1
|
Fletcher EKS, Burma JS, Javra RM, Friesen KB, Emery CA, Dunn JF, Smirl JD. Maximizing the Reliability and Precision of Measures of Prefrontal Cortical Oxygenation Using Frequency-Domain Near-Infrared Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:2630. [PMID: 38676247 PMCID: PMC11054207 DOI: 10.3390/s24082630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Frequency-domain near-infrared spectroscopy (FD-NIRS) has been used for non-invasive assessment of cortical oxygenation since the late 1990s. However, there is limited research demonstrating clinical validity and general reproducibility. To address this limitation, recording duration for adequate validity and within- and between-day reproducibility of prefrontal cortical oxygenation was evaluated. To assess validity, a reverse analysis of 10-min-long measurements (n = 52) at different recording durations (1-10-min) was quantified via coefficients of variation and Bland-Altman plots. To assess within- and between-day within-subject reproducibility, participants (n = 15) completed 2-min measurements twice a day (morning/afternoon) for five consecutive days. While 1-min recordings demonstrated sufficient validity for the assessment of oxygen saturation (StO2) and total hemoglobin concentration (THb), recordings ≥4 min revealed greater clinical utility for oxy- (HbO) and deoxyhemoglobin (HHb) concentration. Females had lower StO2, THb, HbO, and HHb values than males, but variability was approximately equal between sexes. Intraclass correlation coefficients ranged from 0.50-0.96. The minimal detectable change for StO2 was 1.15% (95% CI: 0.336-1.96%) and 3.12 µM for THb (95% CI: 0.915-5.33 µM) for females and 2.75% (95%CI: 0.807-4.70%) for StO2 and 5.51 µM (95%CI: 1.62-9.42 µM) for THb in males. Overall, FD-NIRS demonstrated good levels of between-day reliability. These findings support the application of FD-NIRS in field-based settings and indicate a recording duration of 1 min allows for valid measures; however, data recordings of ≥4 min are recommended when feasible.
Collapse
Affiliation(s)
- Elizabeth K. S. Fletcher
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.M.J.); (K.B.F.); (C.A.E.); (J.D.S.)
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Joel S. Burma
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.M.J.); (K.B.F.); (C.A.E.); (J.D.S.)
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T2N 4N1, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Raelyn M. Javra
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.M.J.); (K.B.F.); (C.A.E.); (J.D.S.)
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kenzie B. Friesen
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.M.J.); (K.B.F.); (C.A.E.); (J.D.S.)
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Carolyn A. Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.M.J.); (K.B.F.); (C.A.E.); (J.D.S.)
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB T2N 4N1, Canada
- O’Brien Institute for Public Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jeff F. Dunn
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Integrated Concussion Research Program, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jonathan D. Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; (R.M.J.); (K.B.F.); (C.A.E.); (J.D.S.)
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T2N 4N1, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
2
|
Adingupu DD, Evans T, Soroush A, Hansen A, Jarvis S, Brown L, Dunn JF. Temporal Pattern of Cortical Hypoxia in Multiple Sclerosis and Its Significance on Neuropsychological and Clinical Measures of Disability. Ann Neurol 2023; 94:1067-1079. [PMID: 37605937 DOI: 10.1002/ana.26769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a degenerative disease of the central nervous system (CNS) characterized by inflammation, demyelination, and axonal damage. It has been hypothesized that hypoxia plays a role in the pathogenesis of MS. This study was undertaken to investigate the reproducibility of non-invasively measured cortical microvascular hemoglobin oxygenation (St O2 ) using frequency domain near-infrared spectroscopy (fdNIRS), investigate its temporal pattern of hypoxia in people with MS (pwMS), and its relationship with neurocognitive function and mood. METHODS We investigated the reproducibility of fdNIRS measurements. We measured cortical hypoxia in pwMS, and the relationships between St O2 , neurocognitive function, fatigue, and measures of physical disability. Furthermore, we cataloged the temporal pattern of St O2 measured at 1-week intervals for 4 weeks, and at 8 weeks and ~1 year. RESULTS We show that fdNIRS parameters were highly reproducible in 7 healthy control participants measured over 6 days (p > 0.05). There was low variability between and within subjects. In line with our previous findings, we show that 33% of pwMS (n = 88) have cortical microvascular hypoxia. Over 8 weeks and at ~1 year, St O2 values for normoxic and hypoxic groups did not change significantly. There was no significant association between cognitive function and St O2 . This conclusion should be revisited as only a small proportion of the relapsing-remitting MS group (21%) was cognitively impaired. INTERPRETATION The fdNIRS parameters have high reproducibility and repeatability, and we have demonstrated that hypoxia in MS is a chronic condition, lasting at least a year. The results show a weak relationship between cognitive functioning and oxygenation, indicating future study is required. ANN NEUROL 2023;94:1067-1079.
Collapse
Affiliation(s)
- Damilola D Adingupu
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Taelor Evans
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ateyeh Soroush
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ayden Hansen
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Scott Jarvis
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Neurologic Centre, Calgary, Canada
| | - Lenora Brown
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jeff F Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Adingupu DD, Soroush A, Hansen A, Twomey R, Dunn JF. Brain hypoxia, neurocognitive impairment, and quality of life in people post-COVID-19. J Neurol 2023; 270:3303-3314. [PMID: 37210689 PMCID: PMC10200033 DOI: 10.1007/s00415-023-11767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVE Systemic hypoxia occurs in COVID-19 infection; however, it is unknown if cerebral hypoxia occurs in convalescent individuals. We have evidence from other conditions associated with central nervous system inflammation that hypoxia may occur in the brain. If so, hypoxia could reduce the quality of life and brain function. This study was undertaken to assess if brain hypoxia occurs in individuals after recovery from acute COVID-19 infection and if this hypoxia is associated with neurocognitive impairment and reduced quality of life. METHODS Using frequency-domain near-infrared spectroscopy (fdNIRS), we measured cerebral tissue oxygen saturation (StO2) (a measure of hypoxia) in participants who had contracted COVID-19 at least 8 weeks prior to the study visit and healthy controls. We also conducted neuropsychological assessments and health-related quality of life assessments, fatigue, and depression. RESULTS Fifty-six percent of the post-COVID-19 participants self-reported having persistent symptoms (from a list of 18), with the most reported symptom being fatigue and brain fog. There was a gradation in the decrease of oxyhemoglobin between controls, and normoxic and hypoxic post-COVID-19 groups (31.7 ± 8.3 μM, 27.8 ± 7.0 μM and 21.1 ± 7.2 μM, respectively, p = 0.028, p = 0.005, and p = 0.081). We detected that 24% of convalescent individuals' post-COVID-19 infection had reduced StO2 in the brain and that this relates to reduced neurological function and quality of life. INTERPRETATION We believe that the hypoxia reported here will have health consequences for these individuals, and this is reflected in the correlation of hypoxia with greater symptomology. With the fdNIRS technology, combined with neuropsychological assessment, we may be able to identify individuals at risk of hypoxia-related symptomology and target individuals that are likely to respond to treatments aimed at improving cerebral oxygenation.
Collapse
Affiliation(s)
- Damilola D Adingupu
- Department of Radiology, University of Calgary, Calgary, Canada.
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Canada.
| | - Ateyeh Soroush
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Canada
- Department Of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Ayden Hansen
- Department of Radiology, University of Calgary, Calgary, Canada
- Department Of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Rosie Twomey
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Jeff F Dunn
- Department of Radiology, University of Calgary, Calgary, Canada.
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Canada.
- Department Of Clinical Neurosciences, University of Calgary, Calgary, Canada.
| |
Collapse
|
4
|
Adingupu DD, Soroush A, Hansen A, Twomey R, Dunn JF. Reduced Cerebrovascular Oxygenation in Individuals with Post-Acute COVID-19 Syndrome (PACS) ("long COVID"). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1438:211-216. [PMID: 37845463 DOI: 10.1007/978-3-031-42003-0_33] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
There is evidence that hypoxia occurs in the brain of some individuals who contracted the COVID-19 disease. Furthermore, it has been widely reported that about 13% of individuals who contracted the COVID-19 disease report persistent symptoms after the acute infection stage (>2 months post-acute infection). This is termed post-acute COVID-19 syndrome (PACS) or ("long COVID"). In this study, we aimed to determine if hypoxia measured non-invasively with frequency domain near-infrared spectroscopy (fdNIRS) occurs in asymptomatic and symptomatic individuals with post-acute COVID-19 disease. We show that 26% of our symptomatic group, measured on average 9.6 months post-acute COVID-19 disease, were hypoxic and 12% of the asymptomatic group, measured on average 2.5 months post-acute infection, were hypoxic. Our study indicates that fdNIRS measure of hypoxia in the brain may be a useful tool to identify individuals that are likely to respond to treatments targeted at reducing inflammation and improving oxygenation.
Collapse
Affiliation(s)
| | - A Soroush
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - A Hansen
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - R Twomey
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - J F Dunn
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Scholkmann F, Zohdi H, Wolf M, Wolf U. Frontal Cerebral Oxygenation in Humans at Rest: A Mirror Symmetry in the Correlation with Cardiorespiratory Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1395:45-51. [PMID: 36527612 DOI: 10.1007/978-3-031-14190-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Although several studies published reference values for frontal cerebral tissue oxygen saturation (StO2) measured with near-infrared spectroscopy (NIRS) based cerebral oximetry, a detailed investigation, whether and which factors from systemic physiology are related to the individual StO2 values, is missing. AIM We investigated how the state of the cardiorespiratory system is linked to StO2 values at rest. SUBJECTS AND METHODS Absolute StO2 values (median over a 5 min resting-phase while sitting) were obtained from 126 healthy subjects (age: 24.0 ± 0.2 years, 45 males, 81 females) over the left and right prefrontal cortex (PFC) by employing frequency-domain NIRS as part of a systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS) study. In addition, heart rate (HR) and respiration rate (RR) were measured, and the pulse respiration quotient (PRQ) was determined (PRQ = HR/RR). General additive models (GAM) were used to analyse the data. RESULTS The GAM analysis revealed a specific relationship between the overall PFC StO2 values (mean over right and left PFC) and the variables HR and RR: HR was positively correlated with mean StO2, while RR showed no correlation. In the mirror case, RR was negatively linearly correlated with the frontal cerebral oxygenation asymmetry (FCOA), which was not correlated with HR. The right PFC StO2 was not linked to the RR, whereas the left PFC StO2 was. Positive correlations of the PRQ with the mean PFC StO2 as well as the FCOA were also found. GAM modelling revealed that the individual FCOA values are explained to a large extent (deviance explained: 88.8%) by the individual mean PFC StO2 and PRQ. We conclude that (i) the state of the cardiorespiratory system is significantly correlated with StO2 values and (ii) there is a mirror symmetry with regard to the impact of cardiorespiratory parameters on the mean PFC StO2 and FCOA.
Collapse
|
6
|
Zhang Z, Qi M, Hügli G, Khatami R. The Challenges and Pitfalls of Detecting Sleep Hypopnea Using a Wearable Optical Sensor: Comparative Study. J Med Internet Res 2021; 23:e24171. [PMID: 34326039 PMCID: PMC8367170 DOI: 10.2196/24171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/26/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Obstructive sleep apnea (OSA) is the most prevalent respiratory sleep disorder occurring in 9% to 38% of the general population. About 90% of patients with suspected OSA remain undiagnosed due to the lack of sleep laboratories or specialists and the high cost of gold-standard in-lab polysomnography diagnosis, leading to a decreased quality of life and increased health care burden in cardio- and cerebrovascular diseases. Wearable sleep trackers like smartwatches and armbands are booming, creating a hope for cost-efficient at-home OSA diagnosis and assessment of treatment (eg, continuous positive airway pressure [CPAP] therapy) effectiveness. However, such wearables are currently still not available and cannot be used to detect sleep hypopnea. Sleep hypopnea is defined by ≥30% drop in breathing and an at least 3% drop in peripheral capillary oxygen saturation (Spo2) measured at the fingertip. Whether the conventional measures of oxygen desaturation (OD) at the fingertip and at the arm or wrist are identical is essentially unknown. Objective We aimed to compare event-by-event arm OD (arm_OD) with fingertip OD (finger_OD) in sleep hypopneas during both naïve sleep and CPAP therapy. Methods Thirty patients with OSA underwent an incremental, stepwise CPAP titration protocol during all-night in-lab video-polysomnography monitoring (ie, 1-h baseline sleep without CPAP followed by stepwise increments of 1 cmH2O pressure per hour starting from 5 to 8 cmH2O depending on the individual). Arm_OD of the left biceps muscle and finger_OD of the left index fingertip in sleep hypopneas were simultaneously measured by frequency-domain near-infrared spectroscopy and video-polysomnography photoplethysmography, respectively. Bland-Altman plots were used to illustrate the agreements between arm_OD and finger_OD during baseline sleep and under CPAP. We used t tests to determine whether these measurements significantly differed. Results In total, 534 obstructive apneas and 2185 hypopneas were recorded. Of the 2185 hypopneas, 668 (30.57%) were collected during baseline sleep and 1517 (69.43%), during CPAP sleep. The mean difference between finger_OD and arm_OD was 2.86% (95% CI 2.67%-3.06%, t667=28.28; P<.001; 95% limits of agreement [LoA] –2.27%, 8.00%) during baseline sleep and 1.83% (95% CI 1.72%-1.94%, t1516=31.99; P<.001; 95% LoA –2.54%, 6.19%) during CPAP. Using the standard criterion of 3% saturation drop, arm_OD only recognized 16.32% (109/668) and 14.90% (226/1517) of hypopneas at baseline and during CPAP, respectively. Conclusions arm_OD is 2% to 3% lower than standard finger_OD in sleep hypopnea, probably because the measured arm_OD originates physiologically from arterioles, venules, and capillaries; thus, the venous blood adversely affects its value. Our findings demonstrate that the standard criterion of ≥3% OD drop at the arm or wrist is not suitable to define hypopnea because it could provide large false-negative results in diagnosing OSA and assessing CPAP treatment effectiveness.
Collapse
Affiliation(s)
- Zhongxing Zhang
- Center for Sleep Medicine, Sleep Research and Epileptology, Barmelweid, Switzerland.,Barmelweid Academy, Clinic Barmelweid AG, Barmelweid, Switzerland
| | - Ming Qi
- Center for Sleep Medicine, Sleep Research and Epileptology, Barmelweid, Switzerland
| | - Gordana Hügli
- Center for Sleep Medicine, Sleep Research and Epileptology, Barmelweid, Switzerland
| | - Ramin Khatami
- Center for Sleep Medicine, Sleep Research and Epileptology, Barmelweid, Switzerland.,Barmelweid Academy, Clinic Barmelweid AG, Barmelweid, Switzerland.,Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Fantini S, Sassaroli A. Frequency-Domain Techniques for Cerebral and Functional Near-Infrared Spectroscopy. Front Neurosci 2020; 14:300. [PMID: 32317921 PMCID: PMC7154496 DOI: 10.3389/fnins.2020.00300] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/16/2020] [Indexed: 12/31/2022] Open
Abstract
This article reviews the basic principles of frequency-domain near-infrared spectroscopy (FD-NIRS), which relies on intensity-modulated light sources and phase-sensitive optical detection, and its non-invasive applications to the brain. The simpler instrumentation and more straightforward data analysis of continuous-wave NIRS (CW-NIRS) accounts for the fact that almost all the current commercial instruments for cerebral NIRS have embraced the CW technique. However, FD-NIRS provides data with richer information content, which complements or exceeds the capabilities of CW-NIRS. One example is the ability of FD-NIRS to measure the absolute optical properties (absorption and reduced scattering coefficients) of tissue, and thus the absolute concentrations of oxyhemoglobin and deoxyhemoglobin in brain tissue. This article reviews the measured values of such optical properties and hemoglobin concentrations reported in the literature for animal models and for the human brain in newborns, infants, children, and adults. We also review the application of FD-NIRS to functional brain studies that focused on slower hemodynamic responses to brain activity (time scale of seconds) and faster optical signals that have been linked to neuronal activation (time scale of 100 ms). Another example of the power of FD-NIRS data is related to the different regions of sensitivity featured by intensity and phase data. We report recent developments that take advantage of this feature to maximize the sensitivity of non-invasive optical signals to brain tissue relative to more superficial extracerebral tissue (scalp, skull, etc.). We contend that this latter capability is a highly appealing quality of FD-NIRS, which complements absolute optical measurements and may result in significant advances in the field of non-invasive optical sensing of the brain.
Collapse
Affiliation(s)
- Sergio Fantini
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | | |
Collapse
|
8
|
Duszynski CC, Avati V, Lapointe AP, Scholkmann F, Dunn JF, Swain MG. Near-Infrared Spectroscopy Reveals Brain Hypoxia and Cerebrovascular Dysregulation in Primary Biliary Cholangitis. Hepatology 2020; 71:1408-1420. [PMID: 31535726 DOI: 10.1002/hep.30920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/24/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND AIMS Primary biliary cholangitis (PBC) is an autoimmune cholestatic liver disease linked to symptoms including fatigue and altered mood/cognition, indicating that chronic liver inflammation associated with PBC can impact brain function. We employed near-infrared spectroscopy (NIRS), a noninvasive neuroimaging technique, to determine whether patients with PBC exhibit reduced cerebral oxygen saturation (StO2 ) and altered patterns of microvascular cerebral blood perfusion and whether these alterations were associated with clinical phenotype. This observational case-control study was conducted at a tertiary hospital clinic (University of Calgary Liver Unit). APPROACH AND RESULTS Thirteen female patients with noncirrhotic PBC, seven female patients with cirrhotic PBC, and 11 healthy female controls were recruited by physician referral and word of mouth, respectively. NIRS was used to measure cerebral hemoglobin and oxygen saturation. A wavelet phase coherence method was used to estimate the coherent frequency coupling of temporal changes in cerebral hemodynamics. The PBC group demonstrated significantly reduced cerebral StO2 (P = 0.01, d = 0.84), indicating cerebral hypoxia, significantly increased cerebral deoxygenated hemoglobin concentration (P < 0.01, d = 0.86), and significantly reduced hemodynamic coherence in the low-frequency band (0.08-0.15 Hz) for oxygenated hemoglobin concentration (P = 0.02, d = 0.99) and total hemoglobin (tHb) concentration (P = 0.02, d = 0.50), indicating alterations in cerebrovascular activity. Complete biochemical response to ursodeoxycholic acid (UDCA) therapy in early patients with PBC was associated with increased cerebral tHb concentration and decreased hemodynamic coherence. CONCLUSIONS Using NIRS, patients with PBC were found to have hypoxia, increased cerebral hemoglobin concentration, and altered cerebrovascular activity, which were reversed in part in UDCA responders. In addition, symptoms and quality-of-life measures did not correlate with brain hypoxia or cerebrovascular dysregulation in patients with PBC.
Collapse
Affiliation(s)
- Chris C Duszynski
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, Calgary, Canada
| | - V Avati
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Snyder Institute for Chronic Diseases, Calgary, Canada
| | - A P Lapointe
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, Calgary, Canada
| | - F Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - J F Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, Calgary, Canada
| | - M G Swain
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Snyder Institute for Chronic Diseases, Calgary, Canada
| |
Collapse
|
9
|
Optics Based Label-Free Techniques and Applications in Brain Monitoring. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) has been utilized already around three decades for monitoring the brain, in particular, oxygenation changes in the cerebral cortex. In addition, other optical techniques are currently developed for in vivo imaging and in the near future can be potentially used more in human brain research. This paper reviews the most common label-free optical technologies exploited in brain monitoring and their current and potential clinical applications. Label-free tissue monitoring techniques do not require the addition of dyes or molecular contrast agents. The following optical techniques are considered: fNIRS, diffuse correlations spectroscopy (DCS), photoacoustic imaging (PAI) and optical coherence tomography (OCT). Furthermore, wearable optical brain monitoring with the most common applications is discussed.
Collapse
|
10
|
Csipo T, Mukli P, Lipecz A, Tarantini S, Bahadli D, Abdulhussein O, Owens C, Kiss T, Balasubramanian P, Nyúl-Tóth Á, Hand RA, Yabluchanska V, Sorond FA, Csiszar A, Ungvari Z, Yabluchanskiy A. Assessment of age-related decline of neurovascular coupling responses by functional near-infrared spectroscopy (fNIRS) in humans. GeroScience 2019; 41:495-509. [PMID: 31676966 PMCID: PMC6885078 DOI: 10.1007/s11357-019-00122-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022] Open
Abstract
Preclinical studies provide strong evidence that age-related impairment of neurovascular coupling (NVC) plays a causal role in the pathogenesis of vascular cognitive impairment (VCI). NVC is a critical homeostatic mechanism in the brain, responsible for adjustment of local cerebral blood flow to the energetic needs of the active neuronal tissue. Recent progress in geroscience has led to the identification of critical cellular and molecular mechanisms involved in neurovascular aging, identifying these pathways as targets for intervention. In order to translate the preclinical findings to humans, there is a need to assess NVC in geriatric patients as an endpoint in clinical studies. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique that enables the investigation of local changes in cerebral blood flow, quantifying task-related changes in oxygenated and deoxygenated hemoglobin concentrations. In the present overview, the basic principles of fNIRS are introduced and the application of this technique to assess NVC in older adults with implications for the design of studies on the mechanistic underpinnings of VCI is discussed.
Collapse
Affiliation(s)
- Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Division of Clinical Physiology, Department of Cardiology / Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Dhay Bahadli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Osamah Abdulhussein
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Cameron Owens
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Rachel A Hand
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Valeriya Yabluchanska
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Bon Secours, St. Francis Family Medicine Center, Midlothian, VA, USA
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
11
|
Nawn CD, Blackburn MB, De Lorenzo RA, Ryan KL. Using spectral reflectance to distinguish between tracheal and oesophageal tissue: applications for airway management. Anaesthesia 2019; 74:340-347. [PMID: 30666622 DOI: 10.1111/anae.14566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 11/30/2022]
Abstract
Proper placement of the tracheal tube requires confirmation, and the predominant method in addition to clinical signs is the presence of end-tidal carbon dioxide. Such is the importance of confirmation that novel methods may also have a place. We previously demonstrated using ex-vivo swine tissue a unique spectral reflectance characteristic of tracheal tissue that differs from oesophageal tissue. We hypothesised that this characteristic would be present in living swine tissue and human cadavers. Reflectance spectra in the range 500-650 nm were captured using a customised fibreoptic probe, compact spectrometer and white light source from both the trachea and the oesophagus in anesthetised living swine and in human cadavers. A tracheal detection algorithm using ratio comparisons of reflectance was developed. The existence of the unique tracheal characteristic in both in-vivo swine and cadaver models was confirmed (p < 0.0001 for all comparisons between tracheal and oesophageal tissue at all target wavelengths in both species). Furthermore, our proposed tracheal detection algorithm exhibited a 100% positive predictive value in both models. This has potential utility for incorporation into airway management devices.
Collapse
Affiliation(s)
- C D Nawn
- United States Army Institute of Surgical Research, Joint Base San Antonio-Fort Sam Houston, San Antonio, TX, USA
| | - M B Blackburn
- United States Army Institute of Surgical Research, Joint Base San Antonio-Fort Sam Houston, San Antonio, TX, USA
| | | | - K L Ryan
- United States Army Institute of Surgical Research, Joint Base San Antonio-Fort Sam Houston, San Antonio, TX, USA
| |
Collapse
|
12
|
Ward LM, Morison G, Simmers AJ, Shahani U. Age-Related Changes in Global Motion Coherence: Conflicting Haemodynamic and Perceptual Responses. Sci Rep 2018; 8:10013. [PMID: 29968729 PMCID: PMC6030110 DOI: 10.1038/s41598-018-27803-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/08/2018] [Indexed: 11/22/2022] Open
Abstract
Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response.
Collapse
Affiliation(s)
- Laura McKernan Ward
- Department of Vision Science, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, United Kingdom.
| | - Gordon Morison
- Department of Engineering, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
| | - Anita Jane Simmers
- Department of Vision Science, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
| | - Uma Shahani
- Department of Vision Science, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
| |
Collapse
|
13
|
Lo CC, Lin PY, Hoe ZY, Chen JJJ. Near Infrared Spectroscopy Study of Cortical Excitability During Electrical Stimulation-Assisted Cycling for Neurorehabilitation of Stroke Patients. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1292-1300. [PMID: 29877854 DOI: 10.1109/tnsre.2018.2829804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In addition to generating functional limb movement via electrical stimulation, other research proposed lower intensity stimulation for stroke patients from proprioceptive and neuro-biofeedback aspects. This paper investigates the effects of different intensity levels of electrical stimulation during passive cycling on cortical activation using multichannel near infrared spectroscopy (NIRS) covering premotor cortex, supplementary motor area, sensorimotor cortex (SMC), and secondary sensory cortex (S2) regions. Sixteen subjects, including nine stroke patients and seven normal subjects, were instructed to perform passive cycling driven by an ergometer at a pace of 50 rpm under conditions without electrical stimulation (NES) and with low-intensity electrical stimulation (LES) at 10 mA and high-intensity electrical stimulation (HES) at 30 mA. Changes in oxyhemoglobin in different brain regions and the derived interhemispheric correlation coefficient (IHCC) representing the symmetry in response of two hemispheres were evaluated to observe cortical activation and cerebral autoregulation. Our results showed that cortical activation of normal subjects exhibited overall deactivations in HES compared with that under LES and NES. In stroke patients, bilateral S2 activated significantly greater under LES compared with those under NES and HES. The IHCC of the normal group displayed a significant higher value in SMC compared with that of the stroke group. This paper utilized noninvasive NIRS to observe hemodynamic changes and bilateral autoregulation symmetry from IHCC suggesting that passive cycling with LES could better facilitate cortical activation compared with that obtained with NES or HES. The results of this paper could provide general guidelines to simplify the settings of electrical stimulation-assisted-passive cycling in clinical use.
Collapse
|
14
|
Oxygen imaging of living cells and tissues using luminescent molecular probes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Evaluating the Role of Reduced Oxygen Saturation and Vascular Damage in Traumatic Brain Injury Using Magnetic Resonance Perfusion-Weighted Imaging and Susceptibility-Weighted Imaging and Mapping. Top Magn Reson Imaging 2016; 24:253-65. [PMID: 26502307 DOI: 10.1097/rmr.0000000000000064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cerebral vasculature, along with neurons and axons, is vulnerable to biomechanical insult during traumatic brain injury (TBI). Trauma-induced vascular injury is still an underinvestigated area in TBI research. Cerebral blood flow and metabolism could be important future treatment targets in neural critical care. Magnetic resonance imaging offers a number of key methods to probe vascular injury and its relationship with traumatic hemorrhage, perfusion deficits, venous blood oxygen saturation changes, and resultant tissue damage. They make it possible to image the hemodynamics of the brain, monitor regional damage, and potentially show changes induced in the brain's function not only acutely but also longitudinally following treatment. These methods have recently been used to show that even mild TBI (mTBI) subjects can have vascular abnormalities, and thus they provide a major step forward in better diagnosing mTBI patients.
Collapse
|
16
|
Moreau F, Yang R, Nambiar V, Demchuk AM, Dunn JF. Near-infrared measurements of brain oxygenation in stroke. NEUROPHOTONICS 2016; 3:031403. [PMID: 26958577 PMCID: PMC4750462 DOI: 10.1117/1.nph.3.3.031403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 01/13/2016] [Indexed: 05/17/2023]
Abstract
We investigated the feasibility of using frequency-domain near-infrared spectroscopy (fdNIRS) to study brain oxygenation in the first few hours of stroke onset. The OxiplexTS(®) fdNIRS system was used in this study. Using a standard probing protocol based on surface landmarks, we measured brain tHb and [Formula: see text] in healthy volunteers, cadavers, and acute stroke patients within 9 h of stroke onset and 3 days later. We obtained measurements from 11 controls, 5 cadavers, and 5 acute stroke patients. [Formula: see text] values were significantly lower in cadavers compared to the controls and stroke patients. Each stroke patient had at least one area with reduced [Formula: see text] on the stroke side compared to the contralateral side. The evolution of tHb and [Formula: see text] at 3 days differed depending on whether a large infarct occurred. This study shows the proof of principle that quantified measurements of brain oxygenation using NIRS could be used in the hectic environment of acute stroke management. It also highlights the current technical limitations and future challenges in the development of this unique bedside monitoring tool for stroke.
Collapse
Affiliation(s)
- François Moreau
- Université de Sherbrooke, Department of Medicine, CHUS-Hôpital Fleurimont 3001, 12e Avenue Nord, bureau 6501, Québec, Sherbrooke J1H 5N4, Canada
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, 12th Floor, 1403-29th Street NW Calgary, Alberta T2N 2T9, Canada
- Address all correspondence to: François Moreau, E-mail:
| | - Runze Yang
- University of Calgary, Department of Radiology, Foothills Medical Centre, Room 812, North Tower, 1403-29th Street NW Calgary, Alberta T2N 2T9, Canada
- University of Calgary, Hotchkiss Brain Institute, Health Research Innovation Centre, Room 1A10, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Vivek Nambiar
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, 12th Floor, 1403-29th Street NW Calgary, Alberta T2N 2T9, Canada
- Amrita Institute Medical Sciences, Department of Neurology, Center of Neurosciences, Ponekkara, Kochi 682041, India
| | - Andrew M. Demchuk
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, 12th Floor, 1403-29th Street NW Calgary, Alberta T2N 2T9, Canada
- University of Calgary, Hotchkiss Brain Institute, Health Research Innovation Centre, Room 1A10, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jeff F. Dunn
- University of Calgary, Department of Radiology, Foothills Medical Centre, Room 812, North Tower, 1403-29th Street NW Calgary, Alberta T2N 2T9, Canada
- University of Calgary, Hotchkiss Brain Institute, Health Research Innovation Centre, Room 1A10, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
- University of Calgary, Experimental Imaging Center, TRW building, Basement level P2, Foothills Medical Centre, 1403-29th Street NW Calgary, Alberta T2N 2T9, Canada
| |
Collapse
|
17
|
Noninvasive Brain Physiology Monitoring for Extreme Environments: A Critical Review. J Neurosurg Anesthesiol 2016; 27:318-28. [PMID: 25811362 DOI: 10.1097/ana.0000000000000175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Our ability to monitor the brain physiology is advancing; however, most of the technology is bulky, expensive, and designed for traditional clinical settings. With long-duration space exploration, there is a need for developing medical technologies that are reliable, low energy, portable, and semiautonomous. Our aim was to review the state of the art for noninvasive technologies capable of monitoring brain physiology in diverse settings. A literature review of PubMed and the Texas Medical Center library sites was performed using prespecified search criteria to identify portable technologies for monitoring physiological aspects of the brain physiology. Most brain-monitoring technologies require a moderate to high degree of operator skill. Some are low energy, but many require a constant external power supply. Most of the technologies lack the accuracy seen in gold standard measures, due to the need for calibration, but may be useful for screening or monitoring relative changes in a parameter. Most of the technologies use ultrasound or electromagnetic radiation as energy sources. There is an important need for further development of portable technologies that can be operated in a variety of extreme environments to monitor brain health.
Collapse
|
18
|
Ward LM, Morison G, Simpson WA, Simmers AJ, Shahani U. Using Functional Near Infrared Spectroscopy (fNIRS) to Study Dynamic Stereoscopic Depth Perception. Brain Topogr 2016; 29:515-23. [PMID: 26900069 PMCID: PMC4899499 DOI: 10.1007/s10548-016-0476-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/08/2016] [Indexed: 11/28/2022]
Abstract
The parietal cortex has been widely implicated in the processing of depth perception by many neuroimaging studies, yet functional near infrared spectroscopy (fNIRS) has been an under-utilised tool to examine the relationship of oxy- ([HbO]) and de-oxyhaemoglobin ([HbR]) in perception. Here we examine the haemodynamic response (HDR) to the processing of induced depth stimulation using dynamic random-dot-stereograms (RDS). We used fNIRS to measure the HDR associated with depth perception in healthy young adults (n = 13, mean age 24). Using a blocked design, absolute values of [HbO] and [HbR] were recorded across parieto-occipital and occipital cortices, in response to dynamic RDS. Control and test images were identical except for the horizontal shift in pixels in the RDS that resulted in binocular disparity and induced the percept of a 3D sine wave that ‘popped out’ of the test stimulus. The control stimulus had zero disparity and induced a ‘flat’ percept. All participants had stereoacuity within normal clinical limits and successfully perceived the depth in the dynamic RDS. Results showed a significant effect of this complex visual stimulation in the right parieto-occipital cortex (p < 0.01, η2 = 0.54). The test stimulus elicited a significant increase in [HbO] during depth perception compared to the control image (p < 0.001, 99.99 % CI [0.008–0.294]). The similarity between the two stimuli may have resulted in the HDR of the occipital cortex showing no significant increase or decrease of cerebral oxygenation levels during depth stimulation. Cerebral oxygenation measures of [HbO] confirmed the strong association of the right parieto-occipital cortex with processing depth perception. Our study demonstrates the validity of fNIRS to investigate [HbO] and [HbR] during high-level visual processing of complex stimuli.
Collapse
Affiliation(s)
- Laura M Ward
- Department of Vision Sciences, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, UK
| | - Gordon Morison
- Department of Engineering, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, UK
| | - William A Simpson
- School of Psychology, Plymouth University, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| | - Anita J Simmers
- Department of Vision Sciences, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, UK
| | - Uma Shahani
- Department of Vision Sciences, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, UK.
| |
Collapse
|
19
|
Yang R, Dunn JF. Reduced cortical microvascular oxygenation in multiple sclerosis: a blinded, case-controlled study using a novel quantitative near-infrared spectroscopy method. Sci Rep 2015; 5:16477. [PMID: 26563581 PMCID: PMC4643232 DOI: 10.1038/srep16477] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/14/2015] [Indexed: 01/10/2023] Open
Abstract
Hypoxia (low oxygen) is associated with many brain disorders as well as inflammation, but the lack of widely available technology has limited our ability to study hypoxia in human brain. Multiple sclerosis (MS) is a poorly understood neurological disease with a significant inflammatory component which may cause hypoxia. We hypothesized that if hypoxia were to occur, there should be reduced microvascular hemoglobin saturation (StO2). In this study, we aimed to determine if reduced StO2 can be detected in MS using frequency domain near-infrared spectroscopy (fdNIRS). We measured fdNIRS data in cortex and assessed disability of 3 clinical isolated syndrome (CIS), 72 MS patients and 12 controls. Control StO2 was 63.5 ± 3% (mean ± SD). In MS patients, 42% of StO2 values were more than 2 × SD lower than the control mean. There was a significant relationship between StO2 and clinical disability. A reduced microvascular StO2 is supportive (although not conclusive) that there may be hypoxic regions in MS brain. This is the first study showing how quantitative NIRS can be used to detect reduced StO2 in patients with MS, opening the door to understanding how microvascular oxygenation impacts neurological conditions.
Collapse
Affiliation(s)
- Runze Yang
- Department of Radiology, Cumming School of Medicine, University of Calgary.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary
| | - Jeff F Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary
| |
Collapse
|
20
|
Kerz T, Beyer C, Huthmann A, Kalasauskas D, Amr AN, Boor S, Welschehold S. Continuous-wave near-infrared spectroscopy is not related to brain tissue oxygen tension. J Clin Monit Comput 2015; 30:641-7. [DOI: 10.1007/s10877-015-9755-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/17/2015] [Indexed: 01/21/2023]
|
21
|
Ward LM, Aitchison RT, Tawse M, Simmers AJ, Shahani U. Reduced Haemodynamic Response in the Ageing Visual Cortex Measured by Absolute fNIRS. PLoS One 2015; 10:e0125012. [PMID: 25909849 PMCID: PMC4409147 DOI: 10.1371/journal.pone.0125012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/19/2015] [Indexed: 11/19/2022] Open
Abstract
The effect of healthy ageing on visual cortical activation is still to be fully explored. This study aimed to elucidate whether the haemodynamic response (HDR) of the visual cortex altered as a result of ageing. Visually normal (healthy) participants were presented with a simple visual stimulus (reversing checkerboard). Full optometric screening was implemented to identify two age groups: younger adults (n = 12, mean age 21) and older adults (n = 13, mean age 71). Frequency-domain Multi-distance (FD-MD) functional Near-Infrared Spectroscopy (fNIRS) was used to measure absolute changes in oxygenated [HbO] and deoxygenated [HbR] haemoglobin concentrations in the occipital cortices. Utilising a slow event-related design, subjects viewed a full field reversing checkerboard with contrast and check size manipulations (15 and 30 minutes of arc, 50% and 100% contrast). Both groups showed the characteristic response of increased [HbO] and decreased [HbR] during stimulus presentation. However, older adults produced a more varied HDR and often had comparable levels of [HbO] and [HbR] during both stimulus presentation and baseline resting state. Younger adults had significantly greater concentrations of both [HbO] and [HbR] in every investigation regardless of the type of stimulus displayed (p<0.05). The average variance associated with this age-related effect for [HbO] was 88% and [HbR] 91%. Passive viewing of a visual stimulus, without any cognitive input, showed a marked age-related decline in the cortical HDR. Moreover, regardless of stimulus parameters such as check size, the HDR was characterised by age. In concurrence with present neuroimaging literature, we conclude that the visual HDR decreases as healthy ageing proceeds.
Collapse
Affiliation(s)
- Laura McKernan Ward
- Department of Vision Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
- * E-mail:
| | - Ross Thomas Aitchison
- Department of Vision Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Melisa Tawse
- Department of Vision Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Anita Jane Simmers
- Department of Vision Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Uma Shahani
- Department of Vision Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
22
|
Blohm ME, Obrecht D, Hartwich J, Singer D. Effect of cerebral circulatory arrest on cerebral near-infrared spectroscopy in pediatric patients. Paediatr Anaesth 2014; 24:393-9. [PMID: 24354795 DOI: 10.1111/pan.12328] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND/AIMS The aim was to investigate whether cerebral transcutaneous near-infrared spectroscopy (NIRS) or two-site NIRS is a suitable monitoring tool to detect or confirm a cerebral circulatory arrest in pediatric intensive care unit (PICU) patients. METHODS Prospective single-center pediatric observational study. Simultaneous NIRS measurements over forehead (cNIRS, crS02) and kidney (rNIRS, rrSO2), at the same time, the cardiac output were determined by transthoracic echocardiography. Area under the curve (AUC) in the receiver-operating curve (ROC) was analyzed for NIRS regarding cerebral circulatory arrest. RESULTS There were two groups of patients (weight 2.1-73 kg): Group A: patients with intact cerebral perfusion (n = 36). Group B: patients with cerebral circulatory arrest (n = 8) proven by Doppler ultrasound scan or perfusion scintigraphy. There was no difference in cardiac output between the groups. PICU mortality for Group A was 3/36 (8.3%), for Group B 8/8, (100%). Mean cNIRS values were significantly higher with 68.92 (SEM = 2.54, SD = 15.25) in Group A compared with 34.63 (SEM = 5.36, SD = 15.15) in Group B (P < 0.001). ROC analysis for cNIRS detecting cerebral circulatory arrest was significant (AUC 0.948, 95% confidence interval 0.876-1.000, SE = 0.037, P < 0.001). Discrimination was optimal at 46 for cNIRS, at 36.5 for the difference rNIRS-cNIRS and at 0.5646 for the quotient cNIRS/rNIRS. The probability of a cerebral circulatory arrest was 77.8% (cNIRS) and 87.5% (combinations of cNIRS and rNIRS) at these cutoffs. CONCLUSIONS cNIRS did detect cerebral circulatory arrest with high sensitivity. Specificity was, however, not high enough to confirm a cerebral circulatory arrest.
Collapse
Affiliation(s)
- Martin E Blohm
- Department of Pediatrics, Division of Neonatology and Pediatric Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
23
|
Cheng R, Shang Y, Wang S, Evans JM, Rayapati A, Randall DC, Yu G. Near-infrared diffuse optical monitoring of cerebral blood flow and oxygenation for the prediction of vasovagal syncope. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:17001. [PMID: 24402372 PMCID: PMC3884846 DOI: 10.1117/1.jbo.19.1.017001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/01/2013] [Accepted: 12/10/2013] [Indexed: 05/21/2023]
Abstract
Significant drops in arterial blood pressure and cerebral hemodynamics have been previously observed during vasovagal syncope (VVS). Continuous and simultaneous monitoring of these physiological variables during VVS is rare, but critical for determining which variable is the most sensitive parameter to predict VVS. The present study used a novel custom-designed diffuse correlation spectroscopy flow-oximeter and a finger plethysmograph to simultaneously monitor relative changes of cerebral blood flow (rCBF), cerebral oxygenation (i.e., oxygenated/deoxygenated/total hemoglobin concentration: r[HbO2]/r[Hb]/rTHC), and mean arterial pressure (rMAP) during 70 deg head-up tilt (HUT) in 14 healthy adults. Six subjects developed presyncope during HUT. Two-stage physiological responses during HUT were observed in the presyncopal group: slow and small changes in measured variables (i.e., Stage I), followed by rapid and dramatic decreases in rMAP, rCBF, r[HbO2], and rTHC (i.e., Stage II). Compared to other physiological variables, rCBF reached its breakpoint between the two stages earliest and had the largest decrease (76±8%) during presyncope. Our results suggest that rCBF has the best sensitivity for the assessment of VVS. Most importantly, a threshold of ∼50% rCBF decline completely separated the subjects from those without presyncope, suggesting its potential for predicting VVS.
Collapse
Affiliation(s)
- Ran Cheng
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky 40506
| | - Yu Shang
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky 40506
| | - Siqi Wang
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky 40506
| | - Joyce M. Evans
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky 40506
| | - Abner Rayapati
- University of Kentucky, Department of Psychiatry, Lexington, Kentucky 40509
| | - David C. Randall
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky 40506
- University of Kentucky, Department of Physiology, Lexington, Kentucky 40536
| | - Guoqiang Yu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky 40506
- Address all correspondence to: Guoqiang Yu, E-mail:
| |
Collapse
|
24
|
Yang R, Zhang Q, Wu Y, Dunn JF. Monitoring angiogenesis using a human compatible calibration for broadband near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:16011. [PMID: 23314579 PMCID: PMC3595713 DOI: 10.1117/1.jbo.18.1.016011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/06/2012] [Accepted: 12/06/2012] [Indexed: 05/20/2023]
Abstract
Angiogenesis is a hallmark of many conditions, including cancer, stroke, vascular disease, diabetes, and high-altitude exposure. We have previously shown that one can study angiogenesis in animal models by using total hemoglobin (tHb) as a marker of cerebral blood volume (CBV), measured using broadband near-infrared spectroscopy (bNIRS). However, the method was not suitable for patients as global anoxia was used for the calibration. Here we determine if angiogenesis could be detected using a calibration method that could be applied to patients. CBV, as a marker of angiogenesis, is quantified in a rat cortex before and after hypoxia acclimation. Rats are acclimated at 370-mmHg pressure for three weeks, while rats in the control group are housed under the same conditions, but under normal pressure. CBV increased in each animal in the acclimation group. The mean CBV (%volume/volume) is 3.49%± 0.43% (mean ± SD) before acclimation for the experimental group, and 4.76%± 0.29% after acclimation. The CBV for the control group is 3.28%± 0.75%, and 3.09%± 0.48% for the two measurements. This demonstrates that angiogenesis can be monitored noninvasively over time using a bNIRS system with a calibration method that is compatible with human use and less stressful for studies using animals.
Collapse
Affiliation(s)
- Runze Yang
- University of Calgary, Department of Radiology, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Qiong Zhang
- University of Calgary, Department of Radiology, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Ying Wu
- University of Calgary, Department of Radiology, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Jeff F. Dunn
- University of Calgary, Department of Radiology, Calgary, Alberta, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
- University of Calgary, Experimental Imaging Centre, Calgary, Alberta, Canada
- Address all correspondence: Jeff F. Dunn, University of Calgary, Department of Radiology, 3330 Hospital Drive, N.W., Calgary, AB T2N 4N1, Canada. Tel: 403-210-3886; E-mail:
| |
Collapse
|
25
|
Detectability of absorption and reduced scattering coefficients in frequency-domain measurements using a realistic head phantom. SENSORS 2012; 13:152-64. [PMID: 23262479 PMCID: PMC3574670 DOI: 10.3390/s130100152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/17/2022]
Abstract
Detection limits of the changes in absorption and reduced scattering coefficients were investigated using a frequency-domain near-infrared system in a realistic head phantom. The results were quantified in terms of the maximum detectable depth for different activation volumes in the range of 0.8-20 microliters. The non-linear relation between the maximum detectable depth and the magnitude of changes in the absorption coefficient conform well with the Born approximation to the diffusion equation. The minimal detectable changes in the reduced scattering coefficient measured in terms of the phase signal were found to be approximately twice as large as that of the absorption coefficient using the AC signal for the same volume and at the same depth. The phase delay, which can be used to quantify the fast neuronal optical response in the human brain, showed a linear dependence on the reciprocal of the reduced scattering coefficient, as predicted by the Rytov approximation.
Collapse
|
26
|
Abstract
INTRODUCTION Posttraumatic brain ischemia or hypoxia is a major potential cause of secondary injury that may lead to poor outcome. Avoidance, or amelioration, of this secondary injury depends on early diagnosis and intervention before permanent injury occurs. However, tools to monitor brain oxygenation continuously in the neuro-intensive care unit have been lacking. DISCUSSION In recent times, methods of monitoring aspects of brain oxygenation continuously by the bedside have been evaluated in several experimental and clinical series and are potentially changing the way we manage head-injured patients. These monitors have the potential to alert the clinician to possible secondary injury and enable intervention, help interpret pathophysiological changes (e.g., hyperemia causing raised intracranial pressure), monitor interventions (e.g., hyperventilation for increased intracranial pressure), and prognosticate. This review focuses on jugular venous saturation, brain tissue oxygen tension, and near-infrared spectroscopy as practical methods that may have an important role in managing patients with brain injury, with a particular focus on the available evidence in children. However, to use these monitors effectively and to understand the studies in which these monitors are employed, it is important for the clinician to appreciate the technical characteristics of each monitor, as well as respective strengths and limitations of each. It is equally important that the clinician understands relevant aspects of brain oxygen physiology and head trauma pathophysiology to enable correct interpretation of the monitored data and therefore to direct an appropriate therapeutic response that is likely to benefit, not harm, the patient.
Collapse
Affiliation(s)
- Ursula K Rohlwink
- Division of Neurosurgery, School of Child and Adolescent Health, Red Cross Children's Hospital, University of Cape Town, Cape Town, South Africa
| | | |
Collapse
|
27
|
Changes in Cerebral Blood Oxygenation and Hemodynamics After Endovascular Treatment of Vascular Malformation Measured by Time-Resolved Spectroscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [DOI: 10.1007/978-1-4419-1241-1_71] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
28
|
Zhang X, Liu C, Yuan Y, Shan X, Sheng Y, Xu F. A noninvasive method for measuring the oxygen binding-releasing capacity of hemoglobin-loaded polymeric nanoparticles as oxygen carrier. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1025-1030. [PMID: 19199110 DOI: 10.1007/s10856-008-3676-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Accepted: 12/16/2008] [Indexed: 05/27/2023]
Abstract
Based on the strong penetration capacity of near infrared lights (NIRs) and different absorption of oxyhemoglobin and deoxyhemoglobin in NIRs region, a novel noninvasive method, with the aid of an airproof-equilibrium apparatus, was developed to determine the oxygen binding-releasing capacity, including oxygen dissociation curve (ODC) and P(50), of the hemoglobin-loaded polymeric nanoparticles (HbP) in this study. The measured ODC of the PLA-PEG HbP was very close to that of the native hemoglobin, and the corresponding P(50) (26.1 mmHg) was also near to the native precursor protein (27.3 mmHg), indicative of the validity of the method proposed. To further verify the method proposed, the oxygen binding-releasing capacity of the HbPs prepared by PCL, PCL-PEG, PLA were also investigated with human blood as control. These results indicated that the method developed here enabled accurate and noninvasive determination of the oxygen binding-releasing capacity of the biodegradable polymeric oxygen carriers.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
29
|
Gatto R, Hoffman WE, Mueller M, Paisansathan C, Charbel F. Age effects on brain oxygenation during hypercapnia. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:062113. [PMID: 18163816 DOI: 10.1117/1.2804705] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Previous studies showed that the cerebrovasodilation response to hypercapnia is attenuated with aging. The purpose of this study was to determine if normal aging attenuates increases in brain oxygenation during hypercapnia. Prefrontal cortex oxyhemoglobin (OHb) and deoxyhemoglobin (HHb) concentrations were measured in 13 healthy subjects ages 26 to 59 years using a frequency domain tissue oximeter. Measurements were obtained under the following conditions: (1) subject awake breathing spontaneously, (2) during mask ventilation with 21% oxygen, (3) mask ventilation with 100% oxygen, (4) 100% oxygen in a rebreathing circuit to increase end-tidal CO(2). Under baseline conditions breathing room air, there was a negative correlation between baseline OHb and age (r=-0.60, P<0.05). Ventilation with 100% oxygen increased OHb without a change in total hemoglobin and no affect of age. During mask rebreathing, end-tidal CO(2) increased from 39.5+/-5.0 mm Hg (millimeters of mercury) to 56.5+/-5.7 mm Hg, which produced significant increases in OHb and total blood volume that were negatively correlated with age (r=-0.67, P<0.05) and positively correlated to baseline OHb (r=0.60, P<0.05). These results indicate that OHb concentrations decreased with age, consistent with attenuated cerebral vasodilation during hypercapnia.
Collapse
Affiliation(s)
- Rodolfo Gatto
- University of Illinois at Chicago, Department of Neurosurgery, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
30
|
Paisansathan C, Hoffman WE, Gatto RG, Baughman VL, Mueller M, Charbel FT. Increased brain oxygenation during intubation-related stress. Eur J Anaesthesiol 2007; 24:1016-20. [PMID: 17568474 DOI: 10.1017/s0265021507000567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND OBJECTIVES The purpose of this study was to determine whether brain oxyhaemoglobin-deoxyhaemoglobin coupling was altered by anaesthesia or intubation-induced stress. METHODS This was a prospective observational study in the operating room. Thirteen patients (ASA I and II) undergoing spinal or peripheral nerve procedures were recruited. They were stabilized before surgery with mask ventilation of 100% oxygen. Anaesthesia was induced with 2 microg kg(-1) fentanyl and 3 mg kg(-1) thiopental. Laryngoscopy and intubation were performed 4 min later. After intubation, desflurane anaesthesia (FiO2=1.0) was adjusted to maintain response entropy of the electroencephalogram at 40-45 for 20 min. Prefrontal cortex oxyhaemoglobin and deoxyhaemoglobin were determined every 2 s using frequency domain near-infrared spectroscopy. Blood pressure, heart rate and response entropy were collected every 10 s. RESULTS Awake oxyhaemoglobin and deoxyhaemoglobin were 18.9 +/- 2.3 micromol (mean +/- SD) and 12.7 +/- 0.8 micromol, respectively, and neither changed significantly during induction. Intubation increased oxyhaemoglobin by 37% (P < 0.05) and decreased deoxyhaemoglobin by 16% (P < 0.05), and both measures returned to baseline within 20 min of desflurane anaesthesia. Blood pressure, heart rate and electroencephalogram response entropy increased during intubation, and the increase in heart rate correlated with the increase in brain oxygen saturation (r = 0.48, P < 0.05). CONCLUSIONS Intubation-related stress increased oxyhaemoglobin related to electroencephalogram and autonomic activation. Stress-induced brain stimulation may be monitored during anaesthesia using frequency domain near-infrared spectroscopy.
Collapse
Affiliation(s)
- C Paisansathan
- University of Illinois at Chicago, Department of Anesthesia, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
31
|
|