1
|
Popesco T, Bet da Rosa Orssatto L, Hug F, Blazevich AJ, Trajano GS, Place N. Motoneuron persistent inward current contribution to increased torque responses to wide-pulse high-frequency neuromuscular electrical stimulation. Eur J Appl Physiol 2024; 124:3377-3386. [PMID: 38940932 PMCID: PMC11519318 DOI: 10.1007/s00421-024-05538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE To assess the effect of a remote handgrip contraction during wide-pulse high-frequency (WPHF) neuromuscular electrical stimulation (NMES) on the magnitude of extra torque, progressive increase in torque during stimulation, and estimates of the persistent inward current (PIC) contribution to motoneuron firing in the plantar flexors. METHODS Ten participants performed triangular shaped contractions to 20% of maximal plantar flexion torque before and after WPHF NMES with and without a handgrip contraction, and control conditions. Extra torque, the relative difference between the initial and final torque during stimulation, and sustained electromyographic (EMG) activity were assessed. High-density EMG was recorded during triangular shaped contractions to calculate ∆F, an estimate of PIC contribution to motoneuron firing, and its variation before vs after the intervention referred to as ∆F change score. RESULTS While extra torque was not significantly increased with remote contraction (WPHF + remote) vs WPHF (+ 37 ± 63%, p = 0.112), sustained EMG activity was higher in this condition than WPHF (+ 3.9 ± 4.3% MVC EMG, p = 0.017). Moreover, ∆F was greater (+ 0.35 ± 0.30 Hz) with WPHF + remote than control (+ 0.03 ± 0.1 Hz, p = 0.028). A positive correlation was found between ∆F change score and extra torque in the WPHF + remote (r = 0.862, p = 0.006). DISCUSSION The findings suggest that the addition of remote muscle contraction to WPHF NMES enhances the central contribution to torque production, which may be related to an increased PIC contribution to motoneuron firing. Gaining a better understanding of these mechanisms should enable NMES intervention optimization in clinical and rehabilitation settings, improving neuromuscular function in clinical populations.
Collapse
Affiliation(s)
- Timothée Popesco
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Lucas Bet da Rosa Orssatto
- Faculty of Health, School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Australia
| | - François Hug
- LAMHESS, Université Côte d'Azur, Nice, France
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Anthony John Blazevich
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, WA, Australia
| | - Gabriel Siqueira Trajano
- Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Lapole T, Mesquita RNO, Baudry S, Souron R, O'Brien EK, Brownstein CG, Rozand V. Persistent inward currents in tibialis anterior motoneurons can be reliably estimated within the same session. J Electromyogr Kinesiol 2024; 78:102911. [PMID: 38879997 DOI: 10.1016/j.jelekin.2024.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
The response of spinal motoneurons to synaptic input greatly depends on the activation of persistent inward currents (PICs), the contribution of which can be estimated through the paired motor unit technique. Yet, the intra-session test-retest reliability of this measurement remains to be fully established. Twenty males performed isometric triangular dorsiflexion contractions to 20 and 50 % of maximal torque at baseline and after a 15-min resting period. High-density electromyographic signals (HD-EMG) of the tibialis anterior were recorded with a 64-electrode matrix. HD-EMG signals were decomposed, and motor units tracked across time points to estimate the contribution of PICs to motoneuron firing through quantification of motor unit recruitment-derecruitment hysteresis (ΔF). A good intraclass correlation coefficient (ICC = 0.75 [0.63, 0.83]) and a large repeated measures correlation coefficient (rrm = 0.65 [0.49, 0.77]; p < 0.001) were found between ΔF values obtained at both time points for 20 % MVC ramps. For 50 % MVC ramps, a good ICC (0.77 [0.65, 0.85]) and a very large repeated measures correlation coefficient (rrm = 0.73 [0.63, 0.80]; p < 0.001) were observed. Our data suggest that ΔF scores can be reliably investigated in tibialis anterior motor units during both low- and moderate-intensity contractions within a single experimental session.
Collapse
Affiliation(s)
- Thomas Lapole
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Saint-Etienne, France.
| | - Ricardo N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; Neuroscience Research Australia, Sydney, Australia.
| | - Stéphane Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, Université Libre de Bruxelles (ULB), Belgium
| | - Robin Souron
- Nantes Université, Mouvement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France
| | - Eleanor K O'Brien
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; Centre for Precision Health, Edith Cowan University, Perth, Western Australia, Australia
| | - Callum G Brownstein
- Newcastle University, School of Biomedical, Nutritional and Sports Sciences, Newcastle-upon-Tyne, United Kingdom
| | - Vianney Rozand
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Saint-Etienne, France; INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
| |
Collapse
|
3
|
Mesquita RNO, Taylor JL, Heckman CJ, Trajano GS, Blazevich AJ. Persistent inward currents in human motoneurons: emerging evidence and future directions. J Neurophysiol 2024; 132:1278-1301. [PMID: 39196985 DOI: 10.1152/jn.00204.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/30/2024] Open
Abstract
The manner in which motoneurons respond to excitatory and inhibitory inputs depends strongly on how their intrinsic properties are influenced by the neuromodulators serotonin and noradrenaline. These neuromodulators enhance the activation of voltage-gated channels that generate persistent (long-lasting) inward sodium and calcium currents (PICs) into the motoneurons. PICs are crucial for initiating, accelerating, and maintaining motoneuron firing. A greater accessibility to state-of-the-art techniques that allows both the estimation and examination of PIC modulation in tens of motoneurons in vivo has rapidly evolved our knowledge of how motoneurons amplify and prolong the effects of synaptic input. We are now in a position to gain substantial mechanistic insight into the role of PICs in motor control at an unprecedented pace. The present review briefly describes the effects of PICs on motoneuron firing and the methods available for estimating them before presenting the emerging evidence of how PICs can be modulated in health and disease. Our rapidly developing knowledge of the potent effects of PICs on motoneuron firing has the potential to improve our understanding of how we move, and points to new approaches to improve motor control. Finally, gaps in our understanding are highlighted and methodological advancements are suggested to encourage readers to explore outstanding questions to further elucidate PIC physiology.
Collapse
Affiliation(s)
- Ricardo N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Janet L Taylor
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - C J Heckman
- Departments of Neuroscience, Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anthony J Blazevich
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Gomes MM, Jenz ST, Beauchamp JA, Negro F, Heckman CJ, Pearcey GEP. Voluntary co-contraction of ankle muscles alters motor unit discharge characteristics and reduces estimates of persistent inward currents. J Physiol 2024; 602:4237-4250. [PMID: 39159310 PMCID: PMC11366489 DOI: 10.1113/jp286539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Motoneuronal persistent inward currents (PICs) are facilitated by neuromodulatory inputs but are highly sensitive to local inhibitory circuits. Estimates of PICs are reduced by group Ia reciprocal inhibition, and increased with the diffuse actions of neuromodulators released during remote muscle contraction. However, it remains unknown how motoneurons function in the presence of simultaneous excitatory and inhibitory commands. To probe this topic, we investigated motor unit discharge patterns and estimated PICs during voluntary co-contraction of ankle muscles, which simultaneously demands the contraction of agonist-antagonist pairs. Twenty participants performed triangular ramps of both co-contraction (simultaneous dorsiflexion and plantar flexion) and isometric dorsiflexion to a peak of 30% of their maximum muscle activity from a maximal voluntary contraction. Motor unit spike trains were decomposed from high-density surface EMG activity recorded from tibialis anterior using blind source separation algorithms. Voluntary co-contraction altered motor unit discharge rate characteristics. Discharge rate at recruitment and peak discharge rate were modestly reduced (∼6% change; P < 0.001; d = 0.22) and increased (∼2% change; P = 0.001, d = -0.19), respectively, in the entire dataset but no changes were observed when motor units were tracked across conditions. The largest effects during co-contraction were that estimates of PICs (ΔF) were reduced by ∼20% (4.47 vs. 5.57 pulses per second during isometric dorsiflexion; P < 0.001, d = 0.641). These findings suggest that, during voluntary co-contraction, the inhibitory input from the antagonist muscle overcomes the additional excitatory and neuromodulatory drive that may occur due to the co-contraction of the antagonist muscle, which constrains PIC behaviour. KEY POINTS: Voluntary co-contraction is a unique motor behaviour that concurrently provides excitatory and inhibitory synaptic input to motoneurons. Co-contraction of agonist-antagonist pairs alters agonist motor unit discharge characteristics, consistent with reductions in persistent inward current magnitude.
Collapse
Affiliation(s)
- Matheus M Gomes
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Sophia T Jenz
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - James A Beauchamp
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Illinois, USA
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Universita degli Studi di Brescia, Brescia, Italy
| | - C J Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Gregory E P Pearcey
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
5
|
Gomes MM, Jenz ST, Beauchamp JA, Negro F, Heckman CJ, Pearcey GEP. Voluntary co-contraction of ankle muscles alters motor unit discharge characteristics and reduces estimates of persistent inward currents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582534. [PMID: 38464115 PMCID: PMC10925258 DOI: 10.1101/2024.02.28.582534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Motoneuronal persistent inward currents (PICs) are both facilitated by neuromodulatory inputs and highly sensitive to local inhibitory circuits (e.g., Ia reciprocal inhibition). Methods aimed to increase group Ia reciprocal inhibition from the antagonistic muscle have been successful in decreasing PICs, and the diffuse actions of neuromodulators released during activation of remote muscles have increased PICs. However, it remains unknown how motoneurons function in the presence of simultaneous excitatory and inhibitory commands. To probe this topic, we investigated motor unit (MU) discharge patterns and estimated PICs during voluntary co-contraction of ankle muscles, which simultaneously demands the contraction of agonist-antagonist pairs. Twenty young adults randomly performed triangular ramps (10s up and down) of both co-contraction (simultaneous dorsiflexion and plantarflexion) and isometric dorsiflexion to a peak of 30% of their maximum muscle activity from a maximal voluntary contraction. Motor unit spike trains were decomposed from high-density surface electromyography recorded over the tibialis anterior (TA) using blind source separation algorithms. Voluntary co-contraction altered motor unit discharge rate characteristics, decreasing estimates of PICs by 20% (4.47 pulses per second (pps) vs 5.57 pps during isometric dorsiflexion). These findings suggest that, during voluntary co-contraction, the inhibitory input from the antagonist muscle overcomes the additional excitatory and neuromodulatory drive that may occur due to the co-contraction of the antagonist muscle, which constrains PIC behavior.
Collapse
Affiliation(s)
- Matheus M Gomes
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Sophia T Jenz
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - James A Beauchamp
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Universita degli Studi di Brescia, Brescia, Italy
| | - C J Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Gregory E P Pearcey
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
6
|
Goreau V, Hug F, Jannou A, Dernoncourt F, Crouzier M, Cattagni T. Estimates of persistent inward currents in lower limb muscles are not different between inactive, resistance-trained, and endurance-trained young males. J Neurophysiol 2024; 131:166-175. [PMID: 38116611 DOI: 10.1152/jn.00278.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/20/2023] [Accepted: 12/17/2023] [Indexed: 12/21/2023] Open
Abstract
Persistent inward currents (PICs) increase the intrinsic excitability of α-motoneurons. The main objective of this study was to compare estimates of α-motoneuronal PICs between inactive, chronic resistance-trained, and chronic endurance-trained young individuals. We also aimed to investigate whether there is a relationship in the estimates of α-motoneuronal PIC magnitude between muscles. Estimates of PIC magnitude were obtained in three groups of young individuals: resistance-trained (n = 12), endurance-trained (n = 12), and inactive (n = 13). We recorded high-density surface electromyography (HDsEMG) signals from tibialis anterior (TA), gastrocnemius medialis (GM), soleus (SOL), vastus medialis (VM), and vastus lateralis (VL). Then, signals were decomposed with convolutive blind source separation to identify motor unit (MU) spike trains. Participants performed triangular isometric contractions to a peak of 20% of their maximum voluntary contraction. A paired-motor-unit analysis was used to calculate ΔF, which is assumed to be proportional to PIC magnitude. Despite the substantial differences in physical training experience between groups, we found no differences in ΔF, regardless of the muscle. Significant correlations of estimates of PIC magnitude were found between muscles of the same group (VL-VM, SOL-GM). Only two correlations (out of 8) between muscles of different groups were found (TA-GM and VL-GM). Overall, our findings suggest that estimates of PIC magnitude from lower-threshold MUs at low contraction intensities in the lower limb muscles are not influenced by physical training experience in healthy young individuals. They also suggest muscle-specific and muscle group-specific regulations of the estimates of PIC magnitude.NEW & NOTEWORTHY Chronic resistance and endurance training can lead to specific adaptations in motor unit activity. The contribution of α-motoneuronal persistent inward currents (PICs) to these adaptations is currently unknown in healthy young individuals. Therefore, we studied whether estimates of α-motoneuronal PIC magnitude are higher in chronically trained endurance- and resistance-trained individuals. We also studied whether there is a relationship between the estimates of α-motoneuronal PIC magnitude of different lower limb muscles.
Collapse
Affiliation(s)
- Valentin Goreau
- Movement - Interactions - Performance (MIP, UR 4334), Nantes Université, Nantes, France
| | | | - Anthony Jannou
- Movement - Interactions - Performance (MIP, UR 4334), Nantes Université, Nantes, France
| | - François Dernoncourt
- Movement - Interactions - Performance (MIP, UR 4334), Nantes Université, Nantes, France
- LAMHESS, Université Côte d'Azur, Nice, France
| | - Marion Crouzier
- Movement - Interactions - Performance (MIP, UR 4334), Nantes Université, Nantes, France
- Department of Movement Science, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium
| | - Thomas Cattagni
- Movement - Interactions - Performance (MIP, UR 4334), Nantes Université, Nantes, France
| |
Collapse
|
7
|
Mackay K, Orssatto LBR, Polman R, Van der Pols JC, Trajano GS. Caffeine does not influence persistent inward current contribution to motoneuron firing. J Neurophysiol 2023; 130:1529-1540. [PMID: 37877186 DOI: 10.1152/jn.00350.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023] Open
Abstract
The purpose of this study was to investigate whether caffeine consumption would change persistent inward current (PIC) contribution to motoneuron firing at increased contraction intensities and after repetitive sustained maximal contractions. Before and after the consumption of 6 mg·kg-1 of caffeine or placebo, 16 individuals performed isometric triangular-shaped ramp dorsiflexion contractions (to 20% and 40% of peak torque), followed by four maximal contractions sustained until torque production dropped to 60% of maximum, and consecutive 20% triangular-shaped contractions. Tibialis anterior motor unit firing frequencies were analyzed from high-density surface electromyograms. PIC contribution to motor unit firing was estimated by calculating the delta frequency (ΔF) using the paired motor unit technique. Motoneuron peak firing frequencies at 20% and 40% contractions and total torque-time integral during the repetitive sustained maximal contractions were also assessed. ΔF increased 0.69 peaks per second (pps) (95% CI = -0.98, -0.405; d = -0.87) from 20% to 40% contraction intensities and reduced 0.85 pps (95% CI = 0.66, 1.05; d = 0.99) after the repetitive sustained maximal contractions, regardless of caffeine consumption. Participants produced 337 Nm·s (95% CI = 49.9, 624; d = 0.63) more torque integral during the repetitive sustained maximal contractions after caffeine consumption. A strong repeated-measures correlation (r = 0.61; 95% CI = 0.49, 0.69) was observed between reductions of ΔF and peak firing frequencies after the repetitive sustained maximal contractions. PIC contribution to motoneuron firing increases from 20% to 40% contraction intensities, with no effect of caffeine (on rested tibialis anterior). Repetitive sustained maximal contractions reduced PIC contribution to motoneuron firing, regardless of caffeine or placebo consumption, evidencing that changes in intrinsic motoneuron properties contributed to performance loss. Caffeine-attenuated reduction of torque production capacity was unlikely mediated by PICs.NEW & NOTEWORTHY Persistent inward current (PIC) contribution to motoneuron firing increases with contraction intensities and is reduced after repetitive sustained maximal contractions, regardless of caffeine consumption. Reductions of PIC contribution to motoneuron firing and peak firing frequencies were largely associated, evidencing a novel mechanism underpinning decrements in maximal torque production capacity following repetitive sustained maximal contractions. Caffeine consumption attenuated neuromuscular performance reductions-allowing higher time-torque integral production during repetitive sustained maximal contractions. This was unlikely mediated by PIC.
Collapse
Affiliation(s)
- Karen Mackay
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Lucas B R Orssatto
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Remco Polman
- Institute of Health and Wellbeing, Federation University, Melbourne, Victoria, Australia
| | - Jolieke C Van der Pols
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Mesquita RNO, Taylor JL, Trajano GS, Holobar A, Gonçalves BAM, Blazevich AJ. Effects of jaw clenching and mental stress on persistent inward currents estimated by two different methods. Eur J Neurosci 2023; 58:4011-4033. [PMID: 37840191 DOI: 10.1111/ejn.16158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
Spinal motoneuron firing depends greatly on persistent inward currents (PICs), which in turn are facilitated by the neuromodulators serotonin and noradrenaline. The aim of this study was to determine whether jaw clenching (JC) and mental stress (MS), which may increase neuromodulator release, facilitate PICs in human motoneurons. The paired motor unit (MU) technique was used to estimate PIC contribution to motoneuron firing. Surface electromyograms were collected using a 32-channel matrix on gastrocnemius medialis (GM) during voluntary, ramp, plantar flexor contractions. MU discharges were identified, and delta frequency (ΔF), a measure of recruitment-derecruitment hysteresis, was calculated. Additionally, another technique was used (VibStim) that evokes involuntary contractions that persist after cessation of combined Achilles tendon vibration and triceps surae neuromuscular electrical stimulation. VibStim measures of plantar flexor torque and soleus activity may reflect PIC activation. ΔF was not significantly altered by JC (p = .679, n = 18, 9 females) or MS (p = .147, n = 14, 5 females). However, all VibStim variables quantifying involuntary torque and muscle activity during and after vibration cessation were significantly increased in JC (p < .011, n = 20, 10 females) and some, but not all, increased in MS (p = .017-.05, n = 19, 10 females). JC and MS significantly increased the magnitude of involuntary contractions (VibStim) but had no effect on GM ΔF during voluntary contractions. Effects of increased neuromodulator release on PIC contribution to motoneuron firing might differ between synergists or be context dependent. Based on these data, the background level of voluntary contraction and, hence, both neuromodulation and ionotropic inputs could influence neuromodulatory PIC enhancement.
Collapse
Affiliation(s)
- Ricardo N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Janet L Taylor
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Basílio A M Gonçalves
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Schilaty ND, McPherson AL, Nagai T, Bates NA. Differences in psychological readiness for return to sport after anterior cruciate ligament injury is evident in thigh musculature motor unit characteristics. BMJ Open Sport Exerc Med 2023; 9:e001609. [PMID: 37440978 PMCID: PMC10335479 DOI: 10.1136/bmjsem-2023-001609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Background Following anterior cruciate ligament (ACL) injury, many athletes that undergo surgery and 6-9 months of rehabilitation struggle to return to sport. Evidence suggests that psychological factors contribute to this failure to return-to-sport. Objective Determine the motor control relationship between thigh musculature motor unit characteristics and psychological readiness to return to sport between ACL-injured and healthy controls. Study design A longitudinal cohort study. Methods Athletes longitudinally completed the ACL Return to Sport after Injury (ACL-RSI) survey and isometric strength measures with a measurement of electromyography (EMG) of the vastus lateralis, vastus medialis, biceps femoris, and semitendinosus. A score cut-off of 61 on the ACL-RSI was used to divide ACL-injured groups. EMG was decomposed to provide each identified motor unit's characteristics (amplitude, average firing rate, etc). Results Data demonstrated increased average firing rate for hamstrings (p<0.001), decreased average firing rate for vastus lateralis (p<0.001) and decreased motor unit size for both the quadriceps and hamstrings at return-to-sport post-ACL reconstruction compared with sex-matched and age-matched healthy controls (p<0.001). Furthermore, there were marked differences in disparate ACL-RSI scores between ACL-injured athletes. Conclusions At return to sport, ACL-injured athletes have major alterations of thigh musculature motor control, with smaller motor units used by those with low ACL-RSI scores. This study uniquely demonstrates objective thigh muscle motor unit characteristics that coincide with subjective reports of psychological readiness. This information will be important to address psychomotor complexes of injury for future rehabilitation protocols.
Collapse
Affiliation(s)
- Nathan D Schilaty
- Department of Neurosurgery & Brain Repair, University of South Florida Tampa Campus, Tampa, Florida, USA
- Medical Engineering, University of South Florida, Tampa, Florida, USA
- Center for Neuromusculoskeletal Research, University of South Florida, Tampa, Florida, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - April L McPherson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopaedics, The Ohio State University, Columbus, Ohio, USA
- Emory Sports Performance and Research Center, Emory University, Atlanta, Georgia, USA
| | - Takashi Nagai
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Division of Military Performance, USARIEM, Natick, Massachusetts, USA
| | - Nathaniel A Bates
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopaedics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
10
|
Jenz ST, Beauchamp JA, Gomes MM, Negro F, Heckman CJ, Pearcey GEP. Estimates of persistent inward currents in lower limb motoneurons are larger in females than in males. J Neurophysiol 2023; 129:1322-1333. [PMID: 37096909 PMCID: PMC10202474 DOI: 10.1152/jn.00043.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Noninvasive recordings of motor unit (MU) spike trains help us understand how the nervous system controls movement and how it adapts to various physiological conditions. The majority of participants in human and nonhuman animal physiology studies are male, and it is assumed that mechanisms uncovered in these studies are shared between males and females. However, sex differences in neurological impairment and physical performance warrant the study of sex as a biological variable in human physiology and performance. To begin addressing this gap in the study of biophysical properties of human motoneurons, we quantified MU discharge rates and estimates of persistent inward current (PIC) magnitude in both sexes. We decomposed MU spike trains from the tibialis anterior (TA), medial gastrocnemius (MG), and soleus (SOL) using high-density surface electromyography and blind source separation algorithms. Ten participants of each sex performed slow triangular (10 s up and down) isometric contractions to a peak of 30% of their maximum voluntary contraction. We then used linear mixed-effects models to determine if peak discharge rate and estimates of PICs were predicted by the fixed effects of sex, muscle, and their interaction. Despite a lack of sex-differences in peak discharge rates across all muscles, estimates of PICs were larger [χ2(1) = 6.26, P = 0.012] in females [4.73 ± 0.242 pulses per second (pps)] than in males (3.81 ± 0.240 pps). These findings suggest that neuromodulatory drive, inhibitory input, and/or biophysical properties of motoneurons differ between the sexes and may contribute to differences in MU discharge patterns.NEW & NOTEWORTHY Sex-related differences in motoneuron analyses have emerged with greater inclusion of female participants, however, mechanisms for these differences remain unclear. Estimates of persistent inward currents (i.e., ΔF) in motoneurons of the lower limb muscles were larger in females than in males. This suggests neuromodulatory drive, monoaminergic signaling, intrinsic motoneuron properties, and/or descending motor commands may differ between the sexes, which provides a potential mechanism underlying previously reported sex-related differences in motoneuron discharge patterns.
Collapse
Affiliation(s)
- Sophia T Jenz
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - James A Beauchamp
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States
| | - Matheus M Gomes
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Universita degli Studi di Brescia, Brescia, Italy
| | - C J Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
| | - Gregory E P Pearcey
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
11
|
Lapole T, Mesquita RNO, Baudry S, Souron R, Brownstein CG, Rozand V. Can local vibration alter the contribution of persistent inward currents to human motoneuron firing? J Physiol 2023; 601:1467-1482. [PMID: 36852473 DOI: 10.1113/jp284210] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/01/2023] Open
Abstract
The response of spinal motoneurons to synaptic input greatly depends on the activation of persistent inward currents (PICs), which in turn are enhanced by the neuromodulators serotonin and noradrenaline. Local vibration (LV) induces excitatory Ia input onto motoneurons and may alter neuromodulatory inputs. Therefore, we investigated whether LV influences the contribution of PICs to motoneuron firing. This was assessed in voluntary contractions with concurrent, ongoing LV, as well as after a bout of prolonged LV. High-density surface electromyograms (HD-EMG) of the tibialis anterior were recorded with a 64-electrode matrix. Twenty males performed isometric, triangular, dorsiflexion contractions to 20% and 50% of maximal torque at baseline, during LV of the tibialis anterior muscle, and after 30-min of LV. HD-EMG signals were decomposed, and motor units tracked across time points to estimate PICs through a paired motor unit analysis, which quantifies motor unit recruitment-derecruitment hysteresis (ΔF). During ongoing LV, ΔF was lower for both 20% and 50% ramps. Although significant changes in ΔF were not observed after prolonged LV, a differential effect across the motoneuron pool was observed. This study demonstrates that PICs can be non-pharmacologically modulated by LV. Given that LV leads to reflexive motor unit activation, it is postulated that lower PIC contribution to motoneuron firing during ongoing LV results from decreased neuromodulatory inputs associated with lower descending corticospinal drive. A differential effect in motoneurons of different recruitment thresholds after prolonged LV is provocative, challenging the interpretation of previous observations and motivating future investigations. KEY POINTS: Neuromodulatory inputs from the brainstem influence motoneuron intrinsic excitability through activation of persistent inward currents (PICs). PICs make motoneurons more responsive to excitatory input. We demonstrate that vibration applied on the muscle modulates the contribution of PICs to motoneuron firing, as observed through analysis of the firing of single motor units. The effects of PICs on motoneuron firing were lower when vibration was concurrently applied during voluntary ramp contractions, likely due to lower levels of neuromodulation. Additionally, prolonged exposure to vibration led to differential effects of lower- vs. higher-threshold motor units on PICs, with lower-threshold motor units tending to present an increased and higher-threshold motor units a decreased contribution of PICs to motoneuron firing. These results demonstrate that muscle vibration has the potential to influence the effects of neuromodulation on motoneuron firing. The potential of using vibration as a non-pharmacological neuromodulatory intervention should be further investigated.
Collapse
Affiliation(s)
- T Lapole
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France
| | - R N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - S Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - R Souron
- Movement-Interactions-Performance, MIP, UR 4334, Nantes Université, 44000 Nantes, France
| | - C G Brownstein
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France
| | - V Rozand
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France
| |
Collapse
|
12
|
Mackay Phillips K, Orssatto LBR, Polman R, Van der Pols JC, Trajano GS. The effects of α-lactalbumin supplementation and handgrip contraction on soleus motoneuron excitability. Eur J Appl Physiol 2023; 123:395-404. [PMID: 36443491 DOI: 10.1007/s00421-022-05101-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION We tested two strategies that hypothetically increase serotonin availability (α-lactalbumin consumption and a remote submaximal handgrip contraction) on estimates of persistent inward currents (PICs) amplitude of soleus muscle in healthy participants. METHODS With a randomised, double-blind, and cross-over design, 13 healthy participants performed triangular-shaped ramp contractions with their plantar flexors (20% of maximal torque), followed by a 30-s handgrip sustained contraction (40% of maximal force) and consecutive repeated triangular-shaped contractions. This was performed before and after the consumption of either 40 g of α-lactalbumin, an isonitrogenous beverage (Zein) or an isocaloric beverage (Corn-starch). Soleus motor units discharge rates were analysed from high-density surface electromyography signals. PICs were estimated by calculating the delta frequency (ΔF) of motor unit train spikes using the paired motor unit technique. RESULTS ΔF (0.19 pps; p = 0.001; d = 0.30) and peak discharge rate (0.20 pps; p < 0.001; d = 0.37) increased after the handgrip contraction, irrespective of the consumed supplement. No effects of α-lactalbumin were observed. CONCLUSIONS Our results indicate that 40 g of α-lactalbumin was unable to modify intrinsic motoneuron excitability. However, performing a submaximal handgrip contraction before the plantar flexion triangular contraction was capable of increasing ΔF and discharge rates on soleus motor units. These findings highlight the diffused effects of serotonergic input, its effects on motoneuron discharge behaviour, and suggest a cross-effector effect within human motoneurons.
Collapse
Affiliation(s)
- Karen Mackay Phillips
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), 149 Victoria Park Rd, Kelvin Grove, Brisbane, QLD, 4059, Australia.
| | - Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), 149 Victoria Park Rd, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Remco Polman
- Institute of Health and Wellbeing, Federation University, Berwick, Australia
| | - Jolieke C Van der Pols
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), 149 Victoria Park Rd, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), 149 Victoria Park Rd, Kelvin Grove, Brisbane, QLD, 4059, Australia
| |
Collapse
|
13
|
Beauchamp JA, Pearcey GEP, Khurram OU, Chardon M, Wang YC, Powers RK, Dewald JPA, Heckman CJ. A geometric approach to quantifying the neuromodulatory effects of persistent inward currents on individual motor unit discharge patterns. J Neural Eng 2023; 20:016034. [PMID: 36626825 PMCID: PMC9885522 DOI: 10.1088/1741-2552/acb1d7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/11/2022] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
Objective.All motor commands flow through motoneurons, which entrain control of their innervated muscle fibers, forming a motor unit (MU). Owing to the high fidelity of action potentials within MUs, their discharge profiles detail the organization of ionotropic excitatory/inhibitory as well as metabotropic neuromodulatory commands to motoneurons. Neuromodulatory inputs (e.g. norepinephrine, serotonin) enhance motoneuron excitability and facilitate persistent inward currents (PICs). PICs introduce quantifiable properties in MU discharge profiles by augmenting depolarizing currents upon activation (i.e. PIC amplification) and facilitating discharge at lower levels of excitatory input than required for recruitment (i.e. PIC prolongation).Approach. Here, we introduce a novel geometric approach to estimate neuromodulatory and inhibitory contributions to MU discharge by exploiting discharge non-linearities introduced by PIC amplification during time-varying linear tasks. In specific, we quantify the deviation from linear discharge ('brace height') and the rate of change in discharge (i.e. acceleration slope, attenuation slope, angle). We further characterize these metrics on a simulated motoneuron pool with known excitatory, inhibitory, and neuromodulatory inputs and on human MUs (number of MUs; Tibialis Anterior: 1448, Medial Gastrocnemius: 2100, Soleus: 1062, First Dorsal Interosseus: 2296).Main results. In the simulated motor pool, we found brace height and attenuation slope to consistently indicate changes in neuromodulation and the pattern of inhibition (excitation-inhibition coupling), respectively, whereas the paired MU analysis (ΔF) was dependent on both neuromodulation and inhibition pattern. Furthermore, we provide estimates of these metrics in human MUs and show comparable variability in ΔFand brace height measures for MUs matched across multiple trials.Significance. Spanning both datasets, we found brace height quantification to provide an intuitive method for achieving graded estimates of neuromodulatory and inhibitory drive to individual MUs. This complements common techniques and provides an avenue for decoupling changes in the level of neuromodulatory and pattern of inhibitory motor commands.
Collapse
Affiliation(s)
- James A Beauchamp
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Gregory E P Pearcey
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Obaid U Khurram
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Matthieu Chardon
- Northwestern Argonne Institute for Science and Engineering (NAISE), Northwestern University, Evanston, IL, United States of America
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Y Curtis Wang
- Department of Electrical and Computer Engineering, California State University, Los Angeles, Los Angeles, CA, United States of America
| | - Randall K Powers
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Julius P A Dewald
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - CJ Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Shirley Ryan AbilityLab, Chicago, IL, United States of America
| |
Collapse
|
14
|
Mesquita RNO, Taylor JL, Trajano GS, Škarabot J, Holobar A, Gonçalves BAM, Blazevich AJ. Effects of reciprocal inhibition and whole-body relaxation on persistent inward currents estimated by two different methods. J Physiol 2022; 600:2765-2787. [PMID: 35436349 PMCID: PMC9325475 DOI: 10.1113/jp282765] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/13/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract Persistent inward currents (PICs) are crucial for initiation, acceleration, and maintenance of motoneuron firing. As PICs are highly sensitive to synaptic inhibition and facilitated by serotonin and noradrenaline, we hypothesised that both reciprocal inhibition (RI) induced by antagonist nerve stimulation and whole‐body relaxation (WBR) would reduce PICs in humans. To test this, we estimated PICs using the well‐established paired motor unit (MU) technique. High‐density surface electromyograms were recorded from gastrocnemius medialis during voluntary, isometric 20‐s ramp, plantarflexor contractions and decomposed into MU discharges to calculate delta frequency (ΔF). Moreover, another technique (VibStim), which evokes involuntary contractions proposed to result from PIC activation, was used. Plantarflexion torque and soleus activity were recorded during 33‐s Achilles tendon vibration and simultaneous 20‐Hz bouts of neuromuscular electrical stimulation (NMES) of triceps surae. ΔF was decreased by RI (n = 15, 5 females) and WBR (n = 15, 7 females). In VibStim, torque during vibration at the end of NMES and sustained post‐vibration torque were reduced by WBR (n = 19, 10 females), while other variables remained unchanged. All VibStim variables remained unaltered in RI (n = 20, 10 females). Analysis of multiple human MUs in this study demonstrates the ability of local, focused inhibition to attenuate the effects of PICs on motoneuron output during voluntary motor control. Moreover, it shows the potential to reduce PICs through non‐pharmacological, neuromodulatory interventions such as WBR. The absence of a consistent effect in VibStim might be explained by a floor effect resulting from low‐magnitude involuntary torque combined with the negative effects of the interventions. Key points Spinal motoneurons transmit signals to skeletal muscles to regulate their contraction. Motoneuron firing partly depends on their intrinsic properties such as the strength of persistent (long‐lasting) inward currents (PICs) that make motoneurons more responsive to excitatory input. In this study, we demonstrate that both reciprocal inhibition onto motoneurons and whole‐body relaxation reduce the contribution of PICs to human motoneuron firing. This was observed through analysis of the firing of single motor units during voluntary contractions. However, an alternative technique that involves tendon vibration and neuromuscular electrical stimulation to evoke involuntary contractions showed less effect. Thus, it remains unclear whether this alternative technique can be used to estimate PICs under all physiological conditions. These results improve our understanding of the mechanisms of PIC depression in human motoneurons. Potentially, non‐pharmacological interventions such as electrical stimulation or relaxation could attenuate unwanted PIC‐induced muscle contractions in conditions characterised by motoneuron hyperexcitability.
Collapse
Affiliation(s)
- Ricardo N O Mesquita
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.,Neuroscience Research Australia, Sydney, Australia
| | - Janet L Taylor
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.,Neuroscience Research Australia, Sydney, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, UK
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Basílio A M Gonçalves
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Brisbane, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
15
|
Schilaty ND, Savoldi F, Nasr Z, Weinshenker BG. Neuromotor control associates with muscle weakness observed with McArdle sign of multiple sclerosis. Ann Clin Transl Neurol 2022; 9:515-528. [PMID: 35289110 PMCID: PMC8994990 DOI: 10.1002/acn3.51526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/20/2022] [Accepted: 02/05/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Multiple Sclerosis (MS) is often accompanied by myelopathy, which may be associated with progressive worsening. A specific finding of MS-associated myelopathy is McArdle sign, wherein neck flexion is associated with prominent increased limb weakness relative to that detected with neck extension. In this study, we characterized neuromotor control properties of finger extensors in association with the McArdle sign. METHODS A custom-built device was utilized to monitor torque production of the wrist extensors with simultaneous recording of surface electromyography of the extensor digitorum. The electromyography was decomposed and analyzed via both linear and nominal regressions. RESULTS Linear regressions demonstrated a strong difference between groups for MS from healthy controls and other myelopathies for motor unit action potential amplitude and average firing rate (p < 0.001). Further, linear regression demonstrated good correlations of neuromotor variables to mechanical torque output (0.24 ≤ R2 ≤ 0.76). Nominal regression distinguished MS from healthy controls with an AUC of 0.87, specificity of 0.97, and sensitivity of 0.64. Nominal regression of MS from other myelopathies demonstrated an AUC of 0.88, specificity of 0.85, and sensitivity of 0.79. INTERPRETATION These data demonstrate the neuromotor control factors that largely determine muscle force production change with the observation of McArdle sign; these neuromotor control factors can differentiate MS from both healthy controls and other myelopathy conditions.
Collapse
Affiliation(s)
- Nathan D Schilaty
- Department of Neurosurgery & Brain Repair, University of South Florida, Tampa, Florida, USA.,Center for Neuromusculoskeletal Research, University of South Florida, Tampa, Florida, USA
| | - Filippo Savoldi
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Zahra Nasr
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
16
|
Beauchamp JA, Khurram OU, Dewald JPA, Heckman CJ, Pearcey GEP. A computational approach for generating continuous estimates of motor unit discharge rates and visualizing population discharge characteristics. J Neural Eng 2022; 19:10.1088/1741-2552/ac4594. [PMID: 34937005 PMCID: PMC11439450 DOI: 10.1088/1741-2552/ac4594] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
Objective. Successive improvements in high density surface electromyography and decomposition techniques have facilitated an increasing yield in decomposed motor unit (MU) spike times. Though these advancements enhance the generalizability of findings and promote the application of MU discharge characteristics to inform the neural control of motor output, limitations remain. Specifically, (1) common approaches for generating smooth estimates of MU discharge rates introduce artifacts in quantification, which may bias findings, and (2) discharge characteristics of large MU populations are often difficult to visualize.Approach. In the present study, we propose support vector regression (SVR) as an improved approach for generating smooth continuous estimates of discharge rate and compare the fit characteristics of SVR to traditionally used methods, including Hanning window filtering and polynomial regression. Furthermore, we introduce ensembles as a method to visualize the discharge characteristics of large MU populations. We define ensembles as the average discharge profile of a subpopulation of MUs, composed of a time normalized ensemble average of all units within this subpopulation. Analysis was conducted with MUs decomposed from the tibialis anterior (N= 2128), medial gastrocnemius (N= 2673), and soleus (N= 1190) during isometric plantarflexion and dorsiflexion contractions.Main result. Compared to traditional approaches, we found SVR to alleviate commonly observed inaccuracies and produce significantly less absolute fit error in the initial phase of MU discharge and throughout the entire duration of discharge. Additionally, we found the visualization of MU populations as ensembles to intuitively represent population discharge characteristics with appropriate accuracy for visualization.Significance. The results and methods outlined here provide an improved method for generating estimates of MU discharge rate with SVR and present a unique approach to visualizing MU populations with ensembles. In combination, the use of SVR and generation of ensembles represent an efficient method for rendering population discharge characteristics.
Collapse
Affiliation(s)
- James A Beauchamp
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Obaid U Khurram
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Julius P A Dewald
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - CJ Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Shirley Ryan AbilityLab, Chicago, IL, United States of America
| | - Gregory E P Pearcey
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Shirley Ryan AbilityLab, Chicago, IL, United States of America
| |
Collapse
|
17
|
Orssatto LBR, Borg DN, Blazevich AJ, Sakugawa RL, Shield AJ, Trajano GS. Intrinsic motoneuron excitability is reduced in soleus and tibialis anterior of older adults. GeroScience 2021; 43:2719-2735. [PMID: 34716899 PMCID: PMC8556797 DOI: 10.1007/s11357-021-00478-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Age-related deterioration within both motoneuron and monoaminergic systems should theoretically reduce neuromodulation by weakening motoneuronal persistent inward current (PIC) amplitude. However, this assumption remains untested. Surface electromyographic signals were collected using two 32-channel electrode matrices placed on soleus and tibialis anterior of 25 older adults (70 ± 4 years) and 17 young adults (29 ± 5 years) to investigate motor unit discharge behaviors. Participants performed triangular-shaped plantar and dorsiflexion contractions to 20% of maximum torque at a rise-decline rate of 2%/s of each participant's maximal torque. Pairwise and composite paired-motor unit analyses were adopted to calculate delta frequency (ΔF), which has been used to differentiate between the effects of synaptic excitation and intrinsic motoneuronal properties and is assumed to be proportional to PIC amplitude. Soleus and tibialis anterior motor units in older adults had lower ΔFs calculated with either the pairwise [-0.99 and -1.46 pps; -35.4 and -33.5%, respectively] or composite (-1.18 and -2.28 pps; -32.1 and -45.2%, respectively) methods. Their motor units also had lower peak discharge rates (-2.14 and -2.03 pps; -19.7 and -13.9%, respectively) and recruitment thresholds (-1.50 and -2.06% of maximum, respectively) than young adults. These results demonstrate reduced intrinsic motoneuron excitability during low-force contractions in older adults, likely mediated by decreases in the amplitude of persistent inward currents. Our findings might be explained by deterioration in the motoneuron or monoaminergic systems and could contribute to the decline in motor function during aging; these assumptions should be explicitly tested in future investigations.
Collapse
Affiliation(s)
- Lucas B. R. Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - David N. Borg
- Menzies Health Institute Queensland, The Hopkins Centre, Griffith University, Brisbane, Australia
| | | | - Raphael L. Sakugawa
- Biomechanics Laboratory, Department of Physical Education, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Anthony J. Shield
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Gabriel S. Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
18
|
Hassan AS, Fajardo ME, Cummings M, McPherson LM, Negro F, Dewald JPA, Heckman CJ, Pearcey GEP. Estimates of persistent inward currents are reduced in upper limb motor units of older adults. J Physiol 2021; 599:4865-4882. [PMID: 34505294 DOI: 10.1113/jp282063] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022] Open
Abstract
Ageing is a natural process causing alterations in the neuromuscular system, which contributes to reduced quality of life. Motor unit (MU) contributes to weakness, but the mechanisms underlying reduced firing rates are unclear. Persistent inward currents (PICs) are crucial for initiation, gain control and maintenance of motoneuron firing, and are directly proportional to the level of monoaminergic input. Since concentrations of monoamines (i.e. serotonin and noradrenaline) are reduced with age, we sought to determine if estimates of PICs are reduced in older (>60 years old) compared to younger adults (<35 years old). We decomposed MU spike trains from high-density surface electromyography over the biceps and triceps brachii during isometric ramp contractions to 20% of maximum. Estimates of PICs (ΔFrequency; or simply ΔF) were computed using the paired MU analysis technique. Regardless of the muscle, peak firing rates of older adults were reduced by ∼1.6 pulses per second (pps) (P = 0.0292), and ΔF was reduced by ∼1.9 pps (P < 0.0001), compared to younger adults. We further found that age predicted ΔF in older adults (P = 0.0261), resulting in a reduction of ∼1 pps per decade, but there was no relationship in younger adults (P = 0.9637). These findings suggest that PICs are reduced in the upper limbs of older adults during submaximal isometric contractions. Reduced PIC magnitude represents one plausible mechanism for reduced firing rates and function in older individuals, but further work is required to understand the implications in other muscles and during a variety of motor tasks. KEY POINTS: Persistent inward currents play an important role in the neural control of human movement and are influenced by neuromodulation via monoamines originating in the brainstem. During ageing, motor unit firing rates are reduced, and there is deterioration of brainstem nuclei, which may reduce persistent inward currents in alpha motoneurons. Here we show that estimates of persistent inward currents (ΔF) of both elbow flexor and extensor motor units are reduced in older adults. Estimates of persistent inward currents have a negative relationship with age in the older adults, but not in the young. This novel mechanism may play a role in the alteration of motor firing rates that occurs with ageing, which may have consequences for motor control.
Collapse
Affiliation(s)
- Altamash S Hassan
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Melissa E Fajardo
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mark Cummings
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura Miller McPherson
- Program in Physical Therapy, Washington University School of Medicine, St Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Universita' degli Studi di Brescia, Brescia, Italy
| | - Julius P A Dewald
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C J Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Gregory E P Pearcey
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Shirley Ryan AbilityLab, Chicago, IL, USA
| |
Collapse
|
19
|
Orssatto LBR, Mackay K, Shield AJ, Sakugawa RL, Blazevich AJ, Trajano GS. Estimates of persistent inward currents increase with the level of voluntary drive in low-threshold motor units of plantar flexor muscles. J Neurophysiol 2021; 125:1746-1754. [PMID: 33788617 DOI: 10.1152/jn.00697.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study tested whether estimates of persistent inward currents (PICs) in the human plantar flexors would increase with the level of voluntary drive. High-density surface electromyograms were collected from soleus and gastrocnemius medialis of 21 participants (29.2 ± 2.6 yr) during ramp-shaped isometric contractions to 10%, 20%, and 30% (torque rise and decline of 2%/s and 30-s duration) of each participant's maximal torque. Motor units identified in all the contraction intensities were included in the paired-motor unit analysis to calculate delta frequency (ΔF) and estimate the PICs. ΔF is the difference in discharge rate of the control unit at the time of recruitment and derecruitment of the test unit. Increases in PICs were observed from 10% to 20% [Δ = 0.6 pulse per second (pps); P < 0.001] and from 20% to 30% (Δ = 0.5 pps; P < 0.001) in soleus and from 10% to 20% (Δ = 1.2 pps; P < 0.001) but not from 20% to 30% (Δ = 0.09 pps; P = 0.724) in gastrocnemius medialis. Maximal discharge rate increased for soleus and gastrocnemius medialis from 10% to 20% [Δ = 1.75 pps (P < 0.001) and Δ = 2.43 pps (P < 0.001), respectively] and from 20% to 30% [Δ = 0.80 pps (P < 0.017) and Δ = 0.92 pps (P = 0.002), respectively]. The repeated-measures correlation identified associations between ΔF and increases in maximal discharge rate for soleus (r = 0.64; P < 0.001) and gastrocnemius medialis (r = 0.77; P < 0.001). An increase in voluntary drive tends to increase PIC strength, which has key implications for the control of force but also for comparisons between muscles or studies when relative force levels might be different. Increases in voluntary descending drive amplify PICs in humans and provide an important spinal mechanism for motor unit discharging, and thus force output modulation.NEW & NOTEWORTHY Animal experiments and computational models have shown that motor neurons can amplify the synaptic input they receive via persistent inward currents. Here we show in humans that this amplification varies proportionally to the magnitude of the voluntary drive to the muscle.
Collapse
Affiliation(s)
- Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Karen Mackay
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Anthony J Shield
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Raphael L Sakugawa
- Biomechanics Laboratory, Department of Physical Education, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Trajano GS, Taylor JL, Orssatto LBR, McNulty CR, Blazevich AJ. Passive muscle stretching reduces estimates of persistent inward current strength in soleus motor units. J Exp Biol 2020; 223:jeb229922. [PMID: 32978317 DOI: 10.1242/jeb.229922] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 08/25/2023]
Abstract
Prolonged (≥60 s) passive muscle stretching acutely reduces maximal force production at least partly through a suppression of efferent neural drive. The origin of this neural suppression has not been determined; however, some evidence suggests that reductions in the amplitude of persistent inward currents (PICs) in the motoneurons may be important. The aim of the present study was to determine whether acute passive (static) muscle stretching affects PIC strength in gastrocnemius medialis (GM) and soleus (SOL) motor units. We calculated the difference in instantaneous discharge rates at recruitment and de-recruitment (ΔF) for pairs of motor units in GM and SOL during triangular isometric plantar flexor contractions (20% maximum) both before and immediately after a 5 min control period and immediately after five 1 min passive plantar flexor stretches. After stretching, there was a significant reduction in SOL ΔF (-25.6%; 95% confidence interval, CI=-45.1% to -9.1%, P=0.002) but not GM ΔF These data suggest passive muscle stretching can reduce the intrinsic excitability, via PICs, of SOL motor units. These findings (1) suggest that PIC strength might be reduced after passive stretching, (2) are consistent with previously established post-stretch decreases in SOL but not GM EMG amplitude during contraction, and (3) indicate that reductions in PIC strength could underpin the stretch-induced force loss.
Collapse
Affiliation(s)
- Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia
| | - Janet L Taylor
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia
| | - Craig R McNulty
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
21
|
Kim EH, Wilson JM, Thompson CK, Heckman CJ. Differences in estimated persistent inward currents between ankle flexors and extensors in humans. J Neurophysiol 2020; 124:525-535. [PMID: 32667263 DOI: 10.1152/jn.00746.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Persistent inward currents (PICs) are responsible for amplifying motoneuronal synaptic inputs and contribute to generating normal motoneuron activation. Delta-F (ΔF) is a well-established method that estimates PICs in humans indirectly from firing patterns of individual motor units. Traditionally, motor unit firing patterns are obtained by manually decomposing electromyography (EMG) signals recorded through intramuscular electrodes (iEMG). A previous iEMG study has shown that in humans the elbow extensors have higher ΔF than the elbow flexors. In this study, EMG signals were collected from the ankle extensors and flexors using high-density surface array electrodes during isometric sitting and standing at 10-30% maximum voluntary contraction. The signals were then decomposed into individual motor unit firings. We hypothesized that comparable to the upper limb, the lower limb extensor muscles (soleus) would have higher ΔF than the lower limb flexor muscles [tibialis anterior (TA)]. Contrary to our expectations, ΔF was higher in the TA than the soleus during sitting and standing despite the difference in cohort of participants and body positions. The TA also had significantly higher maximum discharge rate than the soleus while there was no difference in rate increase. When only the unit pairs with similar maximum discharge rates were compared, ∆F was still higher in the TA than the soleus. Future studies will focus on investigating the functional significance of the findings.NEW & NOTEWORTHY With the use of high-density surface array electrodes and convolutive blind source separation algorithm, thousands of motor units were decomposed from the soleus and tibialis anterior muscles. Persistent inward currents were estimated under seated and standing conditions via delta-F (∆F) calculation, and the results showed that unlike the upper limb, the flexor has higher ∆F than the extensor in the lower limb. Future studies will focus on functional significance of the findings.
Collapse
Affiliation(s)
- Edward H Kim
- Department of Physiology, Northwestern University, Chicago, Illinois.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois
| | - Jessica M Wilson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois
| | - Christopher K Thompson
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania
| | - Charles J Heckman
- Department of Physiology, Northwestern University, Chicago, Illinois.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Shirley Ryan AbilityLab, Chicago, Illinois
| |
Collapse
|
22
|
Afsharipour B, Manzur N, Duchcherer J, Fenrich KF, Thompson CK, Negro F, Quinlan KA, Bennett DJ, Gorassini MA. Estimation of self-sustained activity produced by persistent inward currents using firing rate profiles of multiple motor units in humans. J Neurophysiol 2020; 124:63-85. [PMID: 32459555 DOI: 10.1152/jn.00194.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Persistent inward calcium and sodium currents (IP) activated during motoneuron recruitment help synaptic inputs maintain self-sustained firing until derecruitment. Here, we estimate the contribution of the IP to self-sustained firing in human motoneurons of varying recruitment threshold by measuring the difference in synaptic input needed to maintain minimal firing once the IP is fully activated compared with the larger synaptic input required to initiate firing before full IP activation. Synaptic input to ≈20 dorsiflexor motoneurons simultaneously recorded during ramp contractions was estimated from firing profiles of motor units decomposed from high-density surface electromyography (EMG). To avoid errors introduced when using high-threshold units firing in their nonlinear range, we developed methods where the lowest threshold units firing linearly with force were used to construct a composite (control) unit firing rate profile to estimate synaptic input to higher threshold (test) units. The difference in the composite firing rate (synaptic input) at the time of test unit recruitment and derecruitment (ΔF = Frecruit - Fderecruit) was used to measure IP amplitude that sustained firing. Test units with recruitment thresholds 1-30% of maximum had similar ΔF values, which likely included both slow and fast motor units activated by small and large motoneurons, respectively. This suggests that the portion of the IP that sustains firing is similar across a wide range of motoneuron sizes.NEW & NOTEWORTHY A new method of estimating synaptic drive to multiple, simultaneously recorded motor units provides evidence that the portion of the depolarizing drive from persistent inward currents that contributes to self-sustained firing is similar across motoneurons of different sizes.
Collapse
Affiliation(s)
- Babak Afsharipour
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Nagib Manzur
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer Duchcherer
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Keith F Fenrich
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher K Thompson
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania
| | - Francesco Negro
- Research Centre for Neuromuscular Function and Adapted Physical Activity "Teresa Camplani," Università degli Studi di Brescia, Brescia, Italy
| | - Katharina A Quinlan
- Department of Biomedical and Pharmaceutical Sciences and George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
| | - David J Bennett
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Monica A Gorassini
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Hassan A, Thompson CK, Negro F, Cummings M, Powers RK, Heckman CJ, Dewald JPA, McPherson LM. Impact of parameter selection on estimates of motoneuron excitability using paired motor unit analysis. J Neural Eng 2020; 17:016063. [PMID: 31801123 DOI: 10.1088/1741-2552/ab5eda] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Noninvasive estimation of motoneuron excitability in human motoneurons is achieved through a paired motor unit analysis (ΔF) that quantifies hysteresis in the instantaneous firing rates at motor unit recruitment and de-recruitment. The ΔF technique provides insight into the magnitude of neuromodulatory synaptic input and persistent inward currents (PICs). While the ΔF technique is commonly used for estimating motoneuron excitability during voluntary contractions, computational parameters used for the technique vary across studies. A systematic investigation into the relationship between these parameters and ΔF values is necessary. APPROACH We assessed the sensitivity of the ΔF technique with several criteria commonly used in selecting motor unit pairs for analysis and methods used for smoothing the instantaneous motor unit firing rates. Using high-density surface EMG and convolutive blind source separation, we obtained a large number of motor unit pairs (5409) from the triceps brachii of ten healthy individuals during triangular isometric contractions. MAIN RESULTS We found an exponential plateau relationship between ΔF and the recruitment time difference between the motor unit pairs and an exponential decay relationship between ΔF and the de-recruitment time difference between the motor unit pairs, with the plateaus occurring at approximately 1 s and 1.5 s, respectively. Reduction or removal of the minimum threshold for rate-rate correlation of the two units did not affect ΔF values or variance. Removing motor unit pairs in which the firing rate of the control unit was saturated had no significant effect on ΔF. Smoothing the filter selection had no substantial effect on ΔF values and ΔF variance; however, filter selection affected the minimum recruitment and de-recruitment time differences. SIGNIFICANCE Our results offer recommendations for standardized parameters for the ΔF approach and facilitate the interpretation of findings from studies that implement the ΔF analysis but use different computational parameters.
Collapse
Affiliation(s)
- Altamash Hassan
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States of America. Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Binder MD, Powers RK, Heckman CJ. Nonlinear Input-Output Functions of Motoneurons. Physiology (Bethesda) 2020; 35:31-39. [PMID: 31799904 PMCID: PMC7132324 DOI: 10.1152/physiol.00026.2019] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022] Open
Abstract
All movements are generated by the activation of motoneurons, and hence their input-output properties define the final step in processing of all motor commands. A major challenge to understanding this transformation has been the striking nonlinear behavior of motoneurons conferred by the activation of persistent inward currents (PICs) mediated by their voltage-gated Na+ and Ca2+ channels. In this review, we focus on the contribution that these PICs make to motoneuronal discharge and how the nonlinearities they engender impede the construction of a comprehensive model of motor control.
Collapse
Affiliation(s)
- Marc D Binder
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, Washington
| | - Randall K Powers
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, Washington
| | - C J Heckman
- Departments of Physiology, Physical Medicine & Rehabilitation, Physical Therapy & Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
25
|
Foley RCA, Kalmar JM. Estimates of persistent inward current in human motor neurons during postural sway. J Neurophysiol 2019; 122:2095-2110. [PMID: 31533012 DOI: 10.1152/jn.00254.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Persistent inward current (PIC) plays a critical role in setting the gain of spinal motor neurons. In humans, most estimates of PIC are made from plantarflexor or dorsiflexor motor units in a seated position. This seated and static posture negates the task-dependent nature of the monoaminergic drive and afferent inhibition that modulate PIC activation. Our purpose was to estimate PIC during both the conventional seated posture and in a more functionally relevant anterior postural sway. We hypothesized that paired motor unit estimates of PIC would be greater when during standing compared with sitting. Soleus motor neuron PIC was estimated via the paired motor unit (PMU) technique. For each motor unit pair, difference in reference unit firing frequency (ΔF) estimates of PIC were made during isometric ramps in plantarflexion force during sitting (conventional approach) and during standing anterior postural sway (new approach). Baseline reciprocal inhibition (RI) was also measured in each posture using the poststimulus time histogram technique. ΔF estimates during standing postural sway were not different [2.64 ± 0.95 pulses/s (pps), P = 0.098] from seated PIC estimates (3.15 ± 1.45 pps) measured from the same motor unit pair. Similarly, reciprocal inhibition at the onset of each task was the same in standing (-0.60 ± 0.32, P = 0.301) and seated (-0.86 ± 0.82) postures. PMU recordings made during standing postural sway met all assumptions that underlay the PMU technique, including rate modulation ≥0.5 pps (3.11 ± 1.90 pps), rate-rate correlation r ≥ 0.7 (0.84 ± 0.13), and time between reference and test unit recruitment ≥1 s (1.83 ± 0.81 s). This study presents a novel, functionally relevant standing method for investigating PIC in humans.NEW & NOTEWORTHY Paired motor unit (PMU) estimates of persistent inward current (PIC) in human soleus motor units are typically made in seated posture. Our study demonstrates that these estimates can be made during standing forward sway, a task that more accurately reflects the postural role of human soleus muscle. PMU recordings made during standing postural sway were validated using all previously published criteria used to test the assumptions of the PMU technique. Standing estimates of PIC did not differ from seated estimates made from the same motor unit pairs.
Collapse
|
26
|
Kudina LP, Andreeva RE. Repetitive doublet firing in human motoneurons: evidence for interaction between common synaptic drive and plateau potential in natural motor control. J Neurophysiol 2019; 122:424-434. [PMID: 31166815 DOI: 10.1152/jn.00874.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The firing behavior of spinal motoneurons (MNs) is a result of processing synaptic inputs by MN membrane properties, including plateau potentials, fundamentally explored in animals. However, there is much less data about a plateau potential role in human motor control. We explored human MN repetitive doublet firing during gentle isometric voluntary muscle contractions with the aim of revealing possible evidence for interaction between plateau potentials and common synaptic drive known as an important determinant of MN pool firing behavior. Single-motor unit (MU) repetitive firing of trapezius and triceps brachii was analyzed. Subjects were asked to recruit MUs capable of firing repetitive doublets. The analysis of interspike intervals (ISIs) of background firing of simultaneously recorded MUs showed that beyond doublet series ISIs varied, often in unison with significant correlation coefficients, demonstrating common synaptic drive. During doublet series, MUs showed persistent doublet ISIs (typically 4-7 ms) and a tendency to increase the number of doublets in series throughout the experiment. This was consistent with involvement of MN plateau potentials resulting in persistent delayed depolarization (underlying each doublet) and warm-up effect. Common synaptic drive "started" doublet series; probably both mechanisms controlled postdoublet ISIs. However, convincing effects of plateau potentials on MU firing behavior during single firing were not found. Thus our results suggest a plateau potential role in specifying the essential firing pattern, doubling, of some MUs rather than its effect on firing behavior of the MN pool, on the whole, during voluntary muscle contractions in humans. NEW & NOTEWORTHY Properties of human motoneuron repetitive doublet firing were explored during voluntary muscle contractions. It was shown for the first time that these properties seem to be consistent with properties of both plateau potentials, resulting in persistent delayed depolarization (underlying each doublet) and common synaptic drive, starting this unusual firing; both mechanisms could probably control postdoublet intervals. A convincing effect of plateau potentials on motoneuron single-spike firing, despite doublet firing, was not found.
Collapse
Affiliation(s)
- Lydia P Kudina
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences , Moscow , Russia
| | - Regina E Andreeva
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
27
|
Button DC, Kalmar JM. Understanding exercise-dependent plasticity of motoneurons using intracellular and intramuscular approaches. Appl Physiol Nutr Metab 2019; 44:1125-1133. [PMID: 31075205 DOI: 10.1139/apnm-2018-0862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spinal motoneurons (MN) exhibit exercise-dependent adaptations to increased activity, such as exercise and locomotion, as well as decreased activity associated with disuse, spinal cord injury, and aging. The development of several experimental approaches, in both human and animal models, has contributed significantly to our understanding of this plasticity. The purpose of this review is to summarize how intracellular recordings in an animal model and motor unit recordings in a human model have, together, contributed to our current understanding of exercise-dependent MN plasticity. These approaches and techniques will allow neuroscientists to continue to advance our understanding of MN physiology and the plasticity of the "final common path" of the motor system, and to design experiments to answer the critical questions that are emerging in this field.
Collapse
Affiliation(s)
- Duane C Button
- School of Human Kinetics and Recreation and BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Jayne M Kalmar
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
28
|
Kalmar JM. On task: Considerations and future directions for studies of corticospinal excitability in exercise neuroscience and related disciplines. Appl Physiol Nutr Metab 2018; 43:1113-1121. [DOI: 10.1139/apnm-2018-0123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the last few decades, transcranial magnetic stimulation (TMS) has emerged as a conventional laboratory technique in human neurophysiological research. Exercise neuroscientists have used TMS to study central nervous system contributions to fatigue, training, and performance in health, injury, and disease. In such studies, corticospinal excitability is often assessed at rest or during simple isometric tasks with the implication that the results may be extrapolated to more functional and complex movement outside of the laboratory. However, the neural mechanisms that influence corticospinal excitability are both state- and task-dependent. Furthermore, there are many sites of modulation along the pathway from the motor cortex to the muscle; a fact that is somewhat obscured by the all-encompassing and poorly defined term “corticospinal excitability”. Therefore, the tasks we use to assess corticospinal excitability and the conclusions that we draw from such a global measure of the motor pathway must be taken into consideration. The overall objective of this review is to highlight the task-dependent nature of corticospinal excitability and the tools used to assess modulation at cortical and spinal sites of modulation. By weighing the advantages and constraints of conventional approaches to studying corticospinal excitability, and considering some new and novel approaches, we will continue to advance our understanding of the neural control of movement during exercise.
Collapse
Affiliation(s)
- Jayne M. Kalmar
- Wilfrid Laurier University, Department of Kinesiology and Physical Education, Waterloo, ON N2L 3C5, Canada
- Wilfrid Laurier University, Department of Kinesiology and Physical Education, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
29
|
Johnson MD, Thompson CK, Tysseling VM, Powers RK, Heckman CJ. The potential for understanding the synaptic organization of human motor commands via the firing patterns of motoneurons. J Neurophysiol 2017; 118:520-531. [PMID: 28356467 DOI: 10.1152/jn.00018.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 03/21/2017] [Indexed: 12/19/2022] Open
Abstract
Motoneurons are unique in being the only neurons in the CNS whose firing patterns can be easily recorded in human subjects. This is because of the one-to-one relationship between the motoneuron and muscle cell behavior. It has long been appreciated that the connection of motoneurons to their muscle fibers allows their action potentials to be amplified and recorded, but only recently has it become possible to simultaneously record the firing pattern of many motoneurons via array electrodes placed on the skin. These firing patterns contain detailed information about the synaptic organization of motor commands to the motoneurons. This review focuses on parameters in these firing patterns that are directly linked to specific features of this organization. It is now well established that motor commands consist of three components, excitation, inhibition, and neuromodulation; the importance of the third component has become increasingly evident. Firing parameters linked to each of the three components are discussed, along with consideration of potential limitations in their utility for understanding the underlying organization of motor commands. Future work based on realistic computer simulations of motoneurons may allow quantitative "reverse engineering" of human motoneuron firing patterns to provide good estimates of the relative amplitudes and temporal patterns of all three components of motor commands.
Collapse
Affiliation(s)
- Michael D Johnson
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois;
| | | | - Vicki M Tysseling
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Randall K Powers
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Charles J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
30
|
Powers RK, Heckman CJ. Synaptic control of the shape of the motoneuron pool input-output function. J Neurophysiol 2017; 117:1171-1184. [PMID: 28053245 DOI: 10.1152/jn.00850.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 01/14/2023] Open
Abstract
Although motoneurons have often been considered to be fairly linear transducers of synaptic input, recent evidence suggests that strong persistent inward currents (PICs) in motoneurons allow neuromodulatory and inhibitory synaptic inputs to induce large nonlinearities in the relation between the level of excitatory input and motor output. To try to estimate the possible extent of this nonlinearity, we developed a pool of model motoneurons designed to replicate the characteristics of motoneuron input-output properties measured in medial gastrocnemius motoneurons in the decerebrate cat with voltage-clamp and current-clamp techniques. We drove the model pool with a range of synaptic inputs consisting of various mixtures of excitation, inhibition, and neuromodulation. We then looked at the relation between excitatory drive and total pool output. Our results revealed that the PICs not only enhance gain but also induce a strong nonlinearity in the relation between the average firing rate of the motoneuron pool and the level of excitatory input. The relation between the total simulated force output and input was somewhat more linear because of higher force outputs in later-recruited units. We also found that the nonlinearity can be increased by increasing neuromodulatory input and/or balanced inhibitory input and minimized by a reciprocal, push-pull pattern of inhibition. We consider the possibility that a flexible input-output function may allow motor output to be tuned to match the widely varying demands of the normal motor repertoire.NEW & NOTEWORTHY Motoneuron activity is generally considered to reflect the level of excitatory drive. However, the activation of voltage-dependent intrinsic conductances can distort the relation between excitatory drive and the total output of a pool of motoneurons. Using a pool of realistic motoneuron models, we show that pool output can be a highly nonlinear function of synaptic input but linearity can be achieved through adjusting the time course of excitatory and inhibitory synaptic inputs.
Collapse
Affiliation(s)
- Randall K Powers
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington; and
| | - Charles J Heckman
- Departments of Physiology, Physical Medicine and Rehabilitation, and Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
31
|
Powers RK, Heckman CJ. Contribution of intrinsic motoneuron properties to discharge hysteresis and its estimation based on paired motor unit recordings: a simulation study. J Neurophysiol 2015; 114:184-98. [PMID: 25904704 PMCID: PMC4507952 DOI: 10.1152/jn.00019.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/22/2015] [Indexed: 11/22/2022] Open
Abstract
Motoneuron activity is strongly influenced by the activation of persistent inward currents (PICs) mediated by voltage-gated sodium and calcium channels. However, the amount of PIC contribution to the activation of human motoneurons can only be estimated indirectly. Simultaneous recordings of pairs of motor units have been used to provide an estimate of the PIC contribution by using the firing rate of the lower threshold unit to provide an estimate of the common synaptic drive to both units, and the difference in firing rate (ΔF) of this lower threshold unit at recruitment and de-recruitment of the higher threshold unit to estimate the PIC contribution to activation of the higher threshold unit. It has recently been suggested that a number of factors other than PIC can contribute to ΔF values, including mechanisms underlying spike frequency adaptation and spike threshold accommodation. In the present study, we used a set of compartmental models representing a sample of 20 motoneurons with a range of thresholds to investigate how several different intrinsic motoneuron properties can potentially contribute to variations in ΔF values. We drove the models with linearly increasing and decreasing noisy conductance commands of different rate of rise and duration and determined the influence of different intrinsic mechanisms on discharge hysteresis (the difference in excitatory drive at recruitment and de-recruitment) and ΔF. Our results indicate that, although other factors can contribute, variations in discharge hysteresis and ΔF values primarily reflect the contribution of dendritic PICs to motoneuron activation.
Collapse
Affiliation(s)
- Randall K Powers
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington; and
| | - C J Heckman
- Departments of Physiology, Physical Medicine and Rehabilitation, and Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
32
|
Wilson JM, Thompson CK, Miller LC, Heckman CJ. Intrinsic excitability of human motoneurons in biceps brachii versus triceps brachii. J Neurophysiol 2015; 113:3692-9. [PMID: 25787957 DOI: 10.1152/jn.00960.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/17/2015] [Indexed: 11/22/2022] Open
Abstract
The intrinsic excitability of spinal motoneurons is mediated in part by the presence of persistent inward currents (PICs), which amplify synaptic input and promote self-sustained firing. Studies using animal models have shown that PICs are greater in extensor motoneurons over flexor motoneurons, but this difference has not yet been demonstrated in humans. The primary objective of this study was to determine whether a similar difference exists in humans by recording from motor units in biceps and triceps brachii during isometric contractions. We compared firing rate profiles of pairs of motor units, in which the firing rate of the lower-threshold "control" unit was used as an indicator of common drive to the higher-threshold "test" unit. The estimated contribution of the PIC was calculated as the difference in firing rate of the control unit at recruitment versus derecruitment of the test unit, a value known as the delta-F (ΔF). We found that ΔF values were significantly higher in triceps brachii (5.4 ± 0.9 imp/s) compared with biceps brachii (3.0 ± 1.4 imp/s; P < 0.001). This difference was still present even after controlling for saturation in firing rate of the control unit, rate modulation of the control unit, and differences in recruitment time between test and control units, which are known to contribute to ΔF variability. We conclude that human elbow flexor and extensor motor units exhibit differences in intrinsic excitability, contributing to different neural motor control strategies between muscle groups.
Collapse
Affiliation(s)
- Jessica M Wilson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois;
| | | | - Laura C Miller
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois; Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; and
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois; Department of Physiology, Northwestern University, Chicago, Illinois; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| |
Collapse
|
33
|
Vandenberk MS, Kalmar JM. An evaluation of paired motor unit estimates of persistent inward current in human motoneurons. J Neurophysiol 2014; 111:1877-84. [PMID: 24523524 DOI: 10.1152/jn.00469.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Persistent inward current (PIC) plays an important role in setting the input-output gain of motoneurons. In humans, these currents are estimated by calculating the difference between synaptic input at motor unit recruitment and derecruitment (ΔF) derived from paired motor unit recordings. The primary objective of this study was to use the relationship between reciprocal inhibition (RI) and PIC to estimate the contribution of PIC relative to other motoneuron properties that result in nonlinear motor unit firing behavior. This study also assessed the contribution of other intrinsic properties (spike threshold accommodation and spike frequency adaptation) to ΔF estimates of PIC in human motor units by using ramps with varying rates of rise and duration. It was hypothesized that slower rates of ramp rise and longer ramp durations would inflate ΔF estimates of PIC, and RI and PIC values would only be correlated during the ramp with the fastest rate of rise and shortest duration when spike threshold accommodation and spike frequency adaptation is minimized. Fourteen university-aged participants took part in this study. Paired motor unit recordings were made from the right soleus muscle during ramp contractions of plantar flexors with three different rates of rise and durations. ΔF estimates of PIC increased with decreased rates of ramp rise (P < 0.01) and increased ramp durations (P < 0.01), most likely due to spike frequency adaptation. A correlation (r = 0.41; P < 0.03) between ΔF and RI provides evidence that PIC is the primary contributor to ΔF in shorter ramps with faster rates of rise.
Collapse
Affiliation(s)
- Michael S Vandenberk
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | | |
Collapse
|
34
|
Abstract
Movement is accomplished by the controlled activation of motor unit populations. Our understanding of motor unit physiology has been derived from experimental work on the properties of single motor units and from computational studies that have integrated the experimental observations into the function of motor unit populations. The article provides brief descriptions of motor unit anatomy and muscle unit properties, with more substantial reviews of motoneuron properties, motor unit recruitment and rate modulation when humans perform voluntary contractions, and the function of an entire motor unit pool. The article emphasizes the advances in knowledge on the cellular and molecular mechanisms underlying the neuromodulation of motoneuron activity and attempts to explain the discharge characteristics of human motor units in terms of these principles. A major finding from this work has been the critical role of descending pathways from the brainstem in modulating the properties and activity of spinal motoneurons. Progress has been substantial, but significant gaps in knowledge remain.
Collapse
Affiliation(s)
- C J Heckman
- Northwestern University, Evanston, Illinois, USA.
| | | |
Collapse
|
35
|
Powers RK, Elbasiouny SM, Rymer WZ, Heckman CJ. Contribution of intrinsic properties and synaptic inputs to motoneuron discharge patterns: a simulation study. J Neurophysiol 2011; 107:808-23. [PMID: 22031773 DOI: 10.1152/jn.00510.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Motoneuron discharge patterns reflect the interaction of synaptic inputs with intrinsic conductances. Recent work has focused on the contribution of conductances mediating persistent inward currents (PICs), which amplify and prolong the effects of synaptic inputs on motoneuron discharge. Certain features of human motor unit discharge are thought to reflect a relatively stereotyped activation of PICs by excitatory synaptic inputs; these features include rate saturation and de-recruitment at a lower level of net excitation than that required for recruitment. However, PIC activation is also influenced by the pattern and spatial distribution of inhibitory inputs that are activated concurrently with excitatory inputs. To estimate the potential contributions of PIC activation and synaptic input patterns to motor unit discharge patterns, we examined the responses of a set of cable motoneuron models to different patterns of excitatory and inhibitory inputs. The models were first tuned to approximate the current- and voltage-clamp responses of low- and medium-threshold spinal motoneurons studied in decerebrate cats and then driven with different patterns of excitatory and inhibitory inputs. The responses of the models to excitatory inputs reproduced a number of features of human motor unit discharge. However, the pattern of rate modulation was strongly influenced by the temporal and spatial pattern of concurrent inhibitory inputs. Thus, even though PIC activation is likely to exert a strong influence on firing rate modulation, PIC activation in combination with different patterns of excitatory and inhibitory synaptic inputs can produce a wide variety of motor unit discharge patterns.
Collapse
Affiliation(s)
- Randall K Powers
- Dept. of Physiology and Biophysics, Univ. of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
36
|
Revill AL, Fuglevand AJ. Effects of persistent inward currents, accommodation, and adaptation on motor unit behavior: a simulation study. J Neurophysiol 2011; 106:1467-79. [PMID: 21697447 DOI: 10.1152/jn.00419.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Motor neurons are often assumed to generate spikes in proportion to the excitatory synaptic input received. There are, however, many intrinsic properties of motor neurons that might affect this relationship, such as persistent inward currents (PICs), spike-threshold accommodation, or spike-frequency adaptation. These nonlinear properties have been investigated in reduced animal preparation but have not been well studied during natural motor behaviors because of the difficulty in characterizing synaptic input in intact animals. Therefore, we studied the influence of each of these intrinsic properties on spiking responses and muscle force using a population model of motor units that simulates voluntary contractions in human subjects. In particular, we focused on the difference in firing rate of low-threshold motor units when higher threshold motor units were recruited and subsequently derecruited, referred to as ΔF. Others have used ΔF to evaluate the extent of PIC activation during voluntary behavior. Our results showed that positive ΔF values could arise when any one of these nonlinear properties was included in the simulations. Therefore, a positive ΔF should not be considered as exclusive evidence for PIC activation. Furthermore, by systematically varying contraction duration and speed in our simulations, we identified a means that might be used experimentally to distinguish among PICs, accommodation, and adaptation as contributors to ΔF.
Collapse
Affiliation(s)
- Ann L Revill
- Department of Physiology, College of Medicine, PO Box 210093, University of Arizona, Tucson, AZ 85721-0093, USA
| | | |
Collapse
|