1
|
Diakos E, Chevalier C, Shahjahan M, Hardy A, Lambert S, Kestemont P, Fontaine P, Pasquet A, Lecocq T. Early impact of domestication on aggressiveness, activity, and stress behaviors in zebrafish (Danio rerio) using mirror test and automated videotracking. Sci Rep 2024; 14:21036. [PMID: 39251766 PMCID: PMC11385545 DOI: 10.1038/s41598-024-71451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Fish domestication progresses through five levels: from the initial acclimatization to captivity (Level 1), to the life cycle completion in captivity (Level 4), and even to the implementation of selective breeding programs (Level 5). Domestication leads to phenotypic changes over generations, sometimes from the very first generation. Behavioral traits are among the first to change. However, in fish, potential behavioral changes during early domestication have been little studied. Therefore, we studied potential behavioral changes among early and advanced levels of domestication in a model species, the zebrafish (Danio rerio), using a mirror test experiment, commonly used to assess traits involved in activity, aggressiveness, and stress in this species. We compared these traits between wild zebrafish in captivity (F0; Level 1), the first generation of their captive-born offspring (F1; Level 4), and three laboratory strains (AB, TU, and WIK; Level 5). Each fish was individually filmed and tracked using an automated procedure for 5 min. Nine behavioral traits and one activity-related trait were characterized for each individual based on the movements and positioning of the fish. We applied a principal component analysis (PCA) and tested the significance of potential differences between groups using an analysis of similarities (ANOSIM). We applied an indicator value analysis (IndVal) to determine which traits were most expressed by each group. We detected differences between groups and across domestication levels. More specifically, we highlighted differentiations between different levels of domestication (e.g. between F1, AB, TU, and WIK) as early as the beginning of the domestication process (i.e. F0 vs. F1), but also within the same level of domestication (i.e. AB vs. TU). Based on PCA and IndVal, (i) F0 and F1 tended to show stronger expression of stress-related traits than the other groups, (ii) F0 was more active than others, and (iii) TU was more aggressive than AB. Our results confirmed that domestication can change fish behavior, even in the first generation born in captivity, although these modifications remain limited. In contrast, we did not observe any general trends correlated with domestication levels, given that AB and TU diverged in their aggressiveness levels, and WIK differed only from F1. This result needs to be generalized to other species but also considered for domestication for aquaculture. If future studies confirm that the changes observed at the beginning of the domestication process remain limited and that there is no consistent evolutionary trend across generations in fish, this would highlight the crucial importance of selecting the right species from the outset of domestication. It would also emphasize the need to design selective breeding programs that shape fish stocks with the most desirable characteristics. To our knowledge, this study is one of the few to examine the behavior of wild zebrafish alongside laboratory strains, offering a unique insight into the early stages of domestication.
Collapse
Affiliation(s)
- E Diakos
- University of Lorraine, L2A, INRAE, Boulevard Des Aiguillettes, BP 70 239, 54506, Vandœuvre-Lès-Nancy, France
| | - C Chevalier
- University of Lorraine, L2A, INRAE, Boulevard Des Aiguillettes, BP 70 239, 54506, Vandœuvre-Lès-Nancy, France
| | - Md Shahjahan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - A Hardy
- University of Lorraine, L2A, INRAE, Boulevard Des Aiguillettes, BP 70 239, 54506, Vandœuvre-Lès-Nancy, France
| | - S Lambert
- University of Lorraine, L2A, INRAE, Boulevard Des Aiguillettes, BP 70 239, 54506, Vandœuvre-Lès-Nancy, France
| | - P Kestemont
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur, Belgium
| | - P Fontaine
- University of Lorraine, L2A, INRAE, Boulevard Des Aiguillettes, BP 70 239, 54506, Vandœuvre-Lès-Nancy, France
| | - A Pasquet
- University of Lorraine, L2A, INRAE, Boulevard Des Aiguillettes, BP 70 239, 54506, Vandœuvre-Lès-Nancy, France
| | - T Lecocq
- University of Lorraine, L2A, INRAE, Boulevard Des Aiguillettes, BP 70 239, 54506, Vandœuvre-Lès-Nancy, France.
| |
Collapse
|
2
|
Fu R, Liu H, Zhang Y, Mao L, Zhu L, Jiang H, Zhang L, Liu X. Imidacloprid affects the visual behavior of adult zebrafish (Danio rerio) by mediating the expression of opsin and phototransduction genes and altering the metabolism of neurotransmitters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168572. [PMID: 37992846 DOI: 10.1016/j.scitotenv.2023.168572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
Imidacloprid poses a significant threat to aquatic ecosystems. In this study, we investigated the visual toxicity of imidacloprid and the underlying molecular mechanisms in adult zebrafish. After exposure to imidacloprid at environmental relevant concentrations (10 and 100μg/L) for 21 days, the detectable contents of imidacloprid were 23.0 ± 0.80 and 121 ± 1.56 ng/mg in eyes of adult zebrafish, respectively. The visual behavior of adult zebrafish was impaired including a reduced ability to track smoothly visual stimuli and visually guided self-motion. The immunofluorescence experiment showed that the content of Rhodopsin (Rho) in the retina of zebrafish was changed significantly. The expression rhythm of genes played key roles in capturing photons in dim (rho) and bright (opn1mw3, opn1lw2 and opn1sw2) light, and in phototransduction (gnb3b, arr3a and rpe65a), was disrupted significantly throughout a 24-h period in adult zebrafish. Targeted metabolomics analysis showed that the content of 16 metabolites associated with neurotransmitter function changed significantly, and were enriched in top three metabolism pathways including Arginine biosynthesis, Alanine, aspartate and glutamate metabolism, and Tryptophan metabolism. These results indicated that imidacloprid exposure at environmentally relevant concentrations could cause optical toxicity through disturbing the expression of opsins and affecting the phototransduction in the retina of zebrafish adults.
Collapse
Affiliation(s)
- Ruiqiang Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongli Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Clevenger T, Paz J, Stafford A, Amos D, Hayes AW. An Evaluation of Zebrafish, an Emerging Model Analyzing the Effects of Toxicants on Cognitive and Neuromuscular Function. Int J Toxicol 2024; 43:46-62. [PMID: 37903286 DOI: 10.1177/10915818231207966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
An emerging alternative to conventional animal models in toxicology research is the zebrafish. Their accelerated development, regenerative capacity, transparent physical appearance, ability to be genetically manipulated, and ease of housing and care make them feasible and efficient experimental models. Nonetheless, their most esteemed asset is their 70% (+) genetic similarity with the human genome, which allows the model to be used in a variety of clinically relevant studies. With these attributes, we propose the zebrafish is an excellent model for analyzing cognitive and neuromuscular responses when exposed to toxicants. Neurocognition can be readily analyzed using visual discrimination, memory and learning, and social behavior testing. Neuromuscular function can be analyzed using techniques such as the startle response, assessment of activity level, and evaluation of critical swimming speed. Furthermore, selectively mutated zebrafish is another novel application of this species in behavioral and pharmacological studies, which can be exploited in toxicological studies. There is a critical need in biomedical research to discover ethical and cost-effective methods to develop new products, including drugs. Through mutagenesis, zebrafish models have become key in meeting this need by advancing the field in numerous areas of biomedical research.
Collapse
Affiliation(s)
| | - Jakob Paz
- Florida College, Temple Terrace, FL, USA
| | | | | | - A Wallace Hayes
- College of Public Health, University of South Florida, Temple Terrace, FL, USA
| |
Collapse
|
4
|
Santos N, Picolo V, Domingues I, Perillo V, Villacis RAR, Grisolia CK, Oliveira M. Effects of environmental concentrations of caffeine on adult zebrafish behaviour: a short-term exposure scenario. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63776-63787. [PMID: 37058238 PMCID: PMC10172215 DOI: 10.1007/s11356-023-26799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Caffeine (CAF) has been considered an emerging environmental contaminant and its presence indicator of anthropogenic contamination. This study evaluated the effects of environmental concentrations of CAF (0, 0.5, 1.5, and 300 μg. L-1) on the behaviour of adult zebrafish (Danio rerio) after 7 days of exposure. The components of feeding, locomotion, boldness (new tank test), sociability (schooling test), and aggression (mirror test) were analysed. Growth rate and weight were investigated as complementary measures. CAF (0.5, 1.5, and 300 μg. L-1) reduced exploratory behaviour in zebrafish, increased feeding latency time (1.5, and 300 μg. L-1), and decreased growth rate and fish weight (300 μg. L-1). CAF also induced aggressive behaviour (0.5, 1.5, and 300 μg. L-1) and decreased appetence to the shoal (sociability) (0.5, and 1.5 μg. L-1). This study showed that low doses of CAF can induce behavioural effects in zebrafish that may have significant long-term impacts on vital ecological functions.
Collapse
Affiliation(s)
- Niedja Santos
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Victor Picolo
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, University Campus Darcy Ribeiro, Brasilia, DF, 70910-900, Brazil
- Graduate Program in Molecular Pathology, Faculty of Health Sciences, University of Brasilia, University Campus Darcy Ribeiro, Brasilia, DF, 70910-900, Brazil
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vitória Perillo
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Rolando A R Villacis
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Cesar Koppe Grisolia
- Laboratory of Toxicological Genetics, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
5
|
Reichmann F, Pilic J, Trajanoski S, Norton WHJ. Transcriptomic underpinnings of high and low mirror aggression zebrafish behaviours. BMC Biol 2022; 20:97. [PMID: 35501893 PMCID: PMC9059464 DOI: 10.1186/s12915-022-01298-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Aggression is an adaptive behaviour that animals use to protect offspring, defend themselves and obtain resources. Zebrafish, like many other animals, are not able to recognize themselves in the mirror and typically respond to their own reflection with aggression. However, mirror aggression is not an all-or-nothing phenomenon, with some individuals displaying high levels of aggression against their mirror image, while others show none at all. In the current work, we have investigated the genetic basis of mirror aggression by using a classic forward genetics approach - selective breeding for high and low mirror aggression zebrafish (HAZ and LAZ). Results We characterized AB wild-type zebrafish for their response to the mirror image. Both aggressive and non-aggressive fish were inbred over several generations. We found that HAZ were on average more aggressive than the corresponding LAZ across generations and that the most aggressive adult HAZ were less anxious than the least aggressive adult LAZ after prolonged selective breeding. RNAseq analysis of these fish revealed that hundreds of protein-encoding genes with important diverse biological functions such as arsenic metabolism (as3mt), cell migration (arl4ab), immune system activity (ptgr1), actin cytoskeletal remodelling (wdr1), corticogenesis (dgcr2), protein dephosphorylation (ublcp1), sialic acid metabolism (st6galnac3) and ketone body metabolism (aacs) were differentially expressed between HAZ and LAZ, suggesting a strong genetic contribution to this phenotype. DAVID pathway analysis showed that a number of diverse pathways are enriched in HAZ over LAZ including pathways related to immune function, oxidation-reduction processes and cell signalling. In addition, weighted gene co-expression network analysis (WGCNA) identified 12 modules of highly correlated genes that were significantly associated with aggression duration and/or experimental group. Conclusions The current study shows that selective breeding based of the mirror aggression phenotype induces strong, heritable changes in behaviour and gene expression within the brain of zebrafish suggesting a strong genetic basis for this behaviour. Our transcriptomic analysis of fish selectively bred for high and low levels of mirror aggression revealed specific transcriptomic signatures induced by selective breeding and mirror aggression and thus provides a large and novel resource of candidate genes for future study. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01298-z.
Collapse
Affiliation(s)
- Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| | - Johannes Pilic
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Slave Trajanoski
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, UK. .,Department of Genetics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
6
|
Petersen BD, Bertoncello KT, Bonan CD. Standardizing Zebrafish Behavioral Paradigms Across Life Stages: An Effort Towards Translational Pharmacology. Front Pharmacol 2022; 13:833227. [PMID: 35126165 PMCID: PMC8810815 DOI: 10.3389/fphar.2022.833227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Zebrafish is a prominent vertebrate model, with many of its advantages related to its development, life cycle, and translational ability. While a great number of behavioral phenotypes and tasks to evaluate them are available, longitudinal studies across zebrafish life stages are scarce and made challenging because of the differences between protocols and endpoints assessed at each life stage. In this mini review, we highlight the relevance that longitudinal studies could have for neurobehavioral pharmacology using this model. We also present possible strategies to standardize behavior endpoints in domains related to human diseases throughout the life cycle, especially between larvae and adult fish. Furthermore, we discuss the remaining difficulties of these analyses and explore future advances needed to bridge this knowledge gap.
Collapse
Affiliation(s)
- Barbara Dutra Petersen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kanandra Taisa Bertoncello
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Carla Denise Bonan,
| |
Collapse
|
7
|
Abstract
The use of multiple species to model complex human psychiatric disorders, such as ADHD, can give important insights into conserved evolutionary patterns underlying multidomain behaviors (e.g., locomotion, attention, and impulsivity). Here we discuss the advantages and challenges in modelling ADHD-like phenotypes in zebrafish (Danio rerio), a vertebrate species that has been widely used in neuroscience and behavior research. Moreover, multiple behavioral tasks can be used to model the core symptoms of ADHD and its comorbidities. We present a critical review of current ADHD studies in zebrafish, and how this species might be used to accelerate the discovery of new drug treatments for this disorder.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK.
- Department of Genetics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
8
|
Eachus H, Choi MK, Ryu S. The Effects of Early Life Stress on the Brain and Behaviour: Insights From Zebrafish Models. Front Cell Dev Biol 2021; 9:657591. [PMID: 34368117 PMCID: PMC8335398 DOI: 10.3389/fcell.2021.657591] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/20/2021] [Indexed: 01/27/2023] Open
Abstract
The early life period represents a window of increased vulnerability to stress, during which exposure can lead to long-lasting effects on brain structure and function. This stress-induced developmental programming may contribute to the behavioural changes observed in mental illness. In recent decades, rodent studies have significantly advanced our understanding of how early life stress (ELS) affects brain development and behaviour. These studies reveal that ELS has long-term consequences on the brain such as impairment of adult hippocampal neurogenesis, altering learning and memory. Despite such advances, several key questions remain inadequately answered, including a comprehensive overview of brain regions and molecular pathways that are altered by ELS and how ELS-induced molecular changes ultimately lead to behavioural changes in adulthood. The zebrafish represents a novel ELS model, with the potential to contribute to answering some of these questions. The zebrafish offers some important advantages such as the ability to non-invasively modulate stress hormone levels in a whole animal and to visualise whole brain activity in freely behaving animals. This review discusses the current status of the zebrafish ELS field and its potential as a new ELS model.
Collapse
Affiliation(s)
- Helen Eachus
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Min-Kyeung Choi
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Soojin Ryu
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom.,Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
9
|
Wang C, Li Z, Wang T, Xu X, Zhang X, Li D. Intelligent fish farm-the future of aquaculture. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2021; 29:2681-2711. [PMID: 34539102 PMCID: PMC8435764 DOI: 10.1007/s10499-021-00773-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/27/2021] [Indexed: 05/17/2023]
Abstract
With the continuous expansion of aquaculture scale and density, contemporary aquaculture methods have been forced to overproduce resulting in the accelerated imbalance rate of water environment, the frequent occurrence of fish diseases, and the decline of aquatic product quality. Moreover, due to the fact that the average age profile of agricultural workers in many parts of the world are on the higher side, fishery production will face the dilemma of shortage of labor, and aquaculture methods are in urgent need of change. Modern information technology has gradually penetrated into various fields of agriculture, and the concept of intelligent fish farm has also begun to take shape. The intelligent fish farm tries to deal with the precise work of increasing oxygen, optimizing feeding, reducing disease incidences, and accurately harvesting through the idea of "replacing human with machine," so as to liberate the manpower completely and realize the green and sustainable aquaculture. This paper reviews the application of fishery intelligent equipment, IoT, edge computing, 5G, and artificial intelligence algorithms in modern aquaculture, and analyzes the existing problems and future development prospects. Meanwhile, based on different business requirements, the design frameworks for key functional modules in the construction of intelligent fish farm are proposed.
Collapse
Affiliation(s)
- Cong Wang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing, China
- Beijing Engineering and Technology Research Centre for Internet of Things in Agriculture China Agriculture University, Beijing, 100083 China
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083 China
| | - Zhen Li
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing, China
- Beijing Engineering and Technology Research Centre for Internet of Things in Agriculture China Agriculture University, Beijing, 100083 China
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083 China
| | - Tan Wang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing, China
- Beijing Engineering and Technology Research Centre for Internet of Things in Agriculture China Agriculture University, Beijing, 100083 China
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083 China
| | - Xianbao Xu
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing, China
- Beijing Engineering and Technology Research Centre for Internet of Things in Agriculture China Agriculture University, Beijing, 100083 China
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083 China
| | - Xiaoshuan Zhang
- College of Engineering, China Agricultural University, Beijing, 100083 China
| | - Daoliang Li
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing, China
- Beijing Engineering and Technology Research Centre for Internet of Things in Agriculture China Agriculture University, Beijing, 100083 China
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083 China
| |
Collapse
|
10
|
Reichmann F, Rimmer N, Tilley CA, Dalla Vecchia E, Pinion J, Al Oustah A, Carreño Gutiérrez H, Young AMJ, McDearmid JR, Winter MJ, Norton WHJ. The zebrafish histamine H3 receptor modulates aggression, neural activity and forebrain functional connectivity. Acta Physiol (Oxf) 2020; 230:e13543. [PMID: 32743878 DOI: 10.1111/apha.13543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/17/2023]
Abstract
AIM Aggression is a behavioural trait characterized by the intention to harm others for offensive or defensive purposes. Neurotransmitters such as serotonin and dopamine are important mediators of aggression. However, the physiological role of the histaminergic system during this behaviour is currently unclear. Here, we aimed to better understand histaminergic signalling during aggression by characterizing the involvement of the histamine H3 receptor (Hrh3). METHODS We have generated a novel zebrafish Hrh3 null mutant line using CRISPR-Cas9 genome engineering and investigated behavioural changes and alterations to neural activity using whole brain Ca2+ imaging in zebrafish larvae and ribosomal protein S6 (rpS6) immunohistochemistry in adults. RESULTS We show that genetic inactivation of the histamine H3 receptor (Hrh3) reduces aggression in zebrafish, an effect that can be reproduced by pharmacological inhibition. In addition, hrh3-/- zebrafish show behavioural impairments consistent with heightened anxiety. Larval in vivo whole brain Ca2+ imaging reveals higher neuronal activity in the forebrain of mutants, but lower activity in specific hindbrain areas and changes in measures of functional connectivity between subregions. Adult hrh3-/- zebrafish display brain region-specific neural activity changes in response to aggression of both key regions of the social decision-making network, and the areas containing histaminergic neurons in the zebrafish brain. CONCLUSION These results highlight the importance of zebrafish Hrh3 signalling for aggression and anxiety and uncover the brain areas involved. Targeting this receptor might be a potential novel therapeutic route for human conditions characterized by heightened aggression.
Collapse
Affiliation(s)
- Florian Reichmann
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
- Division of Pharmacology, Otto Loewi Research Centre for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Neal Rimmer
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Ceinwen A Tilley
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Elisa Dalla Vecchia
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Joseph Pinion
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Amir Al Oustah
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Hector Carreño Gutiérrez
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Jonathan R McDearmid
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| |
Collapse
|
11
|
de Abreu MS, C V V Giacomini A, Genario R, Fontana BD, Parker MO, Marcon L, Scolari N, Bueno B, Demin KA, Galstyan D, Kolesnikova TO, Amstislavskaya TG, Zabegalov KN, Strekalova T, Kalueff AV. Zebrafish models of impulsivity and impulse control disorders. Eur J Neurosci 2020; 52:4233-4248. [PMID: 32619029 DOI: 10.1111/ejn.14893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022]
Abstract
Impulse control disorders (ICDs) are characterized by generalized difficulty controlling emotions and behaviors. ICDs are a broad group of the central nervous system (CNS) disorders including conduct disorder, intermittent explosive, oppositional-defiant disorder, antisocial personality disorder, kleptomania, pyromania and other illnesses. Although they all share a common feature (aberrant impulsivity), their pathobiology is complex and poorly understood. There are also currently no ICD-specific therapies to treat these illnesses. Animal models are a valuable tool for studying ICD pathobiology and potential therapies. The zebrafish (Danio rerio) has become a useful model organism to study CNS disorders due to high genetic and physiological homology to mammals, and sensitivity to various pharmacological and genetic manipulations. Here, we summarize experimental models of impulsivity and ICD in zebrafish and highlight their growing translational significance. We also emphasize the need for further development of zebrafish ICD models to improve our understanding of their pathogenesis and to search for novel therapeutic treatments.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Leticia Marcon
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Naiara Scolari
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Barbara Bueno
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | | | | | - Tatyana Strekalova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Institute of General Pathology and Pathophysiology, University of Würzburg, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China.,Laboratory of Petrochemistry, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
12
|
Rapid well-plate assays for motor and social behaviors in larval zebrafish. Behav Brain Res 2020; 391:112625. [PMID: 32428631 DOI: 10.1016/j.bbr.2020.112625] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022]
Abstract
Behavior phenotypes are a powerful means of uncovering subtle xenobiotic chemical impacts on vertebrate nervous system development. Rodents manifest complex and informative behavior phenotypes but are generally not practical models in which to screen large numbers of chemicals. Zebrafish recapitulate much of the behavioral complexity of higher vertebrates, develop externally and are amenable to assay automation. Short duration automated assays can be leveraged to screen large numbers of chemicals or comprehensive dose-response for fewer chemicals. Here we describe a series of mostly automated assays including larval photomotor response, strobe light response, blue color avoidance, shoaling and mirror stimulus-response performed on the ZebraBox (ViewPoint Behavior Technologies) instrument platform. To explore the sensitivity and uniqueness of each assay endpoint, larval cohorts from 5 to 28 days post fertilization were acutely exposed to several chemicals broadly understood to impact different neuro-activities. We highlight the throughput advantages of using the same instrument platform for multiple assays and the ability of different assays to detect unique phenotypes among different chemicals.
Collapse
|
13
|
A new method for vibration-based neurophenotyping of zebrafish. J Neurosci Methods 2020; 333:108563. [DOI: 10.1016/j.jneumeth.2019.108563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
|
14
|
Gutiérrez HC, Vacca I, Schoenmacker G, Cleal M, Tochwin A, O'Connor B, Young AMJ, Vasquez AA, Winter MJ, Parker MO, Norton WHJ. Screening for drugs to reduce zebrafish aggression identifies caffeine and sildenafil. Eur Neuropsychopharmacol 2020; 30:17-29. [PMID: 31679888 DOI: 10.1016/j.euroneuro.2019.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 11/18/2022]
Abstract
Although aggression is a common symptom of psychiatric disorders the drugs available to treat it are non-specific and can have unwanted side effects. In this study we have used a behavioural platform in a phenotypic screen to identify drugs that can reduce zebrafish aggression without affecting locomotion. In a three tier screen of ninety-four drugs we discovered that caffeine and sildenafil can selectively reduce aggression. Caffeine also decreased attention and increased impulsivity in the 5-choice serial reaction time task whereas sildenafil showed the opposite effect. Imaging studies revealed that both caffeine and sildenafil are active in the zebrafish brain, with prominent activation of the thalamus and cerebellum evident. They also interact with 5-HT neurotransmitter signalling. In summary, we have demonstrated that juvenile zebrafish are a suitable model to screen for novel drugs to reduce aggression, with the potential to uncover the neural circuits and signalling pathways that mediate such behavioural effects.
Collapse
Affiliation(s)
- Héctor Carreño Gutiérrez
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Irene Vacca
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Gido Schoenmacker
- Radboudumc Human Genetics/Radboud University Institute for Computing and Information Sciences (iCIS)/Donders Centre for Neuroscience, Nijmegen, the Netherlands
| | - Madeleine Cleal
- School of Health Sciences and Social Work, University of Portsmouth, Portsmouth PO1 2FR, UK
| | - Anna Tochwin
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Bethan O'Connor
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Alejandro Arias Vasquez
- Radboudumc Human Genetics/Radboud University Institute for Computing and Information Sciences (iCIS)/Donders Centre for Neuroscience, Nijmegen, the Netherlands
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Matthew O Parker
- School of Health Sciences and Social Work, University of Portsmouth, Portsmouth PO1 2FR, UK
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
15
|
Franke B, Reif A. Special Issue on the Neurobiology of aggressive behaviour in the context of ADHD and related disorders. Eur Neuropsychopharmacol 2020; 30:1-4. [PMID: 31910982 DOI: 10.1016/j.euroneuro.2019.12.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Barbara Franke
- Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Fontana BD, Franscescon F, Rosemberg DB, Norton WH, Kalueff AV, Parker MO. Zebrafish models for attention deficit hyperactivity disorder (ADHD). Neurosci Biobehav Rev 2019; 100:9-18. [DOI: 10.1016/j.neubiorev.2019.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/23/2023]
|
17
|
The three-spined stickleback as a model for behavioural neuroscience. PLoS One 2019; 14:e0213320. [PMID: 30913214 PMCID: PMC6435232 DOI: 10.1371/journal.pone.0213320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
The three-spined stickleback (Gasterosteus aculeatus) is a small teleost fish that is ubiquitous across the Northern Hemisphere. Among the behaviours that have been characterised in this species is ritualized courtship, aggressiveness and parental behaviour. Whereas three-spined sticklebacks have been used for ecological, evolutionary, parasitological and toxicological research, its complex behavioural repertoire and experimental advantages have not been exploited for basic neuroscience research. The aim of the present study is to describe some innate behaviours of laboratory bred three-spined sticklebacks by using a battery of tests that have been developed and validated to model some aspects of human psychiatric disorders in zebrafish. We recorded mirror induced aggression, novel object boldness, shoaling, and anxiety-like behaviour using both the novel tank diving and the black-white preference tests. We show that behaviour of three-spined sticklebacks in these standard tests is remarkably similar to that of zebrafish and other species and can be altered by fluoxetine and buspirone. These findings highlight the potential of using three-spined sticklebacks for cross-species and translational studies.
Collapse
|
18
|
Neuropharmacology, pharmacogenetics and pharmacogenomics of aggression: The zebrafish model. Pharmacol Res 2019; 141:602-608. [DOI: 10.1016/j.phrs.2019.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/16/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
|
19
|
Endothelin neurotransmitter signalling controls zebrafish social behaviour. Sci Rep 2019; 9:3040. [PMID: 30816294 PMCID: PMC6395658 DOI: 10.1038/s41598-019-39907-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
The formation of social groups is an adaptive behaviour that can provide protection from predators, improve foraging and facilitate social learning. However, the costs of proximity can include competition for resources, aggression and kleptoparasitism meaning that the decision whether to interact represents a trade-off. Here we show that zebrafish harbouring a mutation in endothelin receptor aa (ednraa) form less cohesive shoals than wild-types. ednraa−/− mutants exhibit heightened aggression and decreased whole-body cortisol levels suggesting that they are dominant. These behavioural changes correlate with a reduction of parvocellular arginine vasopressin (AVP)-positive neurons in the preoptic area, an increase in the size of magnocellular AVP neurons and a higher concentration of 5-HT and dopamine in the brain. Manipulation of AVP or 5-HT signalling can rescue the shoaling phenotype of ednraa−/− providing an insight into how the brain controls social interactions.
Collapse
|
20
|
Dalla Vecchia E, Mortimer N, Palladino VS, Kittel-Schneider S, Lesch KP, Reif A, Schenck A, Norton WH. Cross-species models of attention-deficit/hyperactivity disorder and autism spectrum disorder: lessons from CNTNAP2, ADGRL3, and PARK2. Psychiatr Genet 2019; 29:1-17. [PMID: 30376466 PMCID: PMC7654943 DOI: 10.1097/ypg.0000000000000211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022]
Abstract
Animal and cellular models are essential tools for all areas of biological research including neuroscience. Model systems can also be used to investigate the pathophysiology of psychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). In this review, we provide a summary of animal and cellular models for three genes linked to ADHD and ASD in human patients - CNTNAP2, ADGRL3, and PARK2. We also highlight the strengths and weaknesses of each model system. By bringing together behavioral and neurobiological data, we demonstrate how a cross-species approach can provide integrated insights into gene function and the pathogenesis of ADHD and ASD. The knowledge gained from transgenic models will be essential to discover and validate new treatment targets for these disorders.
Collapse
Affiliation(s)
- Elisa Dalla Vecchia
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Niall Mortimer
- Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg, Wuerzburg
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Viola S. Palladino
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg, Wuerzburg
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - William H.J. Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
21
|
Lu Y, Boswell W, Boswell M, Klotz B, Kneitz S, Regneri J, Savage M, Mendoza C, Postlethwait J, Warren WC, Schartl M, Walter RB. Application of the Transcriptional Disease Signature (TDSs) to Screen Melanoma-Effective Compounds in a Small Fish Model. Sci Rep 2019; 9:530. [PMID: 30679619 PMCID: PMC6345854 DOI: 10.1038/s41598-018-36656-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Cell culture and protein target-based compound screening strategies, though broadly utilized in selecting candidate compounds, often fail to eliminate candidate compounds with non-target effects and/or safety concerns until late in the drug developmental process. Phenotype screening using intact research animals is attractive because it can help identify small molecule candidate compounds that have a high probability of proceeding to clinical use. Most FDA approved, first-in-class small molecules were identified from phenotypic screening. However, phenotypic screening using rodent models is labor intensive, low-throughput, and very expensive. As a novel alternative for small molecule screening, we have been developing gene expression disease profiles, termed the Transcriptional Disease Signature (TDS), as readout of small molecule screens for therapeutic molecules. In this concept, compounds that can reverse, or otherwise affect known disease-associated gene expression patterns in whole animals may be rapidly identified for more detailed downstream direct testing of their efficacy and mode of action. To establish proof of concept for this screening strategy, we employed a transgenic strain of a small aquarium fish, medaka (Oryzias latipes), that overexpresses the malignant melanoma driver gene xmrk, a mutant egfr gene, that is driven by a pigment cell-specific mitf promoter. In this model, melanoma develops with 100% penetrance. Using the transgenic medaka malignant melanoma model, we established a screening system that employs the NanoString nCounter platform to quantify gene expression within custom sets of TDS gene targets that we had previously shown to exhibit differential transcription among xmrk-transgenic and wild-type medaka. Compound-modulated gene expression was identified using an internet-accessible custom-built data processing pipeline. The effect of a given drug on the entire TDS profile was estimated by comparing compound-modulated genes in the TDS using an activation Z-score and Kolmogorov-Smirnov statistics. TDS gene probes were designed that target common signaling pathways that include proliferation, development, toxicity, immune function, metabolism and detoxification. These pathways may be utilized to evaluate candidate compounds for potential favorable, or unfavorable, effects on melanoma-associated gene expression. Here we present the logistics of using medaka to screen compounds, as well as, the development of a user-friendly NanoString data analysis pipeline to support feasibility of this novel TDS drug-screening strategy.
Collapse
Affiliation(s)
- Yuan Lu
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - William Boswell
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Mikki Boswell
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Barbara Klotz
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany
| | - Susanne Kneitz
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany
| | - Janine Regneri
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany
| | - Markita Savage
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Cristina Mendoza
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | | | - Manfred Schartl
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany.,Hagler Institute for Advanced Studies and Department of Biology, Texas A&M University, College Station, USA
| | - Ronald B Walter
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA.
| |
Collapse
|
22
|
Screening for drugs to reduce aggression in zebrafish. Neuropharmacology 2018; 156:107394. [PMID: 30336150 DOI: 10.1016/j.neuropharm.2018.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/28/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022]
Abstract
Aggression is a common symptom of several human psychiatric disorders. However, the drugs available to treat aggression are non-specific and can have unwanted side effects. The zebrafish is an ideal model for behavioural pharmacology. They are small, aggression can be measured reliably, and drugs can be applied by immersion in the tank water. The ability to visualise and manipulate circuits in the intact brain represents an excellent opportunity to understand how chemical compounds modify the signalling pathways that control this behaviour. This review discusses protocols to measure zebrafish aggression, the neural circuits that control this behaviour and how pharmacological studies can inform us about environmental toxicology and the development of therapeutic drugs for humans. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.
Collapse
|