1
|
Nagy EK, Overby PF, Leyrer-Jackson JM, Carfagno VF, Acuña AM, Olive MF. Methamphetamine and the Synthetic Cathinone 3,4-Methylenedioxypyrovalerone (MDPV) Produce Persistent Effects on Prefrontal and Striatal Microglial Morphology and Neuroimmune Signaling Following Repeated Binge-like Intake in Male and Female Rats. Brain Sci 2024; 14:435. [PMID: 38790414 PMCID: PMC11118022 DOI: 10.3390/brainsci14050435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Psychostimulants alter cellular morphology and activate neuroimmune signaling in a number of brain regions, yet few prior studies have investigated their persistence beyond acute abstinence or following high levels of voluntary drug intake. In this study, we examined the effects of the repeated binge-like self-administration (96 h/week for 3 weeks) of methamphetamine (METH) and 21 days of abstinence in female and male rats on changes in cell density, morphology, and cytokine levels in two addiction-related brain regions-the prefrontal cortex (PFC) and dorsal striatum (DStr). We also examined the effects of similar patterns of intake of the cocaine-like synthetic cathinone derivative 3,4-methylenedioxypyrovalerone (MDPV) or saline as a control. Robust levels of METH and MDPV intake (~500-1000 infusions per 96 h period) were observed in both sexes. We observed no changes in astrocyte or neuron density in either region, but decreases in dendritic spine densities were observed in PFC pyramidal and DStr medium spiny neurons. The microglial cell density was decreased in the PFC of METH self-administering animals, accompanied by evidence of microglial apoptosis. Changes in microglial morphology (e.g., decreased territorial volume and ramification and increased cell soma volume) were also observed, indicative of an inflammatory-like state. Multiplex analyses of PFC and DStr cytokine content revealed elevated levels of various interleukins and chemokines only in METH self-administering animals, with region- and sex-dependent effects. Our findings suggest that voluntary binge-like METH or MDPV intake induces similar cellular perturbations in the brain, but they are divergent neuroimmune responses that persist beyond the initial abstinence phase.
Collapse
Affiliation(s)
- Erin K. Nagy
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, AZ 85287, USA
| | - Paula F. Overby
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, AZ 85287, USA
| | - Jonna M. Leyrer-Jackson
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ 85012, USA
| | - Vincent F. Carfagno
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Amanda M. Acuña
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, AZ 85287, USA
- Interdisciplinary Graduate Program in Neuroscience, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - M. Foster Olive
- Department of Psychology, Behavioral Neuroscience and Comparative Psychology Area, Arizona State University, Tempe, AZ 85287, USA
- Interdisciplinary Graduate Program in Neuroscience, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Xiao Y, Zhao L, Zang X, Xue S. Compressed primary-to-transmodal gradient is accompanied with subcortical alterations and linked to neurotransmitters and cellular signatures in major depressive disorder. Hum Brain Mapp 2023; 44:5919-5935. [PMID: 37688552 PMCID: PMC10619397 DOI: 10.1002/hbm.26485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Major depressive disorder (MDD) has been shown to involve widespread changes in low-level sensorimotor and higher-level cognitive functions. Recent research found that a primary-to-transmodal gradient could capture a cortical hierarchical organization ranging from perception and action to cognition in healthy subjects, but a prominent gradient dysfunction in MDD patients. However, whether and how this cortical gradient is linked to subcortical impairments and whether it is reflected in the microscale neurotransmitter systems and cell type-specific transcriptional signatures remain largely unknown. Data were acquired from 323 MDD patients and 328 sex- and age-matched healthy controls derived from the REST-meta-MDD project, and the human brain neurotransmitter systems density maps and gene expression data were drawn from two publicly available datasets. We investigated alterations of the primary-to-transmodal gradient in MDD patients and their correlations with clinical symptoms of depression and anxiety, as well as their paralleled subcortical impairments. The correlations between MDD-related gradient alterations and densities of the neurotransmitter systems and gene expression information were assessed, respectively. The results demonstrated that MDD patients had a compressed primary-to-transmodal gradient accompanied by paralleled alterations in subcortical regions including the caudate, amygdala, and thalamus. The case-control gradient differences were spatially correlated with the densities of the neurotransmitter systems including the serotonin and dopamine receptors, and meanwhile with gene expression enriched in astrocytes, excitatory and inhibitory neuronal cells. These findings mapped the paralleled subcortical impairments in cortical hierarchical organization and also helped us understand the possible molecular and cellular substrates of the co-occurrence of high-level cognitive impairments with low-level sensorimotor abnormalities in MDD.
Collapse
Affiliation(s)
- Yang Xiao
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiang ProvincePR China
| | - Lei Zhao
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiang ProvincePR China
| | - Xuelian Zang
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiang ProvincePR China
| | - Shao‐Wei Xue
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiang ProvincePR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiang ProvincePR China
| |
Collapse
|