 4, and 6 in the human auditory and vestibular endorgans. A rapid protocol was applied to audiovestibular endorgans microdissected from postmortem human temporal bones from six subjects (ages ranging from 75 to 97 years) with no history of audiovestibular disease. Temporal bones were fixed in formalin, and the endorgans were immediately microdissected. Cryostat sections were obtained from audiovestibular endorgans and were subjected to double-immunohistochemical staining with antibodies against AQPs and several cellular markers. In the human cochlea, AQP1 immunoreactivity was localized to the fibrocytes of the spiral ligament and the sub-basilar tympanic cells; AQP4 immunoreactivity was localized to the outer sulcus cells, Hensen's cells, and Claudius' cells; AQP6 immunoreactivity was localized to the apical portion of interdental cells in the spiral limbus. In the vestibular endorgans (macula utriculi and cristae), AQP1 was localized to fibrocytes and blood vessels of the underlying stroma and trabecular perilymphatic tissue; AQP4 immunoreactivity was localized to the basal pole of vestibular supporting cells; AQP6 was localized to the apical portion of vestibular supporting cells. Cochlear and vestibular hair cells and nerve fibers were not immunoreactive for any AQP. Supporting cells were identified with antibodies against glial fibrilar acidic protein. Nerve fibers and terminals were identified with antibodies against neurofilaments and Na(+)K(+)ATPase. The high degree of conservation of AQP expression in the human inner ear suggests that AQPs play a critical role in inner ear water homeostasis.
Collapse
Affiliation(s)
- Ivan A Lopez
- Division of Head and Neck Surgery CHS 62-132, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
33
|
Rocha-Sanchez SMS, Morris KA, Kachar B, Nichols D, Fritzsch B, Beisel KW. Developmental expression of Kcnq4 in vestibular neurons and neurosensory epithelia. Brain Res 2007; 1139:117-25. [PMID: 17292869 PMCID: PMC1858668 DOI: 10.1016/j.brainres.2006.12.087] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Revised: 12/19/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
Sensory signal transduction of the inner ear afferent neurons and hair cells (HCs) requires numerous ionic conductances. The KCNQ4 voltage-gated M-type potassium channel is thought to set the resting membrane potential in cochlear HCs. Here we describe the spatiotemporal expression patterns of Kcnq4 and the associated alternative splice forms in the HCs of vestibular labyrinth. Whole mount immunodetection, qualitative and quantitative RT-PCR were performed to characterize the expression patterns of Kcnq4 transcripts and proteins. A topographical expression and upregulation of Kcnq4 during development was observed and indicated that Kcnq4 is not restricted to either a specific vestibular structure or cell type, but is present in afferent calyxes, vestibular ganglion neurons, and both type I and type II HCs. Of the four alternative splice variants, Kcnq4_v1 transcripts were the predominant form in the HCs, while Kcnq4_v3 was the major variant in the vestibular neurons. Differential quantitative expression of Kcnq4_v1 and Kcnq4_v3 were respectively detected in the striolar and extra-striolar regions of the utricle and saccule. Analysis of gerbils and rats yielded results similar to those obtained in mice, suggesting that the spatiotemporal expression pattern of Kcnq4 in the vestibular system is conserved among rodents. Analyses of vestibular HCs of Bdnf conditional mutant mice, which are devoid of any innervation, demonstrate that regulation of Kcnq4 expression in vestibular HCs is independent of innervation.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Gene Expression Regulation, Developmental
- Hair Cells, Vestibular/cytology
- Hair Cells, Vestibular/metabolism
- Immunohistochemistry
- KCNQ Potassium Channels/genetics
- KCNQ Potassium Channels/metabolism
- Mice
- Mice, Mutant Strains
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Orientation/physiology
- RNA, Messenger/analysis
- Tissue Distribution
- Vestibule, Labyrinth/cytology
- Vestibule, Labyrinth/growth & development
- Vestibule, Labyrinth/innervation
- Vestibule, Labyrinth/metabolism
Collapse
Affiliation(s)
- Sonia M S Rocha-Sanchez
- Department of Oral Biology, Creighton University School of Dentistry, 2500 California Plaza, Omaha, NE 68178, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Pagedar NA, Wang W, Chen DHC, Davis RR, Lopez I, Wright CG, Alagramam KN. Gene expression analysis of distinct populations of cells isolated from mouse and human inner ear FFPE tissue using laser capture microdissection--a technical report based on preliminary findings. Brain Res 2006; 1091:289-99. [PMID: 16529721 DOI: 10.1016/j.brainres.2006.01.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/10/2006] [Accepted: 01/13/2006] [Indexed: 01/22/2023]
Abstract
Laser Capture Microdissection (LCM) allows microscopic procurement of specific cell types from tissue sections that can then be used for gene expression analysis. We first tested this method with sections of adult mouse inner ears and subsequently applied it to human inner ear sections. The morphology of the various cell types within the inner ear is well preserved in formalin fixed paraffin embedded (FFPE) sections, making it easier to identify cell types and their boundaries. Recovery of good quality RNA from FFPE sections can be challenging, however, recent studies in cancer research demonstrated that it is possible to carry out gene expression analysis of FFPE material. Thus, a method developed using mouse FFPE tissue can be applied to human archival temporal bones. This is important because the majority of human temporal bone banks have specimens preserved in formalin and a technique for retrospective analysis of human archival ear tissue is needed. We used mouse FFPE inner ear sections to procure distinct populations of cells from the various functional domains (organ of Corti, spiral ganglion, etc.) by LCM. RNA was extracted from captured cells, amplified, and assessed for quality. Expression of selected genes was tested by RT-PCR. In addition to housekeeping genes, we were able to detect cell type specific markers, such as Myosin 7a, p27(kip1) and neurofilament gene transcripts that confirmed the likely composition of cells in the sample. We also tested the method described above on FFPE sections from human crista ampullaris. These sections were approximately a year old. Populations of cells from the epithelium and stroma were collected and analyzed independently for gene expression. The method described here has potential use in many areas of hearing research. For example, following exposure to noise, ototoxic drugs or age, it would be highly desirable to analyze gene expression profiles of selected populations of cells within the organ of Corti or spiral ganglion cells rather than a mixed population of cells from whole inner ear tissue. Also, this method can be applied for analysis of human archival ear tissue.
Collapse
Affiliation(s)
- Nitin A Pagedar
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals of Cleveland, Lakeside 4500, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Lopez I, Ishiyama G, Tang Y, Tokita J, Baloh RW, Ishiyama A. Regional estimates of hair cells and supporting cells in the human crista ampullaris. J Neurosci Res 2006; 82:421-31. [PMID: 16211560 DOI: 10.1002/jnr.20652] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regional estimates of type I and type II vestibular hair cells (HC) and supporting cell (SC) numbers were obtained from the horizontal crista ampullaris by using design-based stereology in human. Cristae were microdissected from temporal bones obtained post-mortem (N=16, age range 26-98 years). Three groups were made according to age: group 1, n=5, ages between 26 and 67 years, average age 51 years; group 2, n=4, average age 84 years; and group 3, n=7, average age 94 years. For group 1, the average total HC number was 8,005+/-214, corresponding to 4,119+/-107 type I HC, 3,886+/-117 type II HC, and 10,274+/-224 SC. The type I:type II HC ratio was 1.06+/-0.01, and HC density was 0.80 cells/100 microm2. For group 2, the average total HC number was 7,074+/-489, corresponding to 3,733+/-212 type I HC, 3,341+/-314 type II HC, and 9,321+/-858 SC. The type I:II HC ratio was 1.12+/-0.06, and HC density was 0.75 cells/100 microm2. For group 3, the average HC number was 6,009+/-327, corresponding to 3,380+/-223 type I HC, 2,628+/-235 type II HC, and 10,185+/-182 SC. The type I:II HC ratio was 1.34+/-0.10, and HC density was 0.63 cells/100 microm2. A significant decline in type I, type II, and total HC number and density was found in groups 2 and 3, with individuals exceeding the average human life span.
Collapse
Affiliation(s)
- Ivan Lopez
- Surgery Department, Division of Head and Neck, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|