1
|
Mim C, Perkins G, Dahl G. Structure versus function: Are new conformations of pannexin 1 yet to be resolved? J Gen Physiol 2021; 153:e202012754. [PMID: 33835130 PMCID: PMC8042604 DOI: 10.1085/jgp.202012754] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pannexin 1 (Panx1) plays a decisive role in multiple physiological and pathological settings, including oxygen delivery to tissues, mucociliary clearance in airways, sepsis, neuropathic pain, and epilepsy. It is widely accepted that Panx1 exerts its role in the context of purinergic signaling by providing a transmembrane pathway for ATP. However, under certain conditions, Panx1 can also act as a highly selective membrane channel for chloride ions without ATP permeability. A recent flurry of publications has provided structural information about the Panx1 channel. However, while these structures are consistent with a chloride selective channel, none show a conformation with strong support for the ATP release function of Panx1. In this Viewpoint, we critically assess the existing evidence for the function and structure of the Panx1 channel and conclude that the structure corresponding to the ATP permeation pathway is yet to be determined. We also list a set of additional topics needing attention and propose ways to attain the large-pore, ATP-permeable conformation of the Panx1 channel.
Collapse
Affiliation(s)
- Carsten Mim
- Department of Biomedical Engineering and Health Systems Royal Institute of Technology, Huddinge, Sweden
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego School of Medicine, La Jolla, CA
| | - Gerhard Dahl
- Department of Physiology, University of Miami School of Medicine, Miami, FL
| |
Collapse
|
2
|
Whyte-Fagundes P, Kurtenbach S, Zoidl C, Shestopalov VI, Carlen PL, Zoidl G. A Potential Compensatory Role of Panx3 in the VNO of a Panx1 Knock Out Mouse Model. Front Mol Neurosci 2018; 11:135. [PMID: 29780304 PMCID: PMC5946002 DOI: 10.3389/fnmol.2018.00135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/03/2018] [Indexed: 12/30/2022] Open
Abstract
Pannexins (Panx) are integral membrane proteins, with Panx1 being the best-characterized member of the protein family. Panx1 is implicated in sensory processing, and knockout (KO) animal models have become the primary tool to investigate the role(s) of Panx1 in sensory systems. Extending previous work from our group on primary olfaction, the expression patterns of Panxs in the vomeronasal organ (VNO), an auxiliary olfactory sense organ with a role in reproduction and social behavior, were compared. Using qRT-PCR and Immunohistochemistry (IHC), we confirmed the loss of Panx1, found similar Panx2 expression levels in both models, and a significant upregulation of Panx3 in mice with a global ablation of Panx1. Specifically, Panx3 showed upregulated expression in nerve fibers of the non-sensory epithelial layer in juvenile and adult KO mice and in the sensory layer of adults, which overlaps with Panx1 expression areas in WT populations. Since both social behavior and evoked ATP release in the VNO was not compromised in KO animals, we hypothesized that Panx3 could compensate for the loss of Panx1. This led us to compare Panx1 and Panx3 channels in vitro, demonstrating similar dye uptake and ATP release properties. Outcomes of this study strongly suggest that Panx3 may functionally compensate for the loss of Panx1 in the VNO of the olfactory system, ensuring sustained chemosensory processing. This finding extends previous reports on the upregulation of Panx3 in arterial walls and the skin of Panx1 KO mice, suggesting that roles of Panx1 warrant uncharacterized safeguarding mechanisms involving Panx3.
Collapse
Affiliation(s)
- Paige Whyte-Fagundes
- Department of Biology, York University, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Stefan Kurtenbach
- Department of Biology, York University, Toronto, ON, Canada.,Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Valery I Shestopalov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Peter L Carlen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Georg Zoidl
- Department of Biology, York University, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Psychology, York University, Toronto, ON, Canada
| |
Collapse
|
3
|
Dvoriantchikova G, Pronin A, Kurtenbach S, Toychiev A, Chou TH, Yee CW, Prindeville B, Tayou J, Porciatti V, Sagdullaev BT, Slepak VZ, Shestopalov VI. Pannexin 1 sustains the electrophysiological responsiveness of retinal ganglion cells. Sci Rep 2018; 8:5797. [PMID: 29643381 PMCID: PMC5895610 DOI: 10.1038/s41598-018-23894-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
Pannexin 1 (Panx1) forms ATP-permeable membrane channels that play a key role in purinergic signaling in the nervous system in both normal and pathological conditions. In the retina, particularly high levels of Panx1 are found in retinal ganglion cells (RGCs), but the normal physiological function in these cells remains unclear. In this study, we used patch clamp recordings in the intact inner retina to show that evoked currents characteristic of Panx1 channel activity were detected only in RGCs, particularly in the OFF-type cells. The analysis of pattern electroretinogram (PERG) recordings indicated that Panx1 contributes to the electrical output of the retina. Consistently, PERG amplitudes were significantly impaired in the eyes with targeted ablation of the Panx1 gene in RGCs. Under ocular hypertension and ischemic conditions, however, high Panx1 activity permeated cell membranes and facilitated the selective loss of RGCs or stably transfected Neuro2A cells. Our results show that high expression of the Panx1 channel in RGCs is essential for visual function in the inner retina but makes these cells highly sensitive to mechanical and ischemic stresses. These findings are relevant to the pathophysiology of retinal disorders induced by increased intraocular pressure, such as glaucoma.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA
| | - Alexey Pronin
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Sarah Kurtenbach
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA
| | - Abduqodir Toychiev
- Department of Ophthalmology, Weill Cornell Medical College, 156 William St., New York, NY, 10038, USA
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA
| | - Christopher W Yee
- Winifred Masterson Burke Medical Research Institute, New York, 785 Mamaroneck Ave., White Plains, NY, 10605, USA
| | - Breanne Prindeville
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA
| | - Junior Tayou
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA
| | - Botir T Sagdullaev
- Department of Ophthalmology, Weill Cornell Medical College, 156 William St., New York, NY, 10038, USA
- Winifred Masterson Burke Medical Research Institute, New York, 785 Mamaroneck Ave., White Plains, NY, 10605, USA
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Valery I Shestopalov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA.
- Department of Cell Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA.
- Vavilov Institute for General Genetics, Gubkina Str. 3, Russian Academy of Sciences, Moscow, Russia.
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
4
|
Ismail FS, Moinfar Z, Prochnow N, Dambach H, Hinkerohe D, Haase CG, Förster E, Faustmann PM. Dexamethasone and levetiracetam reduce hetero-cellular gap-junctional coupling between F98 glioma cells and glial cells in vitro. J Neurooncol 2017; 131:469-476. [PMID: 27848138 PMCID: PMC5350227 DOI: 10.1007/s11060-016-2324-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/08/2016] [Indexed: 01/25/2023]
Abstract
Gap junctions (GJs) in astrocytes and glioma cells are important channels for cell-to-cell communication that contribute to homo- and heterocellular coupling. According to recent studies, heterocellular gap-junctional communication (H-GJC) between glioma cells and their surrounding environment enhances glioma progression. Therefore, we developed a new in vitro model to examine H-GJC between glioma cells, astrocytes and microglia. Consequently, F98 rat glioma cells were double-labeled with GJ-impermeable (CM-DiI) and GJ-permeable dye (calcein AM) and were seeded on unlabeled astrocyte-microglia co-cultures. Dual whole cell voltage clamp recordings were carried out on selected cell pairs to characterize the functional properties of H-GJC in vitro. The expression of four types of connexins (Cxs), including Cx32, Cx36, Cx43 and Cx45, and microglial phenotypes were analyzed by immunocytochemistry. The H-GJC between glioma cells and astrocytes/microglia increased after a longer incubation period with a higher number of glioma cells. We provided evidence for the direct GJ coupling of microglia and glioma cells under native in vitro conditions. In addition, we exploited this model to evaluate H-GJC after incubation with levetiracetam (LEV) and/or dexamethasone (DEX). Previous in vitro studies suggest that LEV and DEX are frequently used to control seizure and edema in glioma. Our findings showed that LEV and/or DEX decrease the number of heterocellular coupled cells significantly. In conclusion, our newly developed model demonstrated H-GJC between glioma cells and both astrocytes and microglia. The reduced H-GJC by LEV and DEX suggests a potential effect of both drugs on glioma progression.
Collapse
Affiliation(s)
- Fatme Seval Ismail
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany.
| | - Zahra Moinfar
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Nora Prochnow
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Hannes Dambach
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Daniel Hinkerohe
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Claus Gert Haase
- Department of Neurology and Clinical Neurophysiology, Evangelical Hospital Gelsenkirchen, Gelsenkirchen, Germany
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Pedro Michael Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Massa MG, Gisevius B, Hirschberg S, Hinz L, Schmidt M, Gold R, Prochnow N, Haghikia A. Multiple Sclerosis Patient-Specific Primary Neurons Differentiated from Urinary Renal Epithelial Cells via Induced Pluripotent Stem Cells. PLoS One 2016; 11:e0155274. [PMID: 27158987 PMCID: PMC4861271 DOI: 10.1371/journal.pone.0155274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/26/2016] [Indexed: 12/11/2022] Open
Abstract
As multiple sclerosis research progresses, it is pertinent to continue to develop suitable paradigms to allow for ever more sophisticated investigations. Animal models of multiple sclerosis, despite their continuing contributions to the field, may not be the most prudent for every experiment. Indeed, such may be either insufficient to reflect the functional impact of human genetic variations or unsuitable for drug screenings. Thus, we have established a cell- and patient-specific paradigm to provide an in vitro model within which to perform future genetic investigations. Renal proximal tubule epithelial cells were isolated from multiple sclerosis patients’ urine and transfected with pluripotency-inducing episomal factors. Subsequent induced pluripotent stem cells were formed into embryoid bodies selective for ectodermal lineage, resulting in neural tube-like rosettes and eventually neural progenitor cells. Differentiation of these precursors into primary neurons was achieved through a regimen of neurotrophic and other factors. These patient-specific primary neurons displayed typical morphology and functionality, also staining positive for mature neuronal markers. The development of such a non-invasive procedure devoid of permanent genetic manipulation during the course of differentiation, in the context of multiple sclerosis, provides an avenue for studies with a greater cell- and human-specific focus, specifically in the context of genetic contributions to neurodegeneration and drug discovery.
Collapse
Affiliation(s)
- Megan G Massa
- Neurologische Klinik der Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| | - Barbara Gisevius
- Neurologische Klinik der Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| | - Sarah Hirschberg
- Neurologische Klinik der Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| | - Lisa Hinz
- Neurologische Klinik der Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| | - Matthias Schmidt
- Department of Neuroanatomy, Ruhr-Universität Bochum, Bochum, Germany
| | - Ralf Gold
- Neurologische Klinik der Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| | - Nora Prochnow
- Department of Neuroanatomy, Ruhr-Universität Bochum, Bochum, Germany
| | - Aiden Haghikia
- Neurologische Klinik der Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| |
Collapse
|
6
|
Yavorsky VA, Lukyanetz EA. [USING THE SERIAL RAMP RECORDINGS FOR RAPID TESTING OF THE GENERATING ABILITY OF IMPULSE ACTIVITY OF ISOLATED HIPPOCAMPAL NEURONS]. ACTA ACUST UNITED AC 2015; 61:19-27. [PMID: 26495732 DOI: 10.15407/fz61.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study we investigated changes of impulse activity of hippocampal neurons of the hippocampus by using ramp recordings. We have described the usage of serial ramp recordings of neuronal electrical activity for rapid testing of the generating ability of isolated hippocampal neurons. An analysis of the data has shown that the proposed protocol of serial ramp recordings allows to define additional characteristics of the neuronal impulse activity: (i) the thresholds for initiation of generation and suppression of the generation, (ii) the shape and amplitude of relationship between the interpulse intervals and neuronal depolarizations. The suggested stimulation protocols and related analysis are tools that can be effectively used to justify influence of chemicals or other experimental factors on the impulse activity of neurons.
Collapse
|
7
|
Bravo D, Maturana CJ, Pelissier T, Hernández A, Constandil L. Interactions of pannexin 1 with NMDA and P2X7 receptors in central nervous system pathologies: Possible role on chronic pain. Pharmacol Res 2015. [PMID: 26211949 DOI: 10.1016/j.phrs.2015.07.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pannexin 1 (Panx1) is a glycoprotein that acts as a membrane channel in a wide variety of tissues in mammals. In the central nervous system (CNS) Panx1 is expressed in neurons, astrocytes and microglia, participating in the pathophysiology of some CNS diseases, such as epilepsy, anoxic depolarization after stroke and neuroinflammation. In these conditions Panx1 acts as an important modulator of the neuroinflammatory response, by secreting ATP, by interacting with the P2X7 receptor (P2X7R), and as an amplifier of NMDA receptor (NMDAR) currents, particularly in conditions of pathological neuronal hyperexcitability. Here, we briefly reviewed the current evidences that support the interaction of Panx1 with NMDAR and P2X7R in pathological contexts of the CNS, with special focus in recent data supporting that Panx1 is involved in chronic pain signaling by interacting with NMDAR in neurons and with P2X7R in glia. The participation of Panx1 in chronic pain constitutes a novel topic for research in the field of clinical neurosciences and a potential target for pharmacological interventions in chronic pain.
Collapse
Affiliation(s)
- D Bravo
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Chile; School of Kinesiology, Faculty of Sport, Health and Recreation, University Bernardo O'Higgins, Chile.
| | - C J Maturana
- Departamento de Fisiología, Pontificia Universidad Católica De Chile, Chile
| | - T Pelissier
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Chile
| | - A Hernández
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Chile
| | - L Constandil
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Chile
| |
Collapse
|
8
|
Kurtenbach S, Whyte-Fagundes P, Gelis L, Kurtenbach S, Brazil E, Zoidl C, Hatt H, Shestopalov VI, Zoidl G. Investigation of olfactory function in a Panx1 knock out mouse model. Front Cell Neurosci 2014; 8:266. [PMID: 25309319 PMCID: PMC4162419 DOI: 10.3389/fncel.2014.00266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/18/2014] [Indexed: 01/01/2023] Open
Abstract
Pannexin 1 (Panx1), the most extensively investigated member of a channel-forming protein family, is able to form pores conducting molecules up to 1.5 kDa, like ATP, upon activation. In the olfactory epithelium (OE), ATP modulates olfactory responsiveness and plays a role in proliferation and differentiation of olfactory sensory neurons (OSNs). This process continuously takes place in the OE, as neurons are replaced throughout the whole lifespan. The recent discovery of Panx1 expression in the OE raises the question whether Panx1 mediates ATP release responsible for modulating chemosensory function. In this study, we analyzed pannexin expression in the OE and a possible role of Panx1 in olfactory function using a Panx1−/− mouse line with a global ablation of Panx1. This mouse model has been previously used to investigate Panx1 functions in the retina and adult hippocampus. Here, qPCR, in-situ hybridization, and immunohistochemistry (IHC) demonstrated that Panx1 is expressed in axon bundles deriving from sensory neurons of the OE. The localization, distribution, and expression of major olfactory signal transduction proteins were not significantly altered in Panx1−/− mice. Further, functional analysis of Panx1−/− animals does not reveal any major impairment in odor perception, indicated by electroolfactogram (EOG) measurements and behavioral testing. However, ATP release evoked by potassium gluconate application was reduced in Panx1−/− mice. This result is consistent with previous reports on ATP release in isolated erythrocytes and spinal or lumbar cord preparations from Panx1−/− mice, suggesting that Panx1 is one of several alternative pathways to release ATP in the olfactory system.
Collapse
Affiliation(s)
- Stefan Kurtenbach
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| | - Paige Whyte-Fagundes
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| | - Lian Gelis
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Sarah Kurtenbach
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| | - Emerson Brazil
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| | - Christiane Zoidl
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Valery I Shestopalov
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami Miami, FL, USA ; Vavilov Institute of General Genetics, Russian Academy of Sciences Moscow, Russia
| | - Georg Zoidl
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| |
Collapse
|
9
|
Abstract
The pannexins (Panxs) are a family of chordate proteins homologous to the invertebrate gap junction forming proteins named innexins. Three distinct Panx paralogs (Panx1, Panx2, and Panx3) are shared among the major vertebrate phyla, but they appear to have suppressed (or even lost) their ability to directly couple adjacent cells. Connecting the intracellular and extracellular compartments is now widely accepted as Panx's primary function, facilitating the passive movement of ions and small molecules along electrochemical gradients. The tissue distribution of the Panxs ranges from pervasive to very restricted, depending on the paralog, and are often cell type-specific and/or developmentally regulated within any given tissue. In recent years, Panxs have been implicated in an assortment of physiological and pathophysiological processes, particularly with respect to ATP signaling and inflammation, and they are now considered to be a major player in extracellular purinergic communication. The following is a comprehensive review of the Panx literature, exploring the historical events leading up to their discovery, outlining our current understanding of their biochemistry, and describing the importance of these proteins in health and disease.
Collapse
Affiliation(s)
- Stephen R Bond
- Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA ; Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia Vancouver, BC, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
10
|
Pannexin1 channel proteins in the zebrafish retina have shared and unique properties. PLoS One 2013; 8:e77722. [PMID: 24194896 PMCID: PMC3808535 DOI: 10.1371/journal.pone.0077722] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/03/2013] [Indexed: 11/25/2022] Open
Abstract
In mammals, a single pannexin1 gene (Panx1) is widely expressed in the CNS including the inner and outer retinae, forming large-pore voltage-gated membrane channels, which are involved in calcium and ATP signaling. Previously, we discovered that zebrafish lack Panx1 expression in the inner retina, with drPanx1a exclusively expressed in horizontal cells of the outer retina. Here, we characterize a second drPanx1 protein, drPanx1b, generated by whole-genome duplications during teleost evolution. Homology searches strongly support the presence of pannexin sequences in cartilaginous fish and provide evidence that pannexins evolved when urochordata and chordata evolution split. Further, we confirm Panx1 ohnologs being solely present in teleosts. A hallmark of differential expression of drPanx1a and drPanx1b in various zebrafish brain areas is the non-overlapping protein localization of drPanx1a in the outer and drPanx1b in the inner fish retina. A functional comparison of the evolutionary distant fish and mouse Panx1s revealed both, preserved and unique properties. Preserved functions are the capability to form channels opening at resting potential, which are sensitive to known gap junction and hemichannel blockers, intracellular calcium, extracellular ATP and pH changes. However, drPanx1b is unique due to its highly complex glycosylation pattern and distinct electrophysiological gating kinetics. The existence of two Panx1 proteins in zebrafish displaying distinct tissue distribution, protein modification and electrophysiological properties, suggests that both proteins fulfill different functions in vivo.
Collapse
|
11
|
Romanov RA, Bystrova MF, Rogachevskaya OA, Sadovnikov VB, Shestopalov VI, Kolesnikov SS. The ATP permeability of pannexin 1 channels in a heterologous system and in mammalian taste cells is dispensable. J Cell Sci 2012; 125:5514-23. [PMID: 22956545 DOI: 10.1242/jcs.111062] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Afferent output in type II taste cells is mediated by ATP liberated through ion channels. It is widely accepted that pannexin 1 (Panx1) channels are responsible for ATP release in diverse cell types, including taste cells. While biophysical evidence implicates slow deactivation of ion channels following ATP release in taste cells, recombinant Panx1 activates and deactivates rapidly. This inconsistency could indicate that the cellular context specifies Panx1 functioning. We cloned Panx1 from murine taste tissue, and heterologously expressed it in three different cell lines: HEK-293, CHO and neuroblastoma SK-N-SH cells. In all three cell lines, Panx1 transfection yielded outwardly rectifying anion channels that exhibited fast gating and negligible permeability to anions exceeding 250 Da. Despite expression of Panx1, the host cells did not liberate ATP upon stimulation, making it unclear whether Panx1 is involved in taste-related ATP secretion. This issue was addressed using mice with genetic ablation of the Panx1 gene. The ATP-biosensor assay revealed that, in taste cells devoid of Panx1, ATP secretion was robust and apparently unchanged compared with the control. Our data suggest that Panx1 alone forms a channel that has insufficient permeability to ATP. Perhaps, a distinct subunit and/or a regulatory circuit that is absent in taste cells is required to enable a high ATP-permeability mode of a native Panx1-based channel.
Collapse
Affiliation(s)
- Roman A Romanov
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutional Street 3, Pushchino, Moscow Region, 142290, Russia
| | | | | | | | | | | |
Collapse
|