1
|
Lin T, Wu N, Guo J, Li M, Zhong Z, Yu W. Establishment of quantitative nested-PCR of Abelson interactor 1 transcript variant-11. Heliyon 2022; 8:e12119. [PMID: 36561701 PMCID: PMC9764186 DOI: 10.1016/j.heliyon.2022.e12119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Abelson interactor 1 (ABI1), which presents 18 Transcript Variants (TSV), plays an important role in CRC metastasis. Different ABI1-TSVs play synergistic or antagonistic roles in the same pathophysiological events. ABI1 Transcript Variant-11 (ABI1-TSV-11) functionally promotes lymph node metastasis of left-sided colorectal cancer (LsCC) and is an independent molecular marker to evaluate the prognosis of patients with LsCC. However, there is still lack of a quick and accurate method to detect the expression of ABI-TSV-11, distinguishing ABI1-TSV-11 from other 17 TSVs. To establish a rapid method specific for ABI1-TSV-11detection, we developed a quantitative nested-PCR method composed of pre-amplification regular PCR using ABI1 universal primer pair and the followed Real Time (RT)-qPCR using ABI1-TSV-11 specific primer pair spanning exon-exon junction. ABI1-TSV-11-overexpressed SW480 and LoVo cell lines were used to verify the quantitative nested-PCR assay, and the sequencing data was used to evaluate the accuracy of ABI1-TSV-11 quantitative nested-PCR assay. The detection limit was 5.24×104 copies/ml. ABI1-TSV-11 quantitative nested-PCR provides a new technical means for the detection of ABI1-TSV-11.
Collapse
Affiliation(s)
- Tingru Lin
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China,Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Na Wu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jingzhu Guo
- Department of Pediatric, Peking University People's Hospital, Beijing 100044, China
| | - Mei Li
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Zhaohui Zhong
- Department of General Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China,Corresponding author.
| |
Collapse
|
2
|
Su F, Wang G, Ji J, Zhang P, Wang F, Li Z. Real-time detection of mRNA splicing variants with specifically designed reverse-transcription loop-mediated isothermal amplification. RSC Adv 2020; 10:6271-6276. [PMID: 35495989 PMCID: PMC9049701 DOI: 10.1039/d0ra00591f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 01/31/2020] [Indexed: 01/22/2023] Open
Abstract
Alternative splicing is a ubiquitous and crucial process in cellular processes and has a specific linkage with diseases. To date, developing cost-effective methods with high sensitivity and specificity for detection of splicing variants has been needed. Herein, we report a novel splicing variant assay based on specifically designed reverse-transcription loop-mediated isothermal amplification. After reverse transcribing the splicing variant into cDNA, four DNA primers are specifically designed to recognize six distinct regions. The four DNA primers can hybridize with corresponding sequences for extension and strand displacement DNA synthesis to form stem-loop DNA and then LAMP amplification is started. The proposed method can detect as low as 100 aM splicing variants in real-time fashion with high specificity, showing great potential in biological function and clinical studies. A novel splicing variant assay is developed based on specifically designed reverse-transcription (RT) loop-mediated isothermal amplification.![]()
Collapse
Affiliation(s)
- Fengxia Su
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Guanhao Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Jianing Ji
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Pengbo Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Fangfang Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| |
Collapse
|
3
|
Matos ML, Lapyckyj L, Rosso M, Besso MJ, Mencucci MV, Briggiler CIM, Giustina S, Furlong LI, Vazquez-Levin MH. Identification of a Novel Human E-Cadherin Splice Variant and Assessment of Its Effects Upon EMT-Related Events. J Cell Physiol 2016; 232:1368-1386. [PMID: 27682981 DOI: 10.1002/jcp.25622] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
Abstract
Epithelial Cadherin (E-cadherin) is involved in calcium-dependent cell-cell adhesion and signal transduction. The E-cadherin decrease/loss is a hallmark of Epithelial to Mesenchymal Transition (EMT), a key event in tumor progression. The underlying molecular mechanisms that trigger E-cadherin loss and consequent EMT have not been completely elucidated. This study reports the identification of a novel human E-cadherin variant mRNA produced by alternative splicing. A bioinformatics evaluation of the novel mRNA sequence and biochemical verifications suggest its regulation by Nonsense-Mediated mRNA Decay (NMD). The novel E-cadherin variant was detected in 29/42 (69%) human tumor cell lines, expressed at variable levels (E-cadherin variant expression relative to the wild type mRNA = 0.05-11.6%). Stable transfection of the novel E-cadherin variant in MCF-7 cells (MCF7Ecadvar) resulted in downregulation of wild type E-cadherin expression (transcript/protein) and EMT-related changes, among them acquisition of a fibroblastic-like cell phenotype, increased expression of Twist, Snail, Zeb1, and Slug transcriptional repressors and decreased expression of ESRP1 and ESRP2 RNA binding proteins. Moreover, loss of cytokeratins and gain of vimentin, N-cadherin and Dysadherin/FXYD5 proteins was observed. Dramatic changes in cell behavior were found in MCF7Ecadvar, as judged by the decreased cell-cell adhesion (Hanging-drop assay), increased cell motility (Wound Healing) and increased cell migration (Transwell) and invasion (Transwell w/Matrigel). Some changes were found in MCF-7 cells incubated with culture medium supplemented with conditioned medium from HEK-293 cells transfected with the E-cadherin variant mRNA. Further characterization of the novel E-cadherin variant will help understanding the molecular basis of tumor progression and improve cancer diagnosis. J. Cell. Physiol. 232: 1368-1386, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- María Laura Matos
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Lara Lapyckyj
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Marina Rosso
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - María José Besso
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - María Victoria Mencucci
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Clara Isabel Marín Briggiler
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Silvina Giustina
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Laura Inés Furlong
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Mónica Hebe Vazquez-Levin
- Instituto de Biología y Medicina Experimental (IBYME). National Research Council of Argentina (CONICET). Fundación IBYME, Vuelta de Obligado 2490, Buenos Aires, Argentina
| |
Collapse
|
4
|
Fackenthal JD, Yoshimatsu T, Zhang B, de Garibay GR, Colombo M, De Vecchi G, Ayoub SC, Lal K, Olopade OI, Vega A, Santamariña M, Blanco A, Wappenschmidt B, Becker A, Houdayer C, Walker LC, López-Perolio I, Thomassen M, Parsons M, Whiley P, Blok MJ, Brandão RD, Tserpelis D, Baralle D, Montalban G, Gutiérrez-Enríquez S, Díez O, Lazaro C, Spurdle AB, Radice P, de la Hoya M. Naturally occurring BRCA2 alternative mRNA splicing events in clinically relevant samples. J Med Genet 2016; 53:548-58. [PMID: 27060066 DOI: 10.1136/jmedgenet-2015-103570] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND BRCA1 and BRCA2 are the two principal tumour suppressor genes associated with inherited high risk of breast and ovarian cancer. Genetic testing of BRCA1/2 will often reveal one or more sequence variants of uncertain clinical significance, some of which may affect normal splicing patterns and thereby disrupt gene function. mRNA analyses are therefore among the tests used to interpret the clinical significance of some genetic variants. However, these could be confounded by the appearance of naturally occurring alternative transcripts unrelated to germline sequence variation or defects in gene function. To understand which novel splicing events are associated with splicing mutations and which are part of the normal BRCA2 splicing repertoire, a study was undertaken by members of the Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium to characterise the spectrum of naturally occurring BRCA2 mRNA alternate-splicing events. METHODS mRNA was prepared from several blood and breast tissue-derived cells and cell lines by contributing ENIGMA laboratories. cDNA representing BRCA2 alternate splice sites was amplified and visualised using capillary or agarose gel electrophoresis, followed by sequencing. RESULTS We demonstrate the existence of 24 different BRCA2 mRNA alternate-splicing events in lymphoblastoid cell lines and both breast cancer and non-cancerous breast cell lines. CONCLUSIONS These naturally occurring alternate-splicing events contribute to the array of cDNA fragments that may be seen in assays for mutation-associated splicing defects. Caution must be observed in assigning alternate-splicing events to potential splicing mutations.
Collapse
Affiliation(s)
| | - Toshio Yoshimatsu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Bifeng Zhang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milano, Italy
| | - Giovanna De Vecchi
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milano, Italy
| | - Samantha C Ayoub
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Kumar Lal
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Marta Santamariña
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Ana Blanco
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Barbara Wappenschmidt
- Medical Faculty, Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO) and Center for Molecular Medicine Cologne (CMMC), University of Cologne and University Hospital Cologne, Germany
| | - Alexandra Becker
- Medical Faculty, Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO) and Center for Molecular Medicine Cologne (CMMC), University of Cologne and University Hospital Cologne, Germany
| | - Claude Houdayer
- Service de Génétique and INSERM U830, Institut Curie and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Logan C Walker
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Irene López-Perolio
- Laboratorio de Oncología Molecular, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Michael Parsons
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Phillip Whiley
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rita D Brandão
- Maastricht Science Programme, Faculty of Humanities and Sciences, Maastricht University, Maastricht, The Netherlands
| | - Demis Tserpelis
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Diana Baralle
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Gemma Montalban
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO) and Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Sara Gutiérrez-Enríquez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO) and Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Orland Díez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO) and Universitat Autonoma de Barcelona, Barcelona, Spain Clinical and Molecular Genetics Area, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Conxi Lazaro
- Molecular Diagnostic Unit, Hereditary Cancer Program, IDIBELL-Catalan Institute of Oncology, Barcelona, Spain
| | | | - Amanda B Spurdle
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milano, Italy
| | - Miguel de la Hoya
- Laboratorio de Oncología Molecular, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
5
|
Turton KB, Annis DS, Rui L, Esnault S, Mosher DF. Ratios of Four STAT3 Splice Variants in Human Eosinophils and Diffuse Large B Cell Lymphoma Cells. PLoS One 2015; 10:e0127243. [PMID: 25984943 PMCID: PMC4436176 DOI: 10.1371/journal.pone.0127243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/13/2015] [Indexed: 01/09/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a key mediator of leukocyte differentiation and proliferation. The 3' end of STAT3 transcripts is subject to two alternative splicing events. One results in either full-length STAT3α or in STAT3β, which lacks part of the C-terminal transactivation domain. The other is at a tandem donor (5') splice site and results in the codon for Ser-701 being included (S) or excluded (ΔS). Despite the proximity of Ser-701 to the site of activating phosphorylation at Tyr-705, ΔS/S splicing has barely been studied. Sequencing of cDNA from purified eosinophils revealed the presence of four transcripts (S-α, ΔS-α, S-β, and ΔS-β) rather than the three reported in publically available databases from which ΔS-β is missing. To gain insight into regulation of the two alternative splicing events, we developed a quantitative(q) PCR protocol to compare transcript ratios in eosinophils in which STAT3 is upregulated by cytokines, activated B cell diffuse large B cell Lymphoma (DLBCL) cells in which STAT3 is dysregulated, and in germinal center B cell-like DLBCL cells in which it is not. With the exception of one line of activated B cell DLCBL cells, the four variants were found in roughly the same ratios despite differences in total levels of STAT3 transcripts. S-α was the most abundant, followed by S-β. ΔS-α and ΔS-β together comprised 15.6±4.0 % (mean±SD, n=21) of the total. The percentage of STAT3β variants that were ΔS was 1.5-fold greater than of STAT3α variants that were ΔS. Inspection of Illumina’s “BodyMap” RNA-Seq database revealed that the ΔS variant accounts for 10-26 % of STAT3 transcripts across 16 human tissues, with less variation than three other genes with the identical tandem donor splice site sequence. Thus, it seems likely that all cells contain the S-α, ΔS-α, S-β, and ΔS-β variants of STAT3.
Collapse
Affiliation(s)
- Keren B. Turton
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Douglas S. Annis
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Lixin Rui
- Department of Medicine at University of Wisconsin-Madison, Madison, WI, United States of America
| | - Stephane Esnault
- Department of Medicine at University of Wisconsin-Madison, Madison, WI, United States of America
| | - Deane F. Mosher
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Medicine at University of Wisconsin-Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
6
|
Liang Q, Xiang M, Lu Y, Ruan Y, Ding Q, Wang X, Xi X, Wang H. Characterisation and quantification of F8 transcripts of ten putative splice site mutations. Thromb Haemost 2014; 113:585-92. [PMID: 25503412 DOI: 10.1160/th14-06-0523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/22/2014] [Indexed: 11/05/2022]
Abstract
Mutations affecting splice sites comprise approximately 7.5 % of the known F8 gene mutations but only a few were verified at mRNA level. In the present study, 10 putative splice site mutations were characterised by mRNA analysis using reverse transcription PCR (RT-PCR). Quantitative real-time RT-PCR (RT-qPCR) and co-amplification fluorescent PCR were used in combination to quantify the amount of each of multiple F8 transcripts. All of the mutations resulted in aberrant splicing. One of them (c.6187+1del1) generated one form of F8 transcript with exon skipping, and the remaining nine mutations (c.602-6T>C, c.1752+5_1752+6insGTTAG, c.1903+5G>A, c.5219+3A>G, c.5586+3A>T, c.969A>T, c.265+4A>G, c.601+1_601+5del5 and c.1444-8_1444del9) produced multiple F8 transcripts with exon skipping, activation of cryptic splice site and/or normal splicing. Residual wild-type F8 transcripts were produced by the first six of the nine mutations with amounts of 3.9 %, 14.2 %, 5.2 %, 19.2 %, 1.8 % and 2.5 % of normal levels, respectively, which were basically consistent with coagulation phenotypes in the related patients. In comparison with the mRNA findings, software Alamut v2.3 had values in the prediction of pathogenic effects on native splice sites but was not reliable in the prediction of activation of cryptic splice sites. Our quantification of F8 transcripts may provide an alternative way to evaluate the low expression levels of residue wild-type F8 transcripts and help to explain the severity of haemophilia A caused by splicing site mutations.
Collapse
Affiliation(s)
| | | | | | | | - Qiulan Ding
- Qiulan Ding, Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin Second Road, Shanghai, 200025, China, Tel.: +86 21 54667770, Fax: +86 21 64333548, E-mail:
| | | | | | | |
Collapse
|
7
|
Ganassi M, Badodi S, Polacchini A, Baruffaldi F, Battini R, Hughes SM, Hinits Y, Molinari S. Distinct functions of alternatively spliced isoforms encoded by zebrafish mef2ca and mef2cb. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:559-70. [PMID: 24844180 PMCID: PMC4064114 DOI: 10.1016/j.bbagrm.2014.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/29/2014] [Accepted: 05/12/2014] [Indexed: 01/06/2023]
Abstract
In mammals, an array of MEF2C proteins is generated by alternative splicing (AS), yet specific functions have not been ascribed to each isoform. Teleost fish possess two MEF2C paralogues, mef2ca and mef2cb. In zebrafish, the Mef2cs function to promote cardiomyogenic differentiation and myofibrillogenesis in nascent skeletal myofibers. We found that zebrafish mef2ca and mef2cb are alternatively spliced in the coding exons 4–6 region and these splice variants differ in their biological activity. Of the two, mef2ca is more abundantly expressed in developing skeletal muscle, its activity is tuned through zebrafish development by AS. By 24 hpf, we found the prevalent expression of the highly active full length protein in differentiated muscle in the somites. The splicing isoform of mef2ca that lacks exon 5 (mef2ca 4–6), encodes a protein that has 50% lower transcriptional activity, and is found mainly earlier in development, before muscle differentiation. mef2ca transcripts including exon 5 (mef2ca 4–5–6) are present early in the embryo. Over-expression of this isoform alters the expression of genes involved in early dorso-ventral patterning of the embryo such as chordin, nodal related 1 and goosecoid, and induces severe developmental defects. AS of mef2cb generates a long splicing isoform in the exon 5 region (Mef2cbL) that predominates during somitogenesis. Mef2cbL contains an evolutionarily conserved domain derived from exonization of a fragment of intron 5, which confers the ability to induce ectopic muscle in mesoderm upon over-expression of the protein. Taken together, the data show that AS is a significant regulator of Mef2c activity. mef2ca and mef2cb gene products are alternatively spliced in zebrafish. Inclusion of exon 5 in mef2ca transcripts is regulated during zebrafish development. Exon 5 confers on Mef2ca the ability to activate early patterning genes. Mef2cb includes an extra octapeptide encoded by a region of intron 5. Inclusion of the extra-octapeptide confers on Mef2cb pro-myogenic activity.
Collapse
Affiliation(s)
- M Ganassi
- University of Modena and Reggio Emilia, Department of Life Sciences, Italy; Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - S Badodi
- University of Modena and Reggio Emilia, Department of Life Sciences, Italy
| | - A Polacchini
- University of Modena and Reggio Emilia, Department of Life Sciences, Italy
| | - F Baruffaldi
- University of Modena and Reggio Emilia, Department of Life Sciences, Italy
| | - R Battini
- University of Modena and Reggio Emilia, Department of Life Sciences, Italy
| | - S M Hughes
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Y Hinits
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK.
| | - S Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Italy.
| |
Collapse
|
8
|
Differential HFE gene expression is regulated by alternative splicing in human tissues. PLoS One 2011; 6:e17542. [PMID: 21407826 PMCID: PMC3048171 DOI: 10.1371/journal.pone.0017542] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 02/07/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The pathophysiology of HFE-derived Hereditary Hemochromatosis and the function of HFE protein in iron homeostasis remain uncertain. Also, the role of alternative splicing in HFE gene expression regulation and the possible function of the corresponding protein isoforms are still unknown. The aim of this study was to gain insights into the physiological significance of these alternative HFE variants. METHODOLOGY/PRINCIPAL FINDINGS Alternatively spliced HFE transcripts in diverse human tissues were identified by RT-PCR, cloning and sequencing. Total HFE transcripts, as well as two alternative splicing transcripts were quantified using a real-time PCR methodology. Intracellular localization, trafficking and protein association of GFP-tagged HFE protein variants were analysed in transiently transfected HepG2 cells by immunoprecipitation and immunofluorescence assays. Alternatively spliced HFE transcripts present both level- and tissue-specificity. Concerning the exon 2 skipping and intron 4 inclusion transcripts, the liver presents the lowest relative level, while duodenum presents one of the highest amounts. The protein resulting from exon 2 skipping transcript is unable to associate with β2M and TfR1 and reveals an ER retention. Conversely, the intron 4 inclusion transcript gives rise to a truncated, soluble protein (sHFE) that is mostly secreted by cells to the medium in association with β2M. CONCLUSIONS/SIGNIFICANCE HFE gene post-transcriptional regulation is clearly affected by a tissue-dependent alternative splicing mechanism. Among the corresponding proteins, a sHFE isoform stands out, which upon being secreted into the bloodstream, may act in remote tissues. It could be either an agonist or antagonist of the full length HFE, through hepcidin expression regulation in the liver or by controlling dietary iron absorption in the duodenum.
Collapse
|
9
|
Focant MC, Goursaud S, Nizet Y, Hermans E. Differential regulation of C-terminal splice variants of the glutamate transporter GLT-1 by tumor necrosis factor-alpha in primary cultures of astrocytes. Neurochem Int 2011; 58:751-8. [PMID: 21371514 DOI: 10.1016/j.neuint.2011.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 02/16/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
Abstract
The high-affinity glutamate transporter GLT-1 plays a key role in the control of the glutamate homeostasis in the central nervous system and protects neurons against excitotoxicity. Splice variants of the original transcript have been identified and their involvement in neurodegenerative disorders has been proposed. However, the functions and the regulations of these isoforms remain unclear. In this study, we focused our interest on the expression of two C-terminal splice variants of GLT-1 (GLT-1a and b) in primary astrocyte cultures exposed to distinct chemical environments. While GLT-1a and GLT-1b mRNAs were both increased in response to treatment with N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (dBcAMP), the culture supplement G5 or tumor necrosis factor-alpha (TNF-α), the regulation of GLT-1b appeared quicker and was more pronounced. Besides, using validated antibodies, we evidenced a differential regulation of the two proteins in cells exposed to TNF-α. Thus, while dBcAMP and the G5 supplement stimulated the expression of both isoforms at 3 and 7 days, a transient upregulation of GLT-1a was induced by TNF-α, which contrasts with the sustained induction of the GLT-1b isoform. These results shed light on the complex influence of the pro-inflammatory cytokine TNF-α on GLT-1a mRNA and protein expression and on the necessity to distinctly consider the GLT-1 isoforms with appropriate tools in studies addressing the regulation of glutamate transporters.
Collapse
Affiliation(s)
- Marylène C Focant
- Neuropharmacology Group, Institute of Neuroscience, Université catholique de Louvain, Av. Hippocrate 54.10, 1200 Brussels, Belgium
| | | | | | | |
Collapse
|
10
|
Apostolatos H, Apostolatos A, Vickers T, Watson JE, Song S, Vale F, Cooper DR, Sanchez-Ramos J, Patel NA. Vitamin A metabolite, all-trans-retinoic acid, mediates alternative splicing of protein kinase C deltaVIII (PKCdeltaVIII) isoform via splicing factor SC35. J Biol Chem 2010; 285:25987-95. [PMID: 20547768 DOI: 10.1074/jbc.m110.100735] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin A metabolite, all-trans-retinoic acid (RA), induces cell growth, differentiation, and apoptosis and has an emerging role in gene regulation and alternative splicing events. Protein kinase Cdelta (PKCdelta), a serine/threonine kinase, has a role in cell proliferation, differentiation, and apoptosis. We reported an alternatively spliced variant of human PKCdelta, PKCdeltaVIII that functions as a pro-survival protein (1). RA regulates the splicing and expression of PKCdeltaVIII via utilization of a downstream 5' splice site of exon 10 on PKCdelta pre-mRNA. Here, we further elucidate the molecular mechanisms involved in RA regulation of alternative splicing of PKCdeltaVIII mRNA. Overexpression and knockdown of the splicing factor SC35 (i.e. SRp30b) indicated that it is involved in PKCdeltaVIII alternative splicing. To identify the cis-elements involved in 5' splice site selection we cloned a minigene, which included PKCdelta exon 10 and its flanking introns in the pSPL3 splicing vector. Alternative 5' splice site utilization in the minigene was promoted by RA. Further, co-transfection of SC35 with PKCdelta minigene promoted selection of 5' splice site II. Mutation of the SC35 binding site in the PKCdelta minigene abolished RA-mediated utilization of 5' splice splice II. RNA binding assays demonstrated that the enhancer element downstream of PKCdelta exon 10 is a SC35 cis-element. We conclude that SC35 is pivotal in RA-mediated PKCdelta pre-mRNA alternative splicing. This study demonstrates how a nutrient, vitamin A, via its metabolite RA, regulates alternative splicing and thereby gene expression of the pro-survival protein PKCdeltaVIII.
Collapse
|
11
|
Scott HA, Gebhardt FM, Mitrovic AD, Vandenberg RJ, Dodd PR. Glutamate transporter variants reduce glutamate uptake in Alzheimer's disease. Neurobiol Aging 2010; 32:553.e1-11. [PMID: 20416976 DOI: 10.1016/j.neurobiolaging.2010.03.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 03/05/2010] [Accepted: 03/11/2010] [Indexed: 11/28/2022]
Abstract
A characteristic of Alzheimer's disease (AD) is that neuron populations in the temporal, frontal, and parietal cortices are selectively vulnerable. Several neurotransmitters have been proposed to play roles in neural destruction as AD progresses, including glutamate. Failure to clear the synaptic cleft of glutamate can overstimulate postsynaptic glutamate receptors, promoting neuronal death. Excitatory amino acid transporter 2 (EAAT2), which is concentrated in perisynaptic astrocytes, performs 90% of glutamate uptake in mammalian central nervous system. Alternative splicing of EAAT2 mRNA could regulate glutamate transport in normal and disease states. We report disease- and pathology-specific variations in EAAT2 splice variant expression in AD brain obtained at autopsy. While wild type EAAT2 showed a global reduction in expression, brain regions susceptible to neuronal loss demonstrated greater expression of transcripts that reduced glutamate transport in an in vitro assay. Functional splice variant EAAT2b showed no significant variation with disease state. These results have implications for the treatment of AD as modulators of EAAT2 splicing and/or glutamate uptake would augment current therapies aimed at blocking glutamate receptors.
Collapse
Affiliation(s)
- Heather A Scott
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, Australia
| | | | | | | | | |
Collapse
|
12
|
Brosseau JP, Lucier JF, Lapointe E, Durand M, Gendron D, Gervais-Bird J, Tremblay K, Perreault JP, Elela SA. High-throughput quantification of splicing isoforms. RNA (NEW YORK, N.Y.) 2010; 16:442-9. [PMID: 20038630 PMCID: PMC2811672 DOI: 10.1261/rna.1877010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/29/2009] [Indexed: 05/20/2023]
Abstract
Most human messenger RNAs (mRNAs) are alternatively spliced and many exhibit disease-specific splicing patterns. However, the contribution of most splicing events to the development and maintenance of human diseases remains unclear. As the contribution of alternative splicing events to diagnosis and prognosis is becoming increasingly recognized, it becomes important to develop precise methods to quantify the abundance of these isoforms in clinical samples. Here we present a pipeline for real-time PCR annotation of splicing events (RASE) that allows accurate identification of a large number of splicing isoforms in human tissues. The RASE automatically designed specific primer pairs for 81% of all alternative splicing events in the NCBI build 36 database. Experimentally, the majority of the RASE designed primers resulted in isoform-specific amplification suitable for quantification in human cell lines or in formalin-fixed, paraffin-embedded (FFPE) RNA extract. Using this pipeline it is now possible to rapidly identify splicing isoform signatures in different types of human tissues or to validate complete sets of data generated by microarray expression profiling and deep sequencing techniques.
Collapse
Affiliation(s)
- Jean-Philippe Brosseau
- Universite de Sherbrooke, Departement de Microbiologie et d'Infectiologie Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jabbari E, He X, Valarmathi MT, Sarvestani AS, Xu W. Material properties and bone marrow stromal cells response to in situ crosslinkable RGD-functionlized lactide-co-glycolide scaffolds. J Biomed Mater Res A 2009; 89:124-37. [PMID: 18431754 DOI: 10.1002/jbm.a.31936] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In situ crosslinkable biomaterials with degradation profiles that can be tailored to a particular application are indispensable for treating irregularly shaped defects and for fabrication of shape-selective scaffolds. The objective of this work was to synthesize ultra low molecular weight functionalized PLA and PLGA macromers that can be grafted with bioactive peptides and crosslinked in situ to fabricate biodegradable functional scaffolds. In situ crosslinkable lactide-co-glycolide macromer (cMLGA; "c" for crosslinkable, "M" for macromer, and "LGA" for lactide-co-glycolide) was synthesized by anionic polymerization of lactide and glycolide monomers followed by condensation polymerization with fumaryl chloride. The cMLA (100% L-lactide) and cMLGA macromers formed porous crosslinked scaffolds with NVP as the crosslinker. The mass loss of the crosslinked cMLA and cMLGA was linear with incubation time in vitro (zero-order degradation) and the degradation rate depended on the ratio of lactide to glycolide. cMLGA scaffold with 1:1 lactide to glycolide ratio completely degraded after 4 weeks while the cMLA lost less than 40% of its initial mass after 35 weeks. When cMLA scaffold was functionalized with acrylated integrin-binding Ac-GRGD amino acid sequence, bone marrow stromal (BMS) cells attached and spread on the cMLA scaffold and exhibited focal-point cell adhesion. The mRNA expression levels of collagen-1alpha, osteonectin, and osteopontin for BMS cells seeded in the scaffolds with 1 and 5% Ac-GRGD were upregulated compared with those without Ac-GRGD. cMLGA is attractive as in situ crosslinkable macromer for fabrication of functional scaffolds with degradation characteristics that can be tailored to a particular application.
Collapse
Affiliation(s)
- Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratories, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA.
| | | | | | | | | |
Collapse
|
14
|
Neuronal expression of splice variants of "glial" glutamate transporters in brains afflicted by Alzheimer's disease: unmasking an intrinsic neuronal property. Neurochem Res 2009; 34:1748-57. [PMID: 19319679 DOI: 10.1007/s11064-009-9957-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/11/2009] [Indexed: 01/24/2023]
Abstract
Anomalies in glutamate homeostasis may contribute to the pathological processes involved in Alzheimer's disease (AD). Glutamate released from neurons or glial cells is normally rapidly cleared by glutamate transporters, most of which are expressed at the protein level by glial cells. However, in some patho-physiological situations, expression of glutamate transporters that are normally considered to be glial types, appears to be evoked in populations of distressed neurons. This study analysed the expression of exon-skipping forms of the three predominant excitatory amino acid (glutamate) transporters (EAATs1-3) in brains afflicted with AD. We demonstrate by immunocytochemistry in temporal cortex, the expression of these proteins particularly in limited subsets of neurons, some of which appeared to be dys-morphic. Whilst the neuronal expression of the "glial" glutamate transporters EAAT1 and EAAT2 is frequently considered to represent the abnormal and ectopic expression of such transporters, we suggest this may be a misinterpretation, since neurons such as cortical pyramidal cells normally express abundant mRNA for these EAATs (but little if any EAAT protein expression). We hypothesize instead that distressed neurons in the AD brain can turn on the translation of pre-existent mRNA pools, or suppress the degradation of alternately spliced glutamate transporter protein, leading to the "unmasking" of, rather than evoked expression of "glial" glutamate transporters in stressed neurons.
Collapse
|
15
|
Lee RH, Goodwin TM, Yang W, Li A, Wilson ML, Mullin PM, Felix JC. Quantitative detection of EP3-II, III and VI messenger RNA in gravid and non-gravid human myometrium using real-time RT-PCR. J Matern Fetal Neonatal Med 2009; 22:59-64. [PMID: 19165680 DOI: 10.1080/14767050802353549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To examine mRNA expression of prostaglandin E2 receptor isoforms EP3-II, III and VI in lower uterine segment myometrium in the non-pregnant and pregnant state using quantitative real-time RT-PCR. METHODS Myometrial samples were obtained at the time of cesarean delivery or hysterectomy. Pregnant subjects were categorised based on the presence or absence of labour. Labour was defined as regular uterine contractions resulting in cervical change. Quantification for EP3 isoforms II, III and VI mRNA was performed using real-time RT-PCR. RESULTS There were no differences between non-pregnant and non-labouring pregnant subjects in mRNA expression of EP3-II, III and VI. However, when compared to pregnant subjects not in labour, labouring subjects had a 3.8-fold reduction in EP3-II expression (p < 0.001) and 5.3-fold reduction in EP3-VI expression (p = 0.022). CONCLUSIONS In human parturition, there is decreased mRNA expression of lower-uterine segment EP3 receptor isoforms II and VI during labour. This may reflect differential relaxation of the lower segment of the uterus allowing dilatation and descent of the fetus.
Collapse
Affiliation(s)
- Richard H Lee
- Department of Obstetrics and Gynecology, Los Angeles County-University of Southern California Medical Center, Women's and Children's Hospital, Los Angeles County, California, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Jiang K, Apostolatos AH, Ghansah T, Watson JE, Vickers T, Cooper DR, Epling-Burnette PK, Patel NA. Identification of a novel antiapoptotic human protein kinase C delta isoform, PKCdeltaVIII in NT2 cells. Biochemistry 2007; 47:787-97. [PMID: 18092819 DOI: 10.1021/bi7019782] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein kinase C (PKC) delta plays an important role in cellular proliferation and apoptosis where it is involved in the caspase-3 mediated apoptotic pathway. Cleavage of PKCdeltaI by caspase-3 releases a catalytically active C-terminal fragment that is sufficient to induce apoptosis. In this paper, we identified a novel human PKCdelta isozyme, PKCdeltaVIII (Genbank accession number DQ516383) in human teratocarcinoma (NT2) cells that differentiate into hNT neurons upon retinoic acid (RA) treatment. Expression of PKCdeltaVIII was confirmed by real-time RT-PCR analysis, and we observed that after an initial peak at 24 h following RA treatment, its expression gradually declined with prolonged RA treatment. PKCdeltaVIII is generated via the utilization of an alternative 5' splice site, and this results in an insertion of 31 amino acids in the caspase-3 recognition sequence DMQD. The function of PKCdeltaVIII was examined by subcloning it into an expression vector and raising an antibody specific to PKCdeltaVIII. Using in vivo and in vitro assays, we demonstrated that PKCdeltaVIII is resistant to caspase-3 cleavage. Next, we sought to determine the role of PKCdeltaVIII in apoptosis in NT2 cells. Overexpression of PKCdeltaVIII and knockdown using PKCdeltaVIII siRNA suggest an antiapoptotic function for the PKCdeltaVIII isozyme. We demonstrate that antisense oligonucleotides (ASO) directed toward the 5' splice site I promote the expression of the PKCdeltaVIII isozyme. Our results indicated that ASO mediated PKCdeltaVIII expression rescued NT2 cells from etoposide-induced apoptosis. We conclude that the novel human PKCdeltaVIII splice variant functions as an antiapoptotic protein in NT2 cells.
Collapse
Affiliation(s)
- Kun Jiang
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|