1
|
JA R, Lovelace JW, Kokash J, Hussain A, KA R. Nicotine reduces age-related changes in cortical neural oscillations without affecting auditory brainstem responses. Neurobiol Aging 2022; 120:10-26. [DOI: 10.1016/j.neurobiolaging.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
|
2
|
PSPH-D-18-00526: Effect of a dual orexin receptor antagonist (DORA-12) on sleep and event-related oscillations in rats exposed to ethanol vapor during adolescence. Psychopharmacology (Berl) 2020; 237:2917-2927. [PMID: 31659377 PMCID: PMC7186151 DOI: 10.1007/s00213-019-05371-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
RATIONALE Sleep difficulties are one of the problems associated with adolescent binge drinking. However, the mechanisms underlying adolescent alcohol-associated sleep disturbances and potential targets for therapy remain under investigated. Orexin receptor antagonists may have therapeutic value in the treatment of insomnia, yet the use of this class of drugs in the treatment of sleep disturbances following adolescent alcohol exposure has not been studied. OBJECTIVES This study employed a model whereby ethanol vapor exposure occurred for 5 weeks during adolescence (AIE), and waking event-related oscillations (EROs) and EEG sleep were subsequently evaluated in young adult rats. The ability of two doses (10, 30 mg/kg PO) of a dual orexin receptor antagonist (DORA-12) to modify sleep, EEG, and EROs was investigated in AIE rats and controls. RESULTS Adolescent vapor exposure was found to produce a fragmentation of sleep, in young adults, that was partially ameliorated by DORA-12. DORA-12 also produced increases in delta and theta power in waking EROs recorded before sleep, and deeper sleep as indexed by increases in delta and theta power in the sleep EEG in both ethanol and control rats. Rats given DORA-12 also fell asleep faster than vehicle-treated rats as measured by a dose-dependent reduction in the latency to both the first slow wave and REM sleep episodes. CONCLUSIONS This study showed that DORA-12 can affect the sleep disturbance that is associated with a history of adolescent ethanol exposure and also has several other sleep-promoting effects that are equivalent in both ethanol and control rats.
Collapse
|
3
|
Ehlers CL, Phillips E, Wills D, Benedict J, Sanchez-Alavez M. Phase locking of event-related oscillations is decreased in both young adult humans and rats with a history of adolescent alcohol exposure. Addict Biol 2020; 25:e12732. [PMID: 30884076 PMCID: PMC6751029 DOI: 10.1111/adb.12732] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/25/2023]
Abstract
Alcohol exposure typically begins in adolescence, and frequent binge drinking has been associated with health risk behaviors including alcohol use disorders (AUDs). Few studies have documented the effects of a history of adolescent binge drinking on neurophysiological consequences in young adulthood. Synchrony of phase (phase locking (PL)) of event-related oscillations (EROs) within and between different brain areas reflects communication exchange between neural networks and is a sensitive measure of adolescent development in both rats and humans, and thus may be a good translational measure of the potential harmful effects of alcohol exposure during adolescence. In this study, EROs were collected from 1041 young adults of Mexican American and American Indian ancestry (age 18-30 years) with and without a history of adolescent binge drinking (five drinks for boys and four for girls per occasion at least once per month) and in 74 young adult rats with and without a history of 5 weeks of adolescent alcohol vapor exposure. PL of theta and beta frequencies between frontal and parietal cortex were estimated using an auditory-oddball paradigm in the rats and a visual facial expression paradigm in the humans. Significantly lower PL between frontal and parietal cortices in the theta frequencies was seen in both the humans and the rats with a history of adolescent alcohol exposure as compared with their controls. These findings suggest that alcohol exposure during adolescence may result in decreases in synchrony between cortical neuronal networks, suggesting a developmental delay, in young adult humans and in rats.
Collapse
Affiliation(s)
- Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Evie Phillips
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Derek Wills
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Jessica Benedict
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
4
|
Sleep architecture changes in the APP23 mouse model manifest at onset of cognitive deficits. Behav Brain Res 2019; 373:112089. [PMID: 31325518 DOI: 10.1016/j.bbr.2019.112089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/26/2019] [Accepted: 07/16/2019] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD), which accounts for most of the dementia cases, is, aside from cognitive deterioration, often characterized by the presence of non-cognitive symptoms such as activity and sleep disturbances. AD patients typically experience increased sleep fragmentation, excessive daytime sleepiness and night-time insomnia. Here, we sought to investigate the link between sleep architecture, cognition and amyloid pathology in the APP23 amyloidosis mouse model for AD. By means of polysomnographic recordings the sleep-wake cycle of freely-moving APP23 and wild-type (WT) littermates of 3, 6 and 12 months of age was examined. In addition, ambulatory cage activity was assessed by interruption of infrared beams surrounding the home cage. To assess visuo-spatial learning and memory a hidden-platform Morris-type Water Maze (MWM) experiment was performed. We found that sleep architecture is only slightly altered at early stages of pathology, but significantly deteriorates from 12 months of age, when amyloid plaques become diffusely present. APP23 mice of 12 months old had quantitative reductions of NREM and REM sleep and were more awake during the dark phase compared to WT littermates. These findings were confirmed by increased ambulatory cage activity during that phase of the light-dark cycle. No quantitative differences in sleep parameters were observed during the light phase. However, during this light phase, the sleep pattern of APP23 mice was more fragmented from 6 months of age, the point at which also cognitive abilities started to be affected in the MWM. Sleep time also positively correlated with MWM performance. We also found that spectral components in the EEG started to alter at the age of 6 months. To conclude, our results indicate that sleep architectural changes arise around the time the first amyloid plaques start to form and cognitive deterioration becomes apparent. These changes start subtle, but gradually worsen with age, adequately mimicking the clinical condition.
Collapse
|
5
|
Amodeo LR, Wills DN, Ehlers CL. Acute low-level alcohol consumption reduces phase locking of event-related oscillations in rodents. Behav Brain Res 2017; 330:25-29. [PMID: 28495609 DOI: 10.1016/j.bbr.2017.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/12/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022]
Abstract
Event-related oscillations (EROs) are rhythmic changes that are evoked by a sensory and/or cognitive stimulus that can influence the dynamics of the EEG. EROs are defined by the decomposition of the EEG signal into magnitude (energy) and phase information and can be elicited in both humans and animals. EROs have been linked to several relevant genes associated with ethanol dependence phenotypes in humans and are altered in selectively bred alcohol-preferring rats. However, pharmacological studies are only beginning to emerge investigating the impact low intoxicating doses of ethanol can have on event-related neural oscillations. The main goal of this study was to investigate the effects of low levels of voluntary consumption of ethanol, in rats, on phase locking of EROs in order to give further insight into the acute intoxicating effects of ethanol on the brain. To this end, we allow rats to self-administer unsweetened 20% ethanol over 15 intermittent sessions. This method results in a stable low-dose consumption of ethanol. Using an auditory event-related potential "oddball" paradigm, we investigated the effects of alcohol on the phase variability of EROs from electrodes implanted into the frontal cortex, dorsal hippocampus, and amygdala. We found that intermittent ethanol self-administration was sufficient to produce a significant reduction in overall intraregional synchrony across all targeted regions. These data suggest that phase locking of EROs within brain regions known to be impacted by alcohol may represent a sensitive biomarker of low levels of alcohol intoxication.
Collapse
Affiliation(s)
- Leslie R Amodeo
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla 92037, CA, USA
| | - Derek N Wills
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla 92037, CA, USA
| | - Cindy L Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla 92037, CA, USA.
| |
Collapse
|
6
|
Twele F, Schidlitzki A, Töllner K, Löscher W. The intrahippocampal kainate mouse model of mesial temporal lobe epilepsy: Lack of electrographic seizure-like events in sham controls. Epilepsia Open 2017; 2:180-187. [PMID: 29588947 PMCID: PMC5719860 DOI: 10.1002/epi4.12044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 12/13/2022] Open
Abstract
Objective There is an ongoing debate about definition of seizures in experimental models of acquired epilepsy and how important adequate sham controls are in this respect. For instance, several mouse and rat strains exhibit high-voltage rhythmic spike or spike-wave discharges in the cortical electroencephalogram (EEG), which has to be considered when using such strains for induction of epilepsy by status epilepticus, traumatic brain injury, or other means. Mice developing spontaneous recurrent nonconvulsive and convulsive seizures after intrahippocampal injection of kainate are increasingly being used as a model of mesial temporal lobe epilepsy. We performed a prospective study in which EEG alterations occurring in this model were compared with the EEGs in appropriate sham controls, using hippocampal electrodes and video-EEG monitoring. Methods Experiments with intrahippocampal kainate (or saline) injections started when mice were about 8 weeks of age. Continuous video-EEG recording via hippocampal electrodes was performed 6 weeks after surgery in kainate-injected mice and sham controls, that is, at an age of about 14 weeks. Three days of continuous video-EEG monitoring were compared between kainate-injected mice and experimental controls. Results As reported previously, kainate-injected mice exhibited two types of highly frequent electrographic seizures: high-voltage sharp waves, which were often monomorphic, and polymorphic hippocampal paroxysmal discharges. In addition, generalized convulsive clinical seizures were infrequently observed. None of these electrographic or electroclinical seizures were observed in sham controls. The only infrequently observed EEG abnormalities in sham controls were isolated spikes or spike clusters, which were also recorded in epileptic mice. Significance This study rigorously demonstrates, by explicit comparison with the EEGs of sham controls, that the nonconvulsive paroxysmal events observed in this model are consequences of the induced epilepsy and not features of the EEG expected to be seen in some experimental control mice or unintentionally induced by surgical procedures.
Collapse
Affiliation(s)
- Friederike Twele
- Department of Pharmacology, Toxicology, and PharmacyUniversity of Veterinary MedicineHanoverGermany.,Center for Systems Neuroscience Hanover Germany
| | - Alina Schidlitzki
- Department of Pharmacology, Toxicology, and PharmacyUniversity of Veterinary MedicineHanoverGermany.,Center for Systems Neuroscience Hanover Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and PharmacyUniversity of Veterinary MedicineHanoverGermany.,Center for Systems Neuroscience Hanover Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and PharmacyUniversity of Veterinary MedicineHanoverGermany.,Center for Systems Neuroscience Hanover Germany
| |
Collapse
|
7
|
Ehlers CL, Wills DN, Desikan A, Phillips E, Havstad J. Decreases in energy and increases in phase locking of event-related oscillations to auditory stimuli occur during adolescence in human and rodent brain. Dev Neurosci 2014; 36:175-95. [PMID: 24819672 DOI: 10.1159/000358484] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 01/03/2014] [Indexed: 11/19/2022] Open
Abstract
Synchrony of phase (phase locking) of event-related oscillations (EROs) within and between different brain areas has been suggested to reflect communication exchange between neural networks and as such may be a sensitive and translational measure of changes in brain remodeling that occur during adolescence. This study sought to investigate developmental changes in EROs using a similar auditory event-related potential (ERP) paradigm in both rats and humans. Energy and phase variability of EROs collected from 38 young adult men (aged 18-25 years), 33 periadolescent boys (aged 10-14 years), 15 male periadolescent rats [at postnatal day (PD) 36] and 19 male adult rats (at PD103) were investigated. Three channels of ERP data (frontal cortex, central cortex and parietal cortex) were collected from the humans using an 'oddball plus noise' paradigm that was presented under passive (no behavioral response required) conditions in the periadolescents and under active conditions (where each subject was instructed to depress a counter each time he detected an infrequent target tone) in adults and adolescents. ERPs were recorded in rats using only the passive paradigm. In order to compare the tasks used in rats to those used in humans, we first studied whether three ERO measures [energy, phase locking index (PLI) within an electrode site and phase difference locking index (PDLI) between different electrode sites] differentiated the 'active' from 'passive' ERP tasks. Secondly, we explored our main question of whether the three ERO measures differentiated adults from periadolescents in a similar manner in both humans and rats. No significant changes were found in measures of ERO energy between the active and passive tasks in the periadolescent human participants. There was a smaller but significant increase in PLI but not PDLI as a function of active task requirements. Developmental differences were found in energy, PLI and PDLI values between the periadolescents and adults in both the rats and the human participants. Neuronal synchrony as indexed by PLI and PDLI was significantly higher to the infrequent (target) tone compared to the frequent (nontarget) tone in all brain sites in all of the regions of interest time-frequency intervals. Significantly higher ERO energy and significantly lower synchrony was seen in the periadolescent humans and rats compared to their adult counterparts. Taken together these findings are consistent with the hypothesis that adolescent remodeling of the brain includes decreases in energy and increases in synchrony over a wide frequency range both within and between neuronal networks and that these effects are conserved over evolution.
Collapse
Affiliation(s)
- Cindy L Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, Calif., USA
| | | | | | | | | |
Collapse
|
8
|
A review of alpha activity in integrative brain function: Fundamental physiology, sensory coding, cognition and pathology. Int J Psychophysiol 2012; 86:1-24. [DOI: 10.1016/j.ijpsycho.2012.07.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/02/2012] [Accepted: 07/08/2012] [Indexed: 11/23/2022]
|
9
|
Ehlers CL, Wills DN, Havstad J. Ethanol reduces the phase locking of neural activity in human and rodent brain. Brain Res 2012; 1450:67-79. [PMID: 22410292 DOI: 10.1016/j.brainres.2012.02.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 11/29/2022]
Abstract
How the neuromolecular actions of ethanol translate to its observed intoxicating effects remains poorly understood. Synchrony of phase (phase locking) of event-related oscillations (EROs) within and between different brain areas has been suggested to reflect communication exchange between neural networks and as such may be a sensitive and translational measure of ethanol's effects. Using a similar auditory event-related potential paradigm in both rats and humans we investigated the phase variability of EROs collected from 38 young men who had participated in an ethanol/placebo challenge protocol, and 46 adult male rats given intraperitoneal injections of ethanol/saline. Phase locking was significantly higher in the delta frequencies in humans than in rats. Phase locking was also higher for the rare (target) tone than the frequent (non-target) tone in both species. Significant reductions in phase locking to the rare (target) tone in the delta, theta, alpha, beta and gamma frequencies, within and between brain sites, was found at 1h following ethanol as compared to placebo/saline administration in both rats and humans. Reductions in phase locking in the alpha frequencies in the parietal cortex were found to be correlated with blood ethanol concentrations. These findings are consistent with the hypothesis that ethanol's intoxicating actions in the brain include reducing synchrony within and between neuronal networks, perhaps by increasing the level of noise in key neuromolecular interactions.
Collapse
Affiliation(s)
- Cindy L Ehlers
- Department of Molecular and Integrative Neuroscience, The Scripps Research Institute,10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
10
|
Pandey AK, Kamarajan C, Rangaswamy M, Porjesz B. Event-Related Oscillations in Alcoholism Research: A Review. ACTA ACUST UNITED AC 2012; Suppl 7. [PMID: 24273686 DOI: 10.4172/2155-6105.s7-001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alcohol dependence is characterized as a multi-factorial disorder caused by a complex interaction between genetic and environmental liabilities across development. A variety of neurocognitive deficits/dysfunctions involving impairments in different brain regions and/or neural circuitries have been associated with chronic alcoholism, as well as with a predisposition to develop alcoholism. Several neurobiological and neurobehavioral approaches and methods of analyses have been used to understand the nature of these neurocognitive impairments/deficits in alcoholism. In the present review, we have examined relatively novel methods of analyses of the brain signals that are collectively referred to as event-related oscillations (EROs) and show promise to further our understanding of human brain dynamics while performing various tasks. These new measures of dynamic brain processes have exquisite temporal resolution and allow the study of neural networks underlying responses to sensory and cognitive events, thus providing a closer link to the physiology underlying them. Here, we have reviewed EROs in the study of alcoholism, their usefulness in understanding dynamical brain functions/dysfunctions associated with alcoholism as well as their utility as effective endophenotypes to identify and understand genes associated with both brain oscillations and alcoholism.
Collapse
Affiliation(s)
- Ashwini K Pandey
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
11
|
Event-related oscillations in the parietal cortex of adult alcohol-preferring (P) and alcohol-nonpreferring rats (NP). Alcohol 2010; 44:335-42. [PMID: 20598842 DOI: 10.1016/j.alcohol.2010.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 02/08/2010] [Accepted: 02/25/2010] [Indexed: 11/23/2022]
Abstract
The selectively bred alcohol-preferring (P) and -nonpreferring (NP) lines were developed from Wistar rats to model high and low voluntary alcohol consumption and have been demonstrated to exhibit many of the characteristics of human alcohol dependence. Electrophysiologic studies have shown P rats exhibit more electroencephalographic fast frequency activity and reduced P3 amplitude in the parietal cortex than NP rats, findings that are more common in alcohol-dependent individuals. Event-related oscillations (EROs) have been suggested to be good endophenotypes associated with ethanol dependence in clinical studies. Recently EROs have also been demonstrated to occur in rodents in response to stimuli that are similar to that used in human clinical studies. The objective of the present study was to characterize EROs in adult P and NP rats. A time-frequency representation method was used to determine delta, theta, and alpha/beta ERO energy and the degree of phase variation in the parietal cortex of adult P and NP rats. The present results suggest that the decrease in P3 amplitudes previously shown in P rats were not associated with changes in ERO energy but were significantly associated with decreases in evoked delta and alpha/beta phase locking. These studies demonstrate ERO measures may also be good endophenotypes in animal models of alcoholism.
Collapse
|
12
|
Criado JR, Ehlers CL. Effects of adolescent ethanol exposure on event-related oscillations (EROs) in the hippocampus of adult rats. Behav Brain Res 2010; 210:164-70. [PMID: 20170688 DOI: 10.1016/j.bbr.2010.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 02/09/2010] [Accepted: 02/09/2010] [Indexed: 01/19/2023]
Abstract
Electrophysiological studies have shown that adolescent ethanol (EtOH) exposure can produce long-term changes in hippocampal EEG and ERP activity. Recently, evidence has emerged suggesting that event-related oscillations (EROs) may be good indices of alcoholism risk in humans, however, have not been evaluated for their ability to index the effects of EtOH exposure. The objective of the present study was to characterize EROs generated in hippocampus in adult rats exposed to EtOH during adolescence. Adolescent male Sprague-Dawley rats were exposed to EtOH vapor for 12h/d for 10 days. A time-frequency representation method was used to determine delta, theta, alpha and beta ERO energy and the degree of phase variation in the hippocampus of adult rats exposed to EtOH and age-matched controls. The present results suggest that the decrease in P3 amplitudes, previously observed in adult rats exposed to EtOH during adolescence, is associated with increases in evoked theta ERO energy. These studies suggest that EROs are suitable for characterizing the long-term effects of adolescent EtOH exposure. Further studies are needed to determine the relationship between the mechanisms that regulate these neurophysiological endophenotypes and the consequences of adolescent EtOH exposure.
Collapse
Affiliation(s)
- José R Criado
- The Scripps Research Institute, Molecular and Integrative Neurosciences Department, La Jolla, CA 92037, USA
| | | |
Collapse
|
13
|
Criado JR, Ehlers CL. Event-related oscillations as risk markers in genetic mouse models of high alcohol preference. Neuroscience 2009; 163:506-23. [PMID: 19540906 DOI: 10.1016/j.neuroscience.2009.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 11/30/2022]
Abstract
Mouse models have been developed to simulate several relevant human traits associated with alcohol use and dependence. However, the neurophysiological substrates regulating these traits remain to be completely elucidated. We have previously demonstrated that differences in the event-related potential (ERP) responses can be found that distinguish high-alcohol preferring from low alcohol preferring mice that resemble differences seen in human studies of individuals with high and low risk for alcohol dependence. Recently, evidence of genes that affect event-related oscillations (EROs) and the risk for alcohol dependence has emerged, however, to date EROs have not been evaluated in genetic mouse models of high and low alcohol preference. Therefore, the objective of the present study was to characterize EROs in mouse models of high (C57BL/6 [B6] and high alcohol preference 1 [HAP-1] mice) and low (DBA/2J [D2] and low alcohol preference-1 [LAP-1] mice) alcohol preference. A time-frequency representation method was used to determine delta, theta and alpha/beta ERO energy and the degree of phase variation in these mouse models. The present results suggest that the decrease in P3 amplitudes previously shown in B6 mice, compared to D2 mice, is related to reductions in evoked delta ERO energy and delta and theta phase locking. In contrast, the increase in P1 amplitudes reported in HAP-1 mice, compared to LAP-1 mice, is associated with increases in evoked theta ERO energy. These studies suggest that differences in delta and theta ERO measures in mice mirror changes observed between groups at high- and low-risk for alcoholism where changes in EROs were found to be more significant than group differences in P3 amplitudes, further suggesting that ERO measures are more stable endophenotypes in the study of alcohol dependence. Further studies are needed to determine the relationship between expression of these neurophysiological endophenotypes and the genetic profile of these mouse models.
Collapse
Affiliation(s)
- J R Criado
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-1501, La Jolla, CA 92037, USA
| | | |
Collapse
|