1
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Tajima K, Akanuma SI, Ohishi Y, Yoshida Y, Bauer B, Kubo Y, Inouye M, Hosoya KI. Freshly isolated retinal capillaries to determine efflux transporter function at the inner BRB. J Control Release 2022; 343:434-442. [DOI: 10.1016/j.jconrel.2022.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/11/2022] [Accepted: 01/22/2022] [Indexed: 11/26/2022]
|
3
|
Liu X, Pan G. Roles of Drug Transporters in Blood-Retinal Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:467-504. [PMID: 31571172 PMCID: PMC7120327 DOI: 10.1007/978-981-13-7647-4_10] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Blood-retinal barrier (BRB) includes inner BRB (iBRB) and outer BRB (oBRB), which are formed by retinal capillary endothelial (RCEC) cells and by retinal pigment epithelial (RPE) cells in collaboration with Bruch's membrane and the choriocapillaris, respectively. Functions of the BRB are to regulate fluids and molecular movement between the ocular vascular beds and retinal tissues and to prevent leakage of macromolecules and other potentially harmful agents into the retina, keeping the microenvironment of the retina and retinal neurons. These functions are mainly attributed to absent fenestrations of RCECs, tight junctions, expression of a great diversity of transporters, and coverage of pericytes and glial cells. BRB existence also becomes a reason that systemic administration for some drugs is not suitable for the treatment of retinal diseases. Some diseases (such as diabetes and ischemia-reperfusion) impair BRB function via altering tight junctions, RCEC death, and transporter expression. This chapter will illustrate function of BRB, expressions and functions of these transporters, and their clinical significances.
Collapse
Affiliation(s)
- Xiaodong Liu
- grid.254147.10000 0000 9776 7793School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu China
| | - Guoyu Pan
- grid.9227.e0000000119573309Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, Shanghai China
| |
Collapse
|
4
|
Kubo Y, Akanuma SI, Hosoya KI. Recent advances in drug and nutrient transport across the blood-retinal barrier. Expert Opin Drug Metab Toxicol 2018; 14:513-531. [PMID: 29719158 DOI: 10.1080/17425255.2018.1472764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The blood-retinal barrier (BRB) is the barrier separating the blood and neural retina, and transport systems for low-weight molecules at the BRB are expected to be useful for developing drugs for the treatment of ocular neural disorders and maintaining a healthy retina. Areas covered: This review discusses blood-to-retina and retina-to-blood transport of drugs and nutrients at the BRB. In particular, P-gp (ABCB1/MDR1) has low impact on the transport of cationic drugs at the BRB, suggesting a significant role of novel organic cation transporters in influx and efflux transport of lipophilic cationic drugs between blood and the retina. The transport of pravastatin at the BRB involves transporters including organic anion transporting polypeptide 1a4 (Oatp1a4). Recent studies have shown the involvement of solute carrier transporters in the blood-to-retina transport of nutrients including riboflavin, L-ornithine, β-alanine, and L-histidine, implying that dipeptide transport at the BRB is minimal. Expert opinion: Novel organic cation transport systems and the elimination-dominant transport of pravastatin at the BRB are expected to be useful in systemic drug delivery to the neural retina without CNS side effects. The mechanism of nutrient transport at the BRB is expected to provide a new strategy for delivery of nutrient-mimetic drugs.
Collapse
Affiliation(s)
- Yoshiyuki Kubo
- a Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama , Japan
| | - Shin-Ichi Akanuma
- a Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama , Japan
| | - Ken-Ichi Hosoya
- a Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama , Japan
| |
Collapse
|
5
|
Abstract
PURPOSE To investigate the blood-to-retina verapamil transport at the blood-retinal barrier (BRB). METHODS EverFluor FL Verapamil (EFV) was adopted as the fluorescent probe of verapamil, and its transport across the BRB was investigated with common carotid artery infusion in rats. EFV transport at the inner and outer BRB was investigated with TR-iBRB2 cells and RPE-J cells, respectively. RESULTS The signal of EFV was detected in the retinal tissue during the weak signal of cell impermeable compound. In TR-iBRB2 cells, the localization of EFV differed from that of LysoTracker® Red, a lysosomotropic agent, and was not altered by acute treatment with NH4Cl. In RPE-J cells, the punctate distribution of EFV was partially observed, and this was reduced by acute treatment with NH4Cl. EFV uptake by TR-iBRB2 cells was temperature-dependent and membrane potential- and pH-independent, and was significantly reduced by NH4Cl treatment during no significant effect obtained by different extracellular pH and V-ATPase inhibitor. The EFV uptake by TR-iBRB2 cells was inhibited by cationic drugs, and inhibited by verapamil in a concentration-dependent manner with an IC50 of 98.0 μM. CONCLUSIONS Our findings provide visual evidence to support the significance of carrier-mediated transport in the blood-to-retina verapamil transport at the BRB.
Collapse
|
6
|
Zhang Z, Uchida Y, Hirano S, Ando D, Kubo Y, Auriola S, Akanuma SI, Hosoya KI, Urtti A, Terasaki T, Tachikawa M. Inner Blood–Retinal Barrier Dominantly Expresses Breast Cancer Resistance Protein: Comparative Quantitative Targeted Absolute Proteomics Study of CNS Barriers in Pig. Mol Pharm 2017; 14:3729-3738. [DOI: 10.1021/acs.molpharmaceut.7b00493] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhengyu Zhang
- Division
of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical
Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Yasuo Uchida
- Division
of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical
Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Satoshi Hirano
- Division
of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical
Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Daisuke Ando
- Department
of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama,
Sugitani, Toyama 930-0194, Japan
| | - Yoshiyuki Kubo
- Department
of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama,
Sugitani, Toyama 930-0194, Japan
| | - Seppo Auriola
- Division
of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical
Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
- School
of Pharmacy, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Shin-ichi Akanuma
- Department
of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama,
Sugitani, Toyama 930-0194, Japan
| | - Ken-ichi Hosoya
- Department
of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama,
Sugitani, Toyama 930-0194, Japan
| | - Arto Urtti
- School
of Pharmacy, University of Eastern Finland, Kuopio FI-70211, Finland
- Faculty
of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Tetsuya Terasaki
- Division
of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical
Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Masanori Tachikawa
- Division
of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical
Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
7
|
Kubo Y, Yamamoto M, Matsunaga K, Usui T, Akanuma SI, Hosoya KI. Retina-to-Blood Transport of 1-Methyl-4-Phenylpyridinium Involves Carrier-Mediated Process at the Blood-Retinal Barrier. J Pharm Sci 2017; 106:2583-2591. [DOI: 10.1016/j.xphs.2017.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 12/30/2022]
|
8
|
Fujii S, Setoguchi C, Kawazu K, Hosoya KI. Functional Characterization of Carrier-Mediated Transport of Pravastatin across the Blood-Retinal Barrier in Rats. Drug Metab Dispos 2015; 43:1956-9. [DOI: 10.1124/dmd.115.066266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/01/2015] [Indexed: 01/09/2023] Open
|
9
|
Involvement of the carrier-mediated process in the retina-to-blood transport of spermine at the inner blood-retinal barrier. Exp Eye Res 2014; 124:17-23. [DOI: 10.1016/j.exer.2014.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/21/2014] [Accepted: 05/04/2014] [Indexed: 01/06/2023]
|
10
|
Akanuma SI, Hirose S, Tachikawa M, Hosoya KI. Localization of organic anion transporting polypeptide (Oatp) 1a4 and Oatp1c1 at the rat blood-retinal barrier. Fluids Barriers CNS 2013; 10:29. [PMID: 24083450 PMCID: PMC3850135 DOI: 10.1186/2045-8118-10-29] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/19/2013] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Organic anion transporting polypeptide (Oatp) transporters at the blood-brain barrier (BBB) and the blood-retinal barrier (BRB), which consists of retinal capillary endothelial cells and retinal pigment epithelial cells, are major determinants of the control of anionic drugs into the brain and retina. Although Oatp1a4 (Slco1a4) and Oatp1c1 (Slco1c1) are known to be expressed in the abluminal and luminal membrane of the rat BBB and Oatp1a4 is known to be expressed at the BRB, the expression and localization of Oatp1c1 at the BRB and subcellular localization of Oatp1a4 at the BRB have received little attention. Therefore, the purpose of present study was to determine the cellular and subcellular localization of Oatp1a4 and 1c1 at the BRB. METHODS We used guinea pig polyclonal antibodies to Oatp1a4 and 1c1 for immunoblot and immunohistochemical analysis to determine their cellular and subcellular distributions in the rat retina. We compared these distributions with those of the glucose transporter 1 (GLUT1/Slc2a1). Whole brain, brain capillary fractions and kidney were used as control. RESULTS Oatp1a4 and 1c1 immunoreactivities were detected in the rat retinal capillaries and co-localized with GLUT1, suggesting that both proteins are located on the abluminal and luminal membrane of the retinal capillary endothelial cells. Oatp1a4 and 1c1 immunoreactivities were preferentially detected on the apical and basolateral membrane of rat retinal pigment epithelial cells, respectively, suggesting that Oatp1a4 and 1c1 are localized on the apical membrane and the basolateral membrane of the retinal pigment epithelial cells, respectively. CONCLUSION Oatp1a4 and 1c1 are present at the BRB and contribute to the transcellular transport of amphipathic organic anions across the BRB.
Collapse
Affiliation(s)
- Shin-ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 939-0364, Japan
| | - Shiro Hirose
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 939-0364, Japan
| | - Masanori Tachikawa
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 939-0364, Japan
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Ken-ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 939-0364, Japan
| |
Collapse
|
11
|
Hosoya KI, Tachikawa M. The Inner Blood-Retinal Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-1-4614-4711-5_4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Hosoya KI, Tomi M, Tachikawa M. Strategies for therapy of retinal diseases using systemic drug delivery: relevance of transporters at the blood-retinal barrier. Expert Opin Drug Deliv 2011; 8:1571-87. [PMID: 22035231 DOI: 10.1517/17425247.2011.628983] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION There is an increasing need for managing rapidly progressing retinal diseases because of the potential loss of vision. Although systemic drug administration is one possible route for treating retinal diseases, retinal transfer of therapeutic drugs from the circulating blood is strictly regulated by the blood-retinal barrier (BRB). AREAS COVERED This review discusses the constraints and challenges of drug delivery to the retina. In addition, this article discusses the properties of drugs and the conditions of the BRB that affect drug permeability. The reader will gain insights into the strategies for developing therapeutic drugs that are able to cross the BRB for treating retinal diseases. Further, the reader will gain insights into the role of BRB physiology including barrier functions, and the effect of influx and efflux transporters on retinal drug delivery. EXPERT OPINION When designing and selecting optimal drug candidates, it's important to consider the fact that they should be recognized by influx transporters and that efflux transporters at the BRB should be avoided. Although lipophilic cationic drugs are known to be transported to the brain across the blood-brain barrier, verapamil transport to the retina is substantially higher than to the brain. Therefore, lipophilic cationic drugs do have a great ability to increase influx transport across the BRB.
Collapse
Affiliation(s)
- Ken-ichi Hosoya
- University of Toyama, Graduate School of Medicine and Pharmaceutical Sciences, Department of Pharmaceutics, 2630, Sugitani, Toyama 930 0194, Japan.
| | | | | |
Collapse
|
13
|
Tomi M, Hosoya KI. The role of blood–ocular barrier transporters in retinal drug disposition: an overview. Expert Opin Drug Metab Toxicol 2010; 6:1111-24. [DOI: 10.1517/17425255.2010.486401] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Yoneyama D, Shinozaki Y, Lu WL, Tomi M, Tachikawa M, Hosoya KI. Involvement of system A in the retina-to-blood transport of l-proline across the inner blood–retinal barrier. Exp Eye Res 2010; 90:507-13. [DOI: 10.1016/j.exer.2010.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/05/2010] [Accepted: 01/05/2010] [Indexed: 10/20/2022]
|
15
|
Inner blood-retinal barrier transporters: role of retinal drug delivery. Pharm Res 2009; 26:2055-65. [PMID: 19568694 DOI: 10.1007/s11095-009-9930-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
The inner blood-retinal barrier (inner BRB) forms complex tight junctions of retinal capillary endothelial cells to prevent the free diffusion of substances between the circulating blood and the neural retina. Thus, understanding of the inner BRB transport mechanisms could provide a basis for the development of strategies for drug delivery to the retina. Recent progress in inner BRB research has revealed that retinal endothelial cells express a variety of unique transporters which play a role in the influx transport of essential molecules and the efflux transport of xenobiotics. In this review we focus on the transport mechanism at the inner BRB in relation to its importance in influencing the inner BRB permeability of drugs.
Collapse
|
16
|
Hosoya KI, Makihara A, Tsujikawa Y, Yoneyama D, Mori S, Terasaki T, Akanuma SI, Tomi M, Tachikawa M. Roles of inner blood-retinal barrier organic anion transporter 3 in the vitreous/retina-to-blood efflux transport of p-aminohippuric acid, benzylpenicillin, and 6-mercaptopurine. J Pharmacol Exp Ther 2008; 329:87-93. [PMID: 19116370 DOI: 10.1124/jpet.108.146381] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present study was to characterize rat organic anion transporter (Oat) 3 (Oat3, Slc22a8) in the efflux transport at the inner blood-retinal barrier (BRB). Reverse transcription-polymerase chain reaction analysis showed that rat (r) Oat3 mRNA is expressed in retinal vascular endothelial cells (RVECs), but not rOat1 and rOat2 mRNA. The expression of Oat3 in the retina and human cultured retinal endothelial cells was further confirmed by Western blot analysis. Immunohistochemical staining in RVECs showed that rOat3 is colocalized with glucose transporter 1, but not P-glycoprotein, suggesting that rOat3 is possibly located at the abluminal membrane of the RVEC. The contribution of rOat3 to the efflux of [(3)H]p-aminohippuric acid ([(3)H]PAH), [(3)H]benzylpenicillin ([(3)H]PCG), and [(14)C]6-mercaptopurine ([(14)C]6-MP), substrates of rOat3, from the vitreous humor/retina to the circulating blood across the inner BRB was evaluated using the microdialysis method. [(3)H]PAH, [(3)H]PCG, [(14)C]6-MP, and [(14)C] or [(3)H]d-mannitol, a bulk flow marker, were biexponentially eliminated from the vitreous humor after vitreous bolus injection. The elimination rate constant of [(3)H]PAH, [(3)H]PCG, and [(14)C]6-MP during the terminal phase was approximately 2-fold greater than that of d-mannitol. This efflux transport was reduced in the retinal presence of probenecid, PAH, and PCG, whereas it was not inhibited by digoxin. In conclusion, rOat3 is expressed at the inner BRB and involved in the vitreous humor/retina-to-blood transport of PAH, PCG, and 6-MP. This transport system is one mechanism to limit the retinal distribution of PAH, PCG, and 6-MP.
Collapse
Affiliation(s)
- Ken-ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pritchett JS, Pulido JS, Shippy SA. Measurement of region-specific nitrate levels of the posterior chamber of the rat eye using low-flow push-pull perfusion. Anal Chem 2008; 80:5342-9. [PMID: 18549240 DOI: 10.1021/ac800238d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The determination of the presence of nitric oxide metabolites in the rat vitreous cavity in a regioselective manner is complicated by the size and shape of the eye as well as the diffusivity of the molecule and its metabolites. In this work, in vivo low-flow push-pull perfusion sampling was utilized with a rapid capillary electrophoretic assay to monitor levels of the major NO metabolite, nitrate, at the vitreoretinal interface (VRI) of normal and aged rat models. The sampling probe tips were placed in three different positions in the posterior chamber through a 29-gauge guide needle. Sampling was performed along the VRI over the optic nerve head and regions peripheral to the optic nerve head. Additionally, samples were collected from the middle vitreous region to compare to VRI sampling. A significant (P < 0.05) difference in the perfusate nitrate concentration was observed in each location, which may be due to the source of NO production or the clearance mechanism of the molecule from the vitreous cavity. Infusion of L-NAME with physiological saline led to a significant decrease (35%) in the observed nitrate level. LFPPP was then utilized to observe nitrate levels after an average of 4.5 months of aging. A 3-fold increase in the mean level of nitrate over the optic nerve head was observed in mature animals compared to younger control animals. Precise measurement of NO metabolites along the VRI may provide insights into the function of NO in maintaining homeostatic conditions and the molecular changes at the diseased retina.
Collapse
Affiliation(s)
- Jeanita S Pritchett
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|