1
|
Renz M, Siegert P, Paul R, Lepadatu A, Leukel P, Frauenknecht K, Urmann A, Hain J, Mohnke K, Ziebart A, Harder A, Ruemmler R. Hypoxic-ischemic brain injury in pig after cardiac arrest - A new histopathological scoring system for non-specialists. Resusc Plus 2024; 20:100779. [PMID: 39328899 PMCID: PMC11424782 DOI: 10.1016/j.resplu.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction After cardiac arrest and successful resuscitation patients often present with hypoxic-ischemic brain injury, which is a major cause of death due to poor neurological outcome. The development of a robust histopathological scoring system for the reliable and easy identification and quantification of hypoxic-ischemic brain injury could lead to a standardization in the evaluation of brain damage. We wanted to establish an easy-to-use neuropathological scoring system to identify and quantify hypoxic-ischemic brain injury. Methods The criteria for regular neurons, hypoxic-ischemic brain injury neurons and neurons with ischemic neuronal change (ischemic change neurons) were established in collaboration with specialized neuropathologists. Nine non-specialist examiners performed cell counting using the mentioned criteria in brain tissue samples from a porcine cardiac arrest model. The statistical analyses were performed using the interclass correlation coefficient for counting data and reliability testing. Results The inter-rater reliability for regular neurons (ICC 0.68 (0.42 - 0.84; p < 0.001) and hypoxic-ischemic brain injury neurons (ICC 0.87 (0.81 - 0.92; p < 0.001) showed moderate to excellent correlation while ischemic change neurons showed poor reliability. Excellent results were seen for intra-rater reliability for regular neurons (ICC 0.9 (0.68 - 0.97; p < 0.001) and hypoxic-ischemic brain injury neurons (ICC 0.99 (0.83 - 1; p < 0.001). Conclusion The scoring system provides a reliable method for the discrimination between regular neurons and neurons affected by hypoxic/ischemic injury. This scoring system allows an easy and reliable identification and quantification of hypoxic-ischemic brain injury for non-specialists and offers a standardization to evaluate hypoxic-ischemic brain injury after cardiac arrest.
Collapse
Affiliation(s)
- Miriam Renz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Pascal Siegert
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Roman Paul
- Institute for Medical Biometry, Epidemiology and Information Technology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Adina Lepadatu
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Katrin Frauenknecht
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
- Luxembourg Center of Neuropathology (LCNP) & Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1210 Luxembourg, Luxembourg
| | - Andrea Urmann
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Johanna Hain
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Katja Mohnke
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Alexander Ziebart
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Anja Harder
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Germany
- Institute of Neuropathology, University Hospital Muenster, 48149 Muenster, Germany
- Cure NF Research Group, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle, Saale, Germany
| | - Robert Ruemmler
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
2
|
Koutroulis I, Kratimenos P, Hoptay C, O’Brien WN, Sanidas G, Byrd C, Triantafyllou M, Goldstein E, Jablonska B, Bharadwaj M, Gallo V, Freishtat R. Mesenchymal stem cell-derived small extracellular vesicles alleviate the immunometabolic dysfunction in murine septic encephalopathy. iScience 2024; 27:110573. [PMID: 39165840 PMCID: PMC11334791 DOI: 10.1016/j.isci.2024.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/20/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection that results in high mortality and long-term sequela. The central nervous system (CNS) is susceptible to injury from infectious processes, which can lead to clinical symptoms of septic encephalopathy (SE). SE is linked to a profound energetic deficit associated with immune dysregulation. Here, we show that intravenous administration of adipose tissue mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) in septic mice improved disease outcomes by reducing SE clinical severity, restoring aerobic metabolism, and lowering pro-inflammatory cytokines in the cerebellum, a key region affected by SE. Our high throughput analysis showed that MSC-derived sEVs partially reversed sepsis-induced transcriptomic changes, highlighting the potential association of miRNA regulators in the cerebellum of MSC-derived sEV-treated mice with miRNAs identified in sEV cargo. MSC-derived sEVs could serve as a promising therapeutic agent in SE through their favorable immunometabolic properties.
Collapse
Affiliation(s)
- Ioannis Koutroulis
- Department of Pediatrics, Division of Emergency Medicine, Children’s National Hospital, Washington, DC 20010, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Panagiotis Kratimenos
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Department of Pediatrics, Division of Neonatology, Children’s National Hospital, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Claire Hoptay
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Wade N. O’Brien
- Dartmouth College Geisel School of Medicine, Hanover, NH 03755, USA
| | - Georgios Sanidas
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Chad Byrd
- Children’s National Research Institute, Washington, DC 20010, USA
| | | | - Evan Goldstein
- Augusta University Medical College of Georgia, Augusta, GA 30912, USA
| | - Beata Jablonska
- Children’s National Research Institute, Washington, DC 20010, USA
| | | | - Vittorio Gallo
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| | - Robert Freishtat
- Department of Pediatrics, Division of Emergency Medicine, Children’s National Hospital, Washington, DC 20010, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Children’s National Research Institute, Washington, DC 20010, USA
| |
Collapse
|
3
|
Tepe T, Satar M, Yildizdas HY, Ozdemir M, Ozlu F, Erdogan S, Toyran T, Akillioglu K. Antiapoptotic Effects of Hydroxychloroquine on Hypoxic-Ischemic Injury in Neonatal Rat Brain: May Hydroxychloroquine Be an Adjuvant Theraphy? Am J Perinatol 2024; 41:1195-1202. [PMID: 35292947 DOI: 10.1055/a-1798-2003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Hydroxychloroquine (HCQ) has immunomodulatory, antithrombotic, cardiovascular, antimicrobial, and antineoplastic effects. In this study, we aimed to investigate the antiapoptotic and immunomodulator effects of intraperitoneal HCQ on hypoxic-ischemic (HI) injury in newborn rats. STUDY DESIGN Wistar albino rats, 7 to 10 days old, were randomly divided into three groups: hypoxic-ischemic encephalopathy (HIE) group, HIE treated with HCQ group, and Sham group. Left common carotid artery ligation and hypoxia model were performed in HIE and HCQ groups. The HCQ group was treated with 80 mg/kg intraperitoneal HCQ every 24 hours for 3 days, while Sham and HIE groups were given physiological saline. After 72 hours, rats were decapitated and brain tissues were stained with hematoxylin and eosin, TUNEL, and IL-1β for histopathological grading and neuronal cell injury. RESULTS Neuronal apoptosis was statistically lower in all neuroanatomical areas in the HCQ group compared with the HIE group. IL-1β-stained areas were similar in both HCQ and HIE groups but significantly higher compared with the Sham group. Histopathological grading scores were found to be lower in the HCQ group on the left parietal cortex and hippocampus region. CONCLUSION In this study, we have shown for the first time that HCQ treatment decreased apoptosis in HI newborn rat model in both hemispheres. HCQ may be a promising adjuvant therapy in neonatal HIE. KEY POINTS · HCQ decreased neuronal apoptosis in the ischemic penumbra of the rat brain.. · HCQ attenuates hypoxia-ischemia-induced brain injury in neonatal rats.. · HCQ has no anti-inflammatory effect on HI injury..
Collapse
Affiliation(s)
- Tugay Tepe
- Faculty of Medicine, Division of Neonatology, Department of Pediatrics, Neonatology, Cukurova University, Adana, Türkiye
| | - Mehmet Satar
- Faculty of Medicine, Division of Neonatology, Department of Pediatrics, Neonatology, Cukurova University, Adana, Türkiye
| | - Hacer Yapicioglu Yildizdas
- Faculty of Medicine, Division of Neonatology, Department of Pediatrics, Neonatology, Cukurova University, Adana, Türkiye
| | - Mustafa Ozdemir
- Faculty of Medicine, Division of Neonatology, Department of Pediatrics, Neonatology, Cukurova University, Adana, Türkiye
| | - Ferda Ozlu
- Faculty of Medicine, Division of Neonatology, Department of Pediatrics, Neonatology, Cukurova University, Adana, Türkiye
| | - Seyda Erdogan
- Faculty of Medicine, Department of Pathology, Cukurova University, Adana, Türkiye
| | - Tugba Toyran
- Faculty of Medicine, Department of Pathology, Cukurova University, Adana, Türkiye
| | - Kubra Akillioglu
- Faculty of Medicine, Division of Neurophysiology, Department of Physiology, Cukurova University, Adana, Türkiye
| |
Collapse
|
4
|
Tepe T, Satar M, Ozdemir M, Yildizdas HY, Ozlü F, Erdogan S, Toyran T, Akillioglu K, Köse S, Avci C. Long-term effect of indomethacin on a rat model of neonatal hypoxia ischemic encephalopathy through behavioral tests. Int J Dev Neurosci 2024; 84:22-34. [PMID: 37842754 DOI: 10.1002/jdn.10305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/09/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Many medical experts prescribe indomethacin because of its anti-inflammatory, analgesic, tocolytic, and duct closure effects. This article presents an evaluation of the enduring impact of indomethacin on neonatal rats with hypoxic-ischemic (HI) insults, employing behavioral tests as a method of assessment. METHODS The experiment was conducted on male Wistar-Albino rats weighing 10 to 15 g, aged between seven and 10 days. The rats were divided into three groups using a random allocation method as follows: hypoxic ischemic encephalopathy (HIE) group, HIE treated with indomethacin group (INDO), and Sham group. A left common carotid artery ligation and hypoxia model was applied in both the HIE and INDO groups. The INDO group was treated with 4 mg/kg intraperitoneal indomethacin every 24 h for 3 days, while the Sham and HIE groups were given dimethylsulfoxide (DMSO). After 72 h, five rats from each group were sacrificed and brain tissue samples were stained with 2,3,5-Triphenyltetrazolium chloride (TCC) for infarct-volume measurement. Seven rats from each group were taken to the behavioral laboratory in the sixth postnatal week (PND42) and six from each group were sacrificed for the Evans blue (EB) experiment for blood-brain barrier (BBB) integrity evaluation. The open field (OF) test and Morris water maze (MWM) tests were performed. After behavioral tests, brain tissue were obtained and stained with TCC to assess the infarct volume. RESULTS The significant increase in the time spent in the central area and the frequency of crossing to the center in the INDO group compared with the HIE group indicated that indomethacin decreased anxiety-like behavior (p < 0.001, p < 0.05). However, the MWM test revealed that indomethacin did not positively affect learning and memory performance (p > 0.05). Additionally, indomethacin significantly reduced infarct volume and neuropathological grading in adolescence (p < 0.05), although not statistically significant in the early period. Moreover, the EB experiment demonstrated that indomethacin effectively increased BBB integrity (p < 0.05). CONCLUSIONS In this study, we have shown for the first time that indomethacin treatment can reduce levels of anxiety-like behavior and enhance levels of exploratory behavior in a neonatal rat model with HIE. It is necessary to determine whether nonsteroidal anti-inflammatory agents, such as indomethacin, should be used for adjuvant therapy in newborns with HIE.
Collapse
Affiliation(s)
- Tugay Tepe
- Department of Pediatrics, Division of Neonatology, Cukurova University Faculty of Medicine, Adana, Turkey
- Department of Physiology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Mehmet Satar
- Department of Pediatrics, Division of Neonatology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Mustafa Ozdemir
- Department of Pediatrics, Division of Neonatology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Hacer Yapicioglu Yildizdas
- Department of Pediatrics, Division of Neonatology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Ferda Ozlü
- Department of Pediatrics, Division of Neonatology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Seyda Erdogan
- Department of Pathology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Tugba Toyran
- Department of Pathology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Kübra Akillioglu
- Department of Physiology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Seda Köse
- Department of Physiology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Cagri Avci
- Department of Virology, Cukurova University Faculty of Veterinary Medicine, Adana, Turkey
| |
Collapse
|
5
|
Alkan Ozdemir S, Ozdemir N, Aksan O, Kınalı B, Bilici Güler G, Erbil G, Ozer E, Ozer E. Effect of humic acid on oxidative stress and neuroprotection in hypoxic-ischemic brain injury: part 1. J Matern Fetal Neonatal Med 2020; 35:4580-4589. [PMID: 36062519 DOI: 10.1080/14767058.2020.1856809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Senem Alkan Ozdemir
- Izmir Health Science University Division of Neonatology, Dr. Behçet Uz Child Disease and Pediatric Surgery Training and Research Hospital, Izmir, Turkey
| | | | | | | | | | - Güven Erbil
- School of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Erdener Ozer
- School of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Esra Ozer
- School of Medicine, Izmir Tınaztepe University, Izmir, Turkey
| |
Collapse
|
6
|
Kratimenos P, Goldstein EZ, Koutroulis I, Knoblach S, Jablonska B, Banerjee P, Malaeb SN, Bhattacharya S, Almira-Suarez MI, Gallo V, Delivoria-Papadopoulos M. Epidermal Growth Factor Receptor Inhibition Reverses Cellular and Transcriptomic Alterations Induced by Hypoxia in the Neonatal Piglet Brain. iScience 2020; 23:101766. [PMID: 33294779 PMCID: PMC7683340 DOI: 10.1016/j.isci.2020.101766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 02/04/2023] Open
Abstract
Acute hypoxia (HX) causes extensive cellular damage in the developing human cerebral cortex. We found increased expression of activated-EGFR in affected cortical areas of neonates with HX and investigated its functional role in the piglet, which displays a highly evolved, gyrencephalic brain, with a human-like maturation pattern. In the piglet, HX-induced activation of EGFR and Ca2+/calmodulin kinase IV (CaMKIV) caused cell death and pathological alterations in neurons and glia. EGFR blockade inhibited CaMKIV activation, attenuated neuronal loss, increased oligodendrocyte proliferation, and reversed HX-induced astrogliosis. We performed for the first time high-throughput transcriptomic analysis of the piglet cortex to define molecular responses to HX and to uncover genes specifically involved in EGFR signaling in piglet and human brain injury. Our results indicate that specific molecular responses modulated by EGFR may be targeted as a therapeutic strategy for HX injury in the neonatal brain.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-476-5922, USA
- Department of Pediatrics, Division of Neonatology, Children's National Hospital and George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-602-4889, USA
- Corresponding author
| | - Evan Z. Goldstein
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-476-5922, USA
| | - Ioannis Koutroulis
- Department of Pediatrics, Division of Emergency Medicine, Children's National Hospital and George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Research Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Susan Knoblach
- Research Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Beata Jablonska
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-476-5922, USA
| | - Payal Banerjee
- Research Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA
| | - Shadi N. Malaeb
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Surajit Bhattacharya
- Research Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA
| | - M. Isabel Almira-Suarez
- Department of Pathology, Children's National Hospital and George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-476-5922, USA
- Corresponding author
| | | |
Collapse
|
7
|
Chen X, Nakada S, Donahue JE, Chen RH, Tucker R, Qiu J, Lim YP, Stopa EG, Stonestreet BS. Neuroprotective effects of inter-alpha inhibitor proteins after hypoxic-ischemic brain injury in neonatal rats. Exp Neurol 2019; 317:244-259. [PMID: 30914159 DOI: 10.1016/j.expneurol.2019.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/08/2019] [Accepted: 03/22/2019] [Indexed: 11/30/2022]
Abstract
Hypoxic-ischemic (HI) brain injury is one of the most common neurological problems occurring in the perinatal period. Hypothermia is the only approved intervention for neonatal HI encephalopathy. However, this treatment is only partially protective, has a narrow therapeutic time window after birth and only can be used to treat full-term infants. Consequently, additional therapies are critically needed. Inflammation is an important contributing factor to the evolution of HI brain injury in neonates. Inter-alpha Inhibitor Proteins (IAIPs) are immunomodulatory proteins with anti-inflammatory properties. We have previously shown that IAIPs reduce neuronal cell death and improve behavioral outcomes when given after carotid artery ligation, but before hypoxia in male neonatal rats. The objective of the current study was to investigate the neuroprotective effects of treatment with IAIPs given immediately or 6 h after HI in both male and female neonatal rats. HI was induced with the Rice-Vannucci method in postnatal (P) day 7 rats. After ligation of the right common carotid artery, P7 rats were exposed to 90 min of hypoxia (8% oxygen). Human plasma-derived IAIPs or placebo (phosphate buffered saline) was given at zero, 24, and 48 h after HI. Brains were perfused, weighed and fixed 72 h after HI at P10. In a second, delayed treatment group, the same procedure was followed except that IAIPs or placebo were given at 6, 24 and 48 h after HI. Separate sham-operated, placebo-treated groups were exposed to identical protocols but were not exposed to carotid artery ligation and remained in room air. Rat sex was recorded. The effects of IAIPs on HI brain injury were examined using histopathological scoring and immunohistochemical analyses of the brain and by using infarct volume measurements on frozen tissue of the entire brain hemispheres ipsilateral and contralateral to HI injury. IAIPs given immediately after HI improved (P < 0.050) histopathological brain injury across and within the cingulate, caudate/putamen, thalamus, hippocampus and parietal cortex in males, but not in females. In contrast, IAIPs given immediately after HI reduced (P < 0.050) infarct volumes of the hemispheres ipsilateral to HI injury in similarly both the males and females. Treatment with IAIPs also resulted in higher (P < 0.050) brain weights compared with the placebo-treated HI group, reduced (P < 0.050) neuronal and non-neuronal cell death in the cortex and total hemisphere, and also increased the total area of oligodendrocytes determined by CNPase in the ipsilateral hemisphere and corpus callosum (P < 0.050) of male, but not female subjects exposed to HI. Delayed treatment with IAIPs 6 h after HI did not improve histopathological brain injury in males or females, but resulted in higher (P < 0.050) brain weights compared with the placebo-treated HI males. Therefore, treatment with IAIPs immediately after HI improved brain weights and reduced neuropathological brain injury and cell death in male rats, and reduced infarct volume in both male and female neonatal rats. We conclude that IAIPs exert neuroprotective effects after exposure to HI in neonatal rats and may exhibit some sex-related differential effects.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Warren Alpert Medical School of Brown University, USA
| | - Sakura Nakada
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Warren Alpert Medical School of Brown University, USA
| | - John E Donahue
- The Warren Alpert Medical School of Brown University, USA; Department of Pathology and Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, USA
| | - Ray H Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Warren Alpert Medical School of Brown University, USA
| | - Richard Tucker
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA
| | - Joseph Qiu
- ProThera Biologics, Inc, Providence, RI, USA
| | - Yow-Pin Lim
- The Warren Alpert Medical School of Brown University, USA; ProThera Biologics, Inc, Providence, RI, USA; Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Edward G Stopa
- The Warren Alpert Medical School of Brown University, USA; Department of Pathology and Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Warren Alpert Medical School of Brown University, USA.
| |
Collapse
|
8
|
Hydrogen ventilation combined with mild hypothermia improves short-term neurological outcomes in a 5-day neonatal hypoxia-ischaemia piglet model. Sci Rep 2019; 9:4088. [PMID: 30858437 PMCID: PMC6411734 DOI: 10.1038/s41598-019-40674-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/20/2019] [Indexed: 01/21/2023] Open
Abstract
Despite its poor outcomes, therapeutic hypothermia (TH) is the current standard treatment for neonatal hypoxic-ischaemic encephalopathy (HIE). In this study, due to its antioxidant, anti-inflammatory, and antiapoptotic properties, the effectiveness of molecular hydrogen (H2) combined with TH was evaluated by means of neurological and histological assessments. Piglets were divided into three groups: hypoxic-ischaemic insult with normothermia (NT), insult with hypothermia (TH, 33.5 ± 0.5 °C), and insult with hypothermia with H2 ventilation (TH-H2, 2.1–2.7%). H2 ventilation and TH were administered for 24 h. After ventilator weaning, neurological assessment was performed every 6 h for 5 days. On day 5, the brains of the piglets were harvested for histopathological analysis. Regarding the neurological score, the piglets in the TH-H2 group consistently had the highest score from day 2 to 5 and showed a significantly higher neurological score from day 3 compared with the NT group. Most piglets in the TH-H2 group could walk at day 3 of recovery, whereas walking ability was delayed in the two other groups. The histological results revealed that TH-H2 tended to improve the status of cortical gray matter and subcortical white matter, with a considerable reduction in cell death. In this study, the combination of TH and H2 improved short-term neurological outcomes in neonatal hypoxic-ischaemic piglets.
Collapse
|
9
|
Chen X, Hovanesian V, Naqvi S, Lim YP, Tucker R, Donahue JE, Stopa EG, Stonestreet BS. Systemic infusions of anti-interleukin-1β neutralizing antibodies reduce short-term brain injury after cerebral ischemia in the ovine fetus. Brain Behav Immun 2018; 67:24-35. [PMID: 28780000 PMCID: PMC5696097 DOI: 10.1016/j.bbi.2017.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 01/27/2023] Open
Abstract
Perinatal hypoxic-ischemic reperfusion (I/R)-related brain injury is a leading cause of neurologic morbidity and life-long disability in children. Infants exposed to I/R brain injury develop long-term cognitive and behavioral deficits, placing a large burden on parents and society. Therapeutic strategies are currently not available for infants with I/R brain damage, except for hypothermia, which can only be used in full term infants with hypoxic-ischemic encephalopathy (HIE). Moreover, hypothermia is only partially protective. Pro-inflammatory cytokines are key contributors to the pathogenesis of perinatal I/R brain injury. Interleukin-1β (IL-1β) is a critical pro-inflammatory cytokine, which has been shown to predict the severity of HIE in infants. We have previously shown that systemic infusions of mouse anti-ovine IL-1β monoclonal antibody (mAb) into fetal sheep resulted in anti-IL-1β mAb penetration into brain, reduced I/R-related increases in IL-1β expression and blood-brain barrier (BBB) dysfunction in fetal brain. The purpose of the current study was to examine the effects of systemic infusions of anti-IL-1β mAb on short-term I/R-related parenchymal brain injury in the fetus by examining: 1) histopathological changes, 2) apoptosis and caspase-3 activity, 3) neuronal degeneration 4) reactive gliosis and 5) myelin basic protein (MBP) immunohistochemical staining. The study groups included non-ischemic controls, placebo-treated ischemic, and anti-IL-1β mAb treated ischemic fetal sheep at 127days of gestation. The systemic intravenous infusions of anti-IL-1β mAb were administered at fifteen minutes and four hours after in utero brain ischemia. The duration of each infusion was two hours. Parenchymal brain injury was evaluated by determining pathological injury scores, ApopTag® positive cells/mm2, caspase-3 activity, Fluoro-Jade B positive cells/mm2, glial fibrillary acidic protein (GFAP) and MBP staining in the brains of fetal sheep 24h after 30min of ischemia. Treatment with anti-IL-1β mAb reduced (P<0.05) the global pathological injury scores, number of apoptotic positive cells/mm2, and caspase-3 activity after ischemia in fetal sheep. The regional pathological scores and Fluoro-Jade B positive cells/mm2 did not differ between the placebo- and anti-IL-1β mAb treated ischemic fetal sheep. The percent of the cortical area stained for GFAP was lower (P<0.05) in the placebo ischemic treated than in the non-ischemic group, but did not differ between the placebo- and anti-IL-1β mAb treated ischemic groups. MBP immunohistochemical expression did not differ among the groups. In conclusion, infusions of anti-IL-1β mAb attenuate short-term I/R-related histopathological tissue injury, apoptosis, and reduce I/R-related increases in caspase-3 activity in ovine fetal brain. Therefore, systemic infusions of anti-IL-1β mAb attenuate short-term I/R-related parenchymal brain injury in the fetus.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI
| | - Virginia Hovanesian
- Core Research Laboratories, the Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - Syed Naqvi
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI
| | | | - Richard Tucker
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI
| | - John E. Donahue
- Department of Pathology and Neurosurgery, the Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - Edward G. Stopa
- Department of Pathology and Neurosurgery, the Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - Barbara S. Stonestreet
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI
| |
Collapse
|
10
|
Kratimenos P, Koutroulis I, Jain A, Malaeb S, Delivoria-Papadopoulos M. Effect of Concurrent Src Kinase Inhibition with Short-Duration Hypothermia on Ca2+/Calmodulin Kinase IV Activity and Neuropathology after Hypoxia-Ischemia in the Newborn Swine Brain. Neonatology 2018; 113:37-43. [PMID: 29024930 PMCID: PMC5729087 DOI: 10.1159/000480067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hypoxia-ischemia (HI) results in increased activation of Ca2+/calmodulin kinase IV (CaM kinase IV) mediated by Src kinase. Therapeutic hypothermia ameliorates neuronal injury in the newborn. HYPOTHESIS Inhibition of Src kinase concurrently with hypothermia further attenuates the hypoxia-induced increased activation of CaM kinase IV compared with hypothermia alone. DESIGN/METHODS Ventilated piglets were exposed to HI, received saline or a selective Src kinase inhibitor (PP2), and were cooled to 33°C. Neuropathology, adenosine triphosphate (ATP) and phosphocreatine (PCr) concentrations, and CaM kinase IV activity were determined. RESULTS The neuropathology mean score (mean ± SD) was 0.4 ± 0.43 in normoxia-normothermia (p < 0.05 vs. hypoxia-normothermia), 3.5 ± 0.89 in hypoxia-normothermia (p < 0.05 vs. normoxia-normothermia), 0.7 ± 0.73 in hypoxia-hypothermia (p < 0.05 vs. normoxia-normothermia), and 0.5 ± 0.70 in normoxia-hypothermia (p < 0.05 vs. hypoxia-normothermia). The CaM kinase IV activity in cerebral tissue (pmol Pi/mg protein/min; mean ± SD) was 2,002 ± 729 in normoxia-normothermia, 1,704 ± 18 in normoxia-hypothermia, 6,017 ± 2,510 in hypoxia-normothermia, 4,104 ± 542 in hypoxia-hypothermia (p < 0.05 vs. normoxia-hypothermia), and 2,165 ± 415 in hypoxia-hypothermia with PP2 (p < 0.05 vs. hypoxia-hypothermia). The hypoxic groups with and without hypothermia or Src kinase inhibitor were comparable in the levels of ATP and PCr, indicating that they were similar in their degree of energy failure prior to treatments. Hypothermia or Src kinase inhibitor (PP2) did not restore the ATP and PCr levels. CONCLUSIONS Hypothermia and Src kinase inhibition attenuated apoptotic cell death and improved neuropathology after hypoxia. The combination of short-duration hypothermia with Src kinase inhibition following hypoxia further attenuates the increased activation of CaM kinase IV compared to hypothermia alone in the newborn swine brain.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Children's National Medical Center, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | | | | | | | | |
Collapse
|
11
|
Kratimenos P, Koutroulis I, Agarwal B, Theocharis S, Delivoria-Papadopoulos M. Effect of Src Kinase inhibition on Cytochrome c, Smac/DIABLO and Apoptosis Inducing Factor (AIF) Following Cerebral Hypoxia-Ischemia in Newborn Piglets. Sci Rep 2017; 7:16664. [PMID: 29192254 PMCID: PMC5709433 DOI: 10.1038/s41598-017-16983-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/21/2017] [Indexed: 12/04/2022] Open
Abstract
We have previously shown that cerebral Hypoxia-ischemia (HI) results in activation of Src kinase in the newborn piglet brain. We investigated the regulatory mechanism by which the pre-apoptotic proteins translocate from mitochondria to the cytosol during HI through the Src kinase. Newborn piglets were divided into 3 groups (n = 5/group): normoxic (Nx), HI and HI pre-treated with Src kinase inhibitor PP2 (PP2 + HI). Brain tissue HI was verified by neuropathological analysis and by Adenosine Triphosphate (ATP) and Phosphocreatine (PCr) levels. We used western blots, immunohistochemistry, H&E and biochemical enzyme assays to determine the role of Src kinase on mitochondrial membrane apoptotic protein trafficking. HI resulted in decreased ATP and PCr levels, neuropathological changes and increased levels of cytochrome c, Smac/DIABLO and AIF in the cytosol while their levels were decreased in mitochondria compared to Nx. PP2 decreased the cytosolic levels of pre-apoptotic proteins, attenuated the neuropathological changes and apoptosis and decreased the HI-induced increased activity of caspase-3. Our data suggest that Src kinase may represent a potential target that could interrupt the enzymatic activation of the caspase dependent cell death pathway.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- Department of Pediatrics, Division of Neonatology, Children's National Medical Center, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA. .,Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Ioannis Koutroulis
- Department of Pediatrics, Division of Emergency Medicine, Children's National Medical Center, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Beamon Agarwal
- Department of Hematopathology, Montefiore Medical Center, Bronx, NY, USA
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | | |
Collapse
|
12
|
Qi W, Gao S, Liu C, Lan G, Yang X, Guo Q. Diffusion tensor MR imaging characteristics of cerebral white matter development in fetal pigs. BMC Med Imaging 2017; 17:50. [PMID: 28830463 PMCID: PMC5568215 DOI: 10.1186/s12880-017-0205-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/03/2017] [Indexed: 01/16/2023] Open
Abstract
Background The purpose of this study was to investigate the anisotropic features of fetal pig cerebral white matter (WM) development by magnetic resonance diffusion tensor imaging, and to evaluate the developmental status of cerebral WM in different anatomical sites at different times. Methods Fetal pigs were divided into three groups according to gestational age: E69 (n = 8), E85 (n = 11), and E114 (n = 6). All pigs were subjected to conventional magnetic resonance imaging (MRI) and diffusion tensor imaging using a GE Signa 3.0 T MRI system (GE Healthcare, Sunnyvale, CA, USA). Fractional anisotropy (FA) was measured in deep WM structures and peripheral WM regions. After the MRI scans,the animals were sacrificed and pathology sections were prepared for hematoxylin & eosin (HE) staining and luxol fast blue (LFB) staining. Data were statistically analyzed with SPSS version 16.0 (SPSS, Chicago, IL, USA). A P-value < 0.05 was considered statistically significant. Mean FA values for each subject region of interest (ROI), and deep and peripheral WM at different gestational ages were calculated, respectively, and were plotted against gestational age with linear correlation statistical analyses. The differences of data were analyzed with univariate ANOVA analyses. Results There were no significant differences in FAs between the right and left hemispheres. Differences were observed between peripheral WM and deep WM in fetal brains. A significant FA growth with increased gestational age was found when comparing E85 group and E114 group. There was no difference in the FA value of deep WM between the E69 group and E85 group. The HE staining and LFB staining of fetal cerebral WM showed that the development from the E69 group to the E85 group, and the E85 group to the E114 group corresponded with myelin gliosis and myelination, respectively. Conclusions FA values can be used to quantify anisotropy of the different cerebral WM areas. FA values did not change significantly between 1/2 way and 3/4 of the way through gestation but was then increased dramatically at term, which could be explained by myelin gliosis and myelination ,respectively.
Collapse
Affiliation(s)
- Wenxu Qi
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China
| | - Song Gao
- Morphology Teaching and Reasearch Section, Liaoning Vocational College of Medcine, Shenyang, 110100, People's Republic of China
| | - Caixia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China
| | - Gongyu Lan
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China
| | - Xue Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
13
|
Convection-enhanced delivery of MANF — Volume of distribution analysis in porcine putamen and substantia nigra. J Neurol Sci 2015; 357:264-9. [DOI: 10.1016/j.jns.2015.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/03/2015] [Indexed: 01/10/2023]
|