1
|
Fabbri R, Scidà A, Saracino E, Conte G, Kovtun A, Candini A, Kirdajova D, Spennato D, Marchetti V, Lazzarini C, Konstantoulaki A, Dambruoso P, Caprini M, Muccini M, Ursino M, Anderova M, Treossi E, Zamboni R, Palermo V, Benfenati V. Graphene oxide electrodes enable electrical stimulation of distinct calcium signalling in brain astrocytes. NATURE NANOTECHNOLOGY 2024; 19:1344-1353. [PMID: 38987650 PMCID: PMC11405283 DOI: 10.1038/s41565-024-01711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/31/2024] [Indexed: 07/12/2024]
Abstract
Astrocytes are responsible for maintaining homoeostasis and cognitive functions through calcium signalling, a process that is altered in brain diseases. Current bioelectronic tools are designed to study neurons and are not suitable for controlling calcium signals in astrocytes. Here, we show that electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide induces respectively a slow response to calcium, mediated by external calcium influx, and a sharp one, exclusively due to calcium release from intracellular stores. Our results suggest that the different conductivities of the substrate influence the electric field at the cell-electrolyte or cell-material interfaces, favouring different signalling events in vitro and ex vivo. Patch-clamp, voltage-sensitive dye and calcium imaging data support the proposed model. In summary, we provide evidence of a simple tool to selectively control distinct calcium signals in brain astrocytes for straightforward investigations in neuroscience and bioelectronic medicine.
Collapse
Affiliation(s)
- Roberta Fabbri
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Alessandra Scidà
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Emanuela Saracino
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Giorgia Conte
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Alessandro Kovtun
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Andrea Candini
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Diletta Spennato
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Valeria Marchetti
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Chiara Lazzarini
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Aikaterini Konstantoulaki
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Paolo Dambruoso
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Marco Caprini
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Bologna, Italy
| | - Mauro Ursino
- Dipartimento di Ingegneria dell'Energia Elettrica e dell'Informazione 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Emanuele Treossi
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Vincenzo Palermo
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| |
Collapse
|
2
|
Maschietto M, Dal Maschio M, Girardi S, Vassanelli S. In situ electroporation of mammalian cells through SiO 2 thin film capacitive microelectrodes. Sci Rep 2021; 11:15126. [PMID: 34302040 PMCID: PMC8302607 DOI: 10.1038/s41598-021-94620-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/05/2021] [Indexed: 11/19/2022] Open
Abstract
Electroporation is a widely used non-viral technique for the delivery of molecules, including nucleic acids, into cells. Recently, electronic microsystems that miniaturize the electroporation machinery have been developed as a new tool for genetic manipulation of cells in vitro, by integrating metal microelectrodes in the culture substrate and enabling electroporation in-situ. We report that non-faradic SiO2 thin film-insulated microelectrodes can be used for reliable and spatially selective in-situ electroporation of mammalian cells. CHO-K1 and SH-SY5Y cell lines and primary neuronal cultures were electroporated by application of short and low amplitude voltage transients leading to cell electroporation by capacitive currents. We demonstrate reliable delivery of DNA plasmids and exogenous gene expression, accompanied by high spatial selectivity and cell viability, even with differentiated neurons. Finally, we show that SiO2 thin film-insulated microelectrodes support a double and serial transfection of the targeted cells.
Collapse
Affiliation(s)
- M Maschietto
- Department of Biomedical Sciences, Section of Physiology, University of Padua, via F. Marzolo 3, 35131, Padua, Italy
| | - M Dal Maschio
- Department of Biomedical Sciences, Section of Physiology, University of Padua, via F. Marzolo 3, 35131, Padua, Italy
| | - S Girardi
- Department of Biomedical Sciences, Section of Physiology, University of Padua, via F. Marzolo 3, 35131, Padua, Italy
| | - S Vassanelli
- Department of Biomedical Sciences, Section of Physiology, University of Padua, via F. Marzolo 3, 35131, Padua, Italy. .,Padua Neuroscience Center, University of Padua, via Orus 2/B, 35131, Padua, Italy. .,Institute of Condensed Matter Chemistry and Technologies for Energy, CNR, Corso Stati Uniti 4, 35127, Padua, Italy.
| |
Collapse
|
3
|
Cozzi B, Bonfanti L, Canali E, Minero M. Brain Waste: The Neglect of Animal Brains. Front Neuroanat 2020; 14:573934. [PMID: 33304245 PMCID: PMC7693423 DOI: 10.3389/fnana.2020.573934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/14/2020] [Indexed: 01/29/2023] Open
Affiliation(s)
- Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Luca Bonfanti
- Department of Veterinary Sciences, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Elisabetta Canali
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Michela Minero
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| |
Collapse
|
4
|
George R, Chiappalone M, Giugliano M, Levi T, Vassanelli S, Partzsch J, Mayr C. Plasticity and Adaptation in Neuromorphic Biohybrid Systems. iScience 2020; 23:101589. [PMID: 33083749 PMCID: PMC7554028 DOI: 10.1016/j.isci.2020.101589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neuromorphic systems take inspiration from the principles of biological information processing to form hardware platforms that enable the large-scale implementation of neural networks. The recent years have seen both advances in the theoretical aspects of spiking neural networks for their use in classification and control tasks and a progress in electrophysiological methods that is pushing the frontiers of intelligent neural interfacing and signal processing technologies. At the forefront of these new technologies, artificial and biological neural networks are tightly coupled, offering a novel "biohybrid" experimental framework for engineers and neurophysiologists. Indeed, biohybrid systems can constitute a new class of neuroprostheses opening important perspectives in the treatment of neurological disorders. Moreover, the use of biologically plausible learning rules allows forming an overall fault-tolerant system of co-developing subsystems. To identify opportunities and challenges in neuromorphic biohybrid systems, we discuss the field from the perspectives of neurobiology, computational neuroscience, and neuromorphic engineering.
Collapse
Affiliation(s)
- Richard George
- Department of Electrical Engineering and Information Technology, Technical University of Dresden, Dresden, Germany
| | | | - Michele Giugliano
- Neuroscience Area, International School of Advanced Studies, Trieste, Italy
| | - Timothée Levi
- Laboratoire de l’Intégration du Matéeriau au Systéme, University of Bordeaux, Bordeaux, France
- LIMMS/CNRS, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Stefano Vassanelli
- Department of Biomedical Sciences and Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Johannes Partzsch
- Department of Electrical Engineering and Information Technology, Technical University of Dresden, Dresden, Germany
| | - Christian Mayr
- Department of Electrical Engineering and Information Technology, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
5
|
Serb A, Corna A, George R, Khiat A, Rocchi F, Reato M, Maschietto M, Mayr C, Indiveri G, Vassanelli S, Prodromakis T. Memristive synapses connect brain and silicon spiking neurons. Sci Rep 2020; 10:2590. [PMID: 32098971 PMCID: PMC7042282 DOI: 10.1038/s41598-020-58831-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/21/2020] [Indexed: 11/09/2022] Open
Abstract
Brain function relies on circuits of spiking neurons with synapses playing the key role of merging transmission with memory storage and processing. Electronics has made important advances to emulate neurons and synapses and brain-computer interfacing concepts that interlink brain and brain-inspired devices are beginning to materialise. We report on memristive links between brain and silicon spiking neurons that emulate transmission and plasticity properties of real synapses. A memristor paired with a metal-thin film titanium oxide microelectrode connects a silicon neuron to a neuron of the rat hippocampus. Memristive plasticity accounts for modulation of connection strength, while transmission is mediated by weighted stimuli through the thin film oxide leading to responses that resemble excitatory postsynaptic potentials. The reverse brain-to-silicon link is established through a microelectrode-memristor pair. On these bases, we demonstrate a three-neuron brain-silicon network where memristive synapses undergo long-term potentiation or depression driven by neuronal firing rates.
Collapse
Affiliation(s)
- Alexantrou Serb
- Centre for Electronics Frontiers, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrea Corna
- Biomedical Sciences and Padua Neuroscience Center, University of Padova, Padova, 35131, Italy
| | - Richard George
- Institute of Circuits and Systems, TU Dresden, Dresden, 01062, Germany
| | - Ali Khiat
- Centre for Electronics Frontiers, University of Southampton, Southampton, SO17 1BJ, UK
| | - Federico Rocchi
- Biomedical Sciences and Padua Neuroscience Center, University of Padova, Padova, 35131, Italy
| | - Marco Reato
- Biomedical Sciences and Padua Neuroscience Center, University of Padova, Padova, 35131, Italy
| | - Marta Maschietto
- Biomedical Sciences and Padua Neuroscience Center, University of Padova, Padova, 35131, Italy
| | - Christian Mayr
- Institute of Circuits and Systems, TU Dresden, Dresden, 01062, Germany
| | - Giacomo Indiveri
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, 8057, Switzerland
| | - Stefano Vassanelli
- Biomedical Sciences and Padua Neuroscience Center, University of Padova, Padova, 35131, Italy.
| | | |
Collapse
|
6
|
Peruffo A, Cozzi B. Bovine Brain: An in vitro Translational Model in Developmental Neuroscience and Neurodegenerative Research. Front Pediatr 2014; 2:74. [PMID: 25072040 PMCID: PMC4090595 DOI: 10.3389/fped.2014.00074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 06/26/2014] [Indexed: 11/13/2022] Open
Abstract
Animal models provide convenient and clinically relevant tools in the research on neurodegenerative diseases. Studies on developmental disorders extensively rely on the use of laboratory rodents. The present mini-review proposes an alternative translational model based on the use of fetal bovine brain tissue. The bovine (Bos taurus) possesses a large and highly gyrencephalic brain and the long gestation period (41 weeks) is comparable to human pregnancy (38-40 weeks). Primary cultures obtained from fetal bovine brain constitute a validated in vitro model that allows examinations of neurons and/or glial cells under controlled and reproducible conditions. Physiological processes can be also studied on cultured bovine neural cells incubated with specific substrates or by electrically coupled electrolyte-oxide-semiconductor capacitors that permit direct recording from neuronal cells. Bovine neural cells and specific in vitro cell culture could be an alternative in comparative neuroscience and in neurodegenerative research, useful for studying development of normal and altered circuitry in a long gestation mammalian species. Use of bovine tissues would promote a substantial reduction in the use of laboratory animals.
Collapse
Affiliation(s)
- Antonella Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padova , Padova , Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova , Padova , Italy
| |
Collapse
|
7
|
Overview of micro- and nano-technology tools for stem cell applications: micropatterned and microelectronic devices. SENSORS 2012. [PMID: 23202240 PMCID: PMC3522993 DOI: 10.3390/s121115947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the past few decades the scientific community has been recognizing the paramount role of the cell microenvironment in determining cell behavior. In parallel, the study of human stem cells for their potential therapeutic applications has been progressing constantly. The use of advanced technologies, enabling one to mimic the in vivo stem cell microenviroment and to study stem cell physiology and physio-pathology, in settings that better predict human cell biology, is becoming the object of much research effort. In this review we will detail the most relevant and recent advances in the field of biosensors and micro- and nano-technologies in general, highlighting advantages and disadvantages. Particular attention will be devoted to those applications employing stem cells as a sensing element.
Collapse
|